Advertisement

37 Demography and Conservation of Deep Corals: The Study of Population Structure and Dynamics

  • Lorenzo BramantiEmail author
  • Giovanni Santangelo
  • Maria Carla Benedetti
  • Mimmo Iannelli
  • Katell Guizien
Chapter
Part of the Coral Reefs of the World book series (CORW, volume 9)

Abstract

The science of demography was developed for the study of human populations, but the theoretical framework and analytical techniques can be easily applied to animal populations, giving powerful instruments for conservation and management. Demography is then a paradigmatic example of the advantages of interdisciplinary approaches which allow transferring the techniques developed in one field (e.g. human population studies) to different fields (e.g. nature conservation and management). Cold-water corals have been approached relatively recently by scientist due to the technical constrains linked to the deep habitat where they live. However the fast development of underwater observation technologies is allowing to gather data on those deep and not easily accessible ecosystems, showing their paramount role in the ecosystem functioning. Due to the peace at which environmental changes are threatening natural ecosystems, increasing our knowