Advertisement

41 The Interface Between Tectonic Evolution and Cold-Water Coral Dynamics in the Mediterranean

  • Rinus WortelEmail author
  • Paul Meijer
Chapter
Part of the Coral Reefs of the World book series (CORW, volume 9)

Abstract

Circulation and water properties in the Mediterranean basin, and thus the living conditions for marine biota, including cold-water corals, are a strong function of the connectivity of the basin with neighbouring water masses. The configuration of the basin and its connections with adjacent basins are governed by the interplay of large scale and regional scale geodynamical (or tectonic) processes within the Mediterranean region. As to surface area, it appears that the Mediterranean basin as a whole is closing whereas some of its sub-basins are opening, at the expense of the eastern Mediterranean basin. More important are opening or closure of gateway connections. The pertinent Mediterranean gateways to the Atlantic Ocean and the Black Sea are potentially subject to minor changes resulting from tectonics. However, the impact of such possible changes on marine conditions, including those for cold-water corals, would be slow and of minor magnitude compared to the effects of climate change. Typical aspects of cold-water coral occurrences in the Mediterranean region, notably the uplift and outcrops of Plio-Pleistocene communities and the presence of steep faults (with steered fluid seeps providing nutrients) as preferred production areas, are accounted for by vertical motions in subduction zone evolution.

Keywords

Mediterranean Sea Cold-water corals Tectonics Gateways Marine conditions 

Notes

Acknowledgements

The authors thank Claudio Lo Iacono, two anonymous reviewers and the editors for their constructive comments, which improved the manuscript.

References

  1. Alvarez-Perez G, Busquets P, de Mol B, et al (2005) Deep-water coral occurrences in the Strait of Gibraltar. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, pp 207–221CrossRefGoogle Scholar
  2. Antonioli F, Ferranti L, Lambeck K, et al (2006) Late Pleistocene to Holocene record of changing uplift rates in southern Calabria and northeastern Sicily (southern Italy, Central Mediterranean Sea). Tectonophysics 422:23–40CrossRefGoogle Scholar
  3. Argnani A (2009) Evolution of the southern Tyrrhenian slab tear and active tectonics along the western edge of the Tyrrhenian subducted slab. In: van Hinsbergen DJJ, Edwards M, Govers R (eds) Collision and collapse at the Africa–Arabia–Eurasia subduction zone. The Geological Society, London, Special Publications 311:193–212Google Scholar
  4. Bohnhoff M, Bult F, Dresen G, et al (2013) An earthquake gap south of Istanbul. Nat Commun 4:1999.  https://doi.org/10.1038/ncomms2999 CrossRefPubMedGoogle Scholar
  5. de la Vara A, Meijer P (2016) Response of Mediterranean circulation to Miocene shoaling and closure of the Indian gateway – a model study. Palaeogeogr Palaeoclimatol Palaeoecol 442:96–109Google Scholar
  6. de la Vara A, Topper RPM, Meijer PT, et al (2015) Water exchange through the Betic and Rifian corridors prior to the Messinian salinity crisis: a model study. Paleoceanography 30.  https://doi.org/10.1002/2014PA00271
  7. di Geronimo J, Messina C, Rosso A, et al (2005) Enhanced biodiversity in the deep: early Pleistocene coral communities from southern Italy. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, pp 61–86CrossRefGoogle Scholar
  8. Ergintav S, Reilinger RE, Çakmak R, et al (2014) Istanbul’s earthquake hot spots: geodetic constraints on strain accumulation along faults in the Marmara seismic gap. Geophys Res Lett 41:5783–5788CrossRefGoogle Scholar
  9. Faccenna C, Funiciello F, Giardini D, et al (2001) Episodic back-arc extension during restricted mantle convection in the Central Mediterranean. Earth Planet Sci Lett 187:105–116CrossRefGoogle Scholar
  10. Faccenna C, Molin P, Orecchio B, et al (2011) Topography of the Calabria subduction zone (southern Italy): clues for the origin of Mt. Etna. Tectonics 30.  https://doi.org/10.1029/2010TC002694
  11. Fink HG, Wienberg C, Hebbeln D, et al (2012) Oxygen control on Holocene cold-water coral development in the eastern Mediterranean Sea. Deep-Sea Res Part 1 Oceanogr Res Pap 62:89–96CrossRefGoogle Scholar
  12. Fink HG, Wienberg C, De Pol-Holz R, et al (2015) Spatio-temporal distribution patterns of Mediterranean cold-water corals (Lophelia pertusa and Madrepora oculata) during the past 14,000 years. Deep-Sea Res Part 1 Oceanogr Res Pap 103:37–48CrossRefGoogle Scholar
  13. Flecker R, MEDGATE team (2015) Evolution of the late Miocene Mediterranean-Atlantic gateways and their impact on regional and global environmental change. Earth-Sci Rev 150:365–392CrossRefGoogle Scholar
  14. Freiwald A, Roberts JM (eds) (2005) Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, 1243 pGoogle Scholar
  15. Fusco G, Artale V, Cotroneo Y, et al (2008) Thermohaline variability of Mediterranean water in the Gulf of Cadiz, 1948–1999. Deep-Sea Res Part 1 Oceanogr Res Pap 55:1624–1638CrossRefGoogle Scholar
  16. Goes S, Giardini D, Jenny S, et al (2004) A recent tectonic reorganization in the south-central Mediterranean. Earth Planet Sci Lett 226:335–345CrossRefGoogle Scholar
  17. Govers R (2009) Choking the Mediterranean to dehydration: the Messinian salinity crisis. Geology 37:167–170CrossRefGoogle Scholar
  18. Govers R, Wortel MJR (2005) Lithosphere tearing at STEP faults: response to edges of subduction zones. Earth Planet Sci Lett 236:505–523CrossRefGoogle Scholar
  19. Gutscher MA, Dominguez S, Westbrook GK, et al (2012) The Gibraltar subduction: a decade of new geophysical data. Tectonophysics 574-575:72–91CrossRefGoogle Scholar
  20. Hüsing SK, Zachariasse WJ, van Hinsbergen DJJ, et al (2009) Oligocene-Miocene basin evolution in SE Anatolia: constraints on the closure of the eastern Tethys gateway. Geol Soc Lond Spec Publ 311:107–132CrossRefGoogle Scholar
  21. Jolivet L, Faccenna C (2000) Mediterranean extension and the Africa-Eurasia collision. Tectonics 19:1095–1106CrossRefGoogle Scholar
  22. Lionello P, Abrantes F, Congedi L, et al (2012) Introduction: Mediterranean climate—background information. In: Lionello P (ed) The climate of the Mediterranean region: from the past to the future. Elsevier, pp xxxv–xcGoogle Scholar
  23. Meijer PT (2012) Hydraulic theory of sea straits applied to the onset of the Messinian salinity crisis. Mar Geol 326–328:131–139CrossRefGoogle Scholar
  24. Mienis F, de Stigter HC, White M, et al (2007) Hydrodynamic controls on cold-water coral growth and carbonate-mound development at the SW and SE Rockall Trough Margin, NE Atlantic Ocean. Deep-Sea Res Part 1 Oceanogr Res Pap 54:1655–1674CrossRefGoogle Scholar
  25. Nocquet JM (2012) Present-day kinematics of the Mediterranean: a comprehensive overview of GPS results. Tectonophysics 579:220–242CrossRefGoogle Scholar
  26. Okay AI, Zattin M, Cavazza W (2010) Apatite fission track data for the Miocene Arabia-Eurasia collision. Geology 38:35–38CrossRefGoogle Scholar
  27. Oktay FY, Gökasan E, Sakinc M, et al (2002) The effects of the North Anatolian Fault Zone on the latest connection between Black Sea and Sea of Marmara. Mar Geol 190:367–382CrossRefGoogle Scholar
  28. Özbakir AD, Şengör AMC, Wortel MJR, et al (2013) The Pliny – Strabo trench region: a large shear zone resulting from slab tearing. Earth Planet Sci Lett 37:188–195CrossRefGoogle Scholar
  29. Palcu DV, Tulbure M, Bartol M, et al (2015) The Badenian-Sarmatian extinction event in the Carpathian foredeep basin of Romania: paleogeographic changes in the paratethys domain. Glob Planet Chang 133:346–358CrossRefGoogle Scholar
  30. Polonia A, Torelli L, Artoni A, et al (2016) The Ionian and Alfeo-Etna fault zones: new segments of an evolving plate boundary in the central Mediterranean Sea? Tectonophysics 675:69–90CrossRefGoogle Scholar
  31. Reilinger R, McClusky S (2011) Nubia-Arabia-Eurasia plate motions and the dynamics of Mediterranean and Middle East tectonics. Geophys J Int 186:971–979CrossRefGoogle Scholar
  32. Roberts JM, Wheeler AJ, Freiwald A (2006) Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312:543–547CrossRefGoogle Scholar
  33. Roberts JM, Wheeler A, Freiwald A, et al (2009) Cold-water corals: the biology and geology of deep-sea coral habitats. Cambridge University Press, New York, p 334.  https://doi.org/10.1017/CBO9780511581588
  34. Rogerson M, Colmenero-Hidalgo E, Levine RC, et al (2010) Enhanced Mediterranean-Atlantic exchange during Atlantic freshening phases. Geochem Geophys Geosyst 11:Q08013.  https://doi.org/10.1029/2009GC002931 CrossRefGoogle Scholar
  35. Rogerson M, Rohling EJ, Bigg GR, et al (2012) Paleoceanography of the Atlantic- Mediterranean exchange: overview and first quantitative assessment of climatic forcing. Rev Geophys 50:RG2003.  https://doi.org/10.1029/2011RG000376 CrossRefGoogle Scholar
  36. Schmittbuhl J, Karabulut H, Lenglin O, et al (2016) Seismicity distribution and locking depth along the Main Marmara Fault, Turkey. Geochem Geophys Geosyst 17:954–965.  https://doi.org/10.1002/2015GC006120 CrossRefGoogle Scholar
  37. Simon D, Meijer P (2015) Dimensions of the Atlantic-Mediterranean connection that caused the Messinian Salinity Crisis. Mar Geol 364:53–64CrossRefGoogle Scholar
  38. Smith JE, Schwarcz HO, Risk MJ, et al (2000) Paleo temperatures from deep-sea corals: overcoming “vital effects”. Palaios 15:25–32CrossRefGoogle Scholar
  39. Spakman W, Wortel R (2004) A tomographic view on Western Mediterranean geodynamics. In: Cavazza W, Roure F, Spakman W, et al (eds) The TRANSMED Atlas: the Mediterranean region from crust to mantle. Springer, Berlin, Heidelberg, pp 31–52CrossRefGoogle Scholar
  40. Taviani M, Freiwald A, Zibrowius H (2005) Deep coral growth in the Mediterranean Sea: an overview. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, pp 137–156CrossRefGoogle Scholar
  41. Taviani M, Angeletti L, Canese S, et al (2017) The “Sardinian cold-water province” in the context of the Mediterranean coral ecosystems. Deep-Sea Res Part 2 Top Stud Oceanogr 145:61–78CrossRefGoogle Scholar
  42. Titschack J, Freiwald A (2005) Growth, deposition and facies of Pleistocene bathyal coral communities from Rhodes, Greece. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, pp 41–59CrossRefGoogle Scholar
  43. Titschack J, Bromley RG, Freiwald A (2005) Plio-Pleistocene cliff-bound, wedge-shaped, warm-temperate carbonate deposits from Rhodes (Greece): sedimentology and facies. Sediment Geol 180:29–56CrossRefGoogle Scholar
  44. Tracey DM, Rowden AA, Mackay KA, et al (2011) Habitat-forming cold-waters show affinity for seamounts in the New Zealand region. Mar Ecol Progr Ser 430:1–22CrossRefGoogle Scholar
  45. White M, Mohn C, de Stigter H, et al (2005) Deep-water coral development as a function of hydrodynamics and surface productivity around submarine banks of the Rockall Trough, NE Atlantic. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, pp 503–514CrossRefGoogle Scholar
  46. Wortel MJR, Spakman W (2000) Subduction and slab detachment in the Mediterranean-Carpathian region. Science 290:1910–1917CrossRefGoogle Scholar
  47. Zerbini S, Raicich F, Prati CM, et al (2017) Sea-level change in the Northern Mediterranean Sea from long-period tide gauge time series. Earth-Sci Rev 167:72–87CrossRefGoogle Scholar

Cross References

  1. Freiwald A (this volume) Messinian salinity crisis: what happened to cold-water corals?Google Scholar
  2. Hayes DR, Schroeder K, Poulain PM, et al (this volume) Review of the circulation and characteristics of intermediate water masses of the Mediterranean – implications for cold-water coral habitatsGoogle Scholar
  3. Skliris N (this volume) The Mediterranean is getting saltier: from the past to the futureGoogle Scholar
  4. Taviani M, Vertino A, Angeletti L, et al (this volume) Paleoecology of Mediterranean cold-water coralsGoogle Scholar
  5. Titschack J (this volume) Bathyal corals within the Aegean Sea and the adjacent Hellenic trenchGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Earth SciencesUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations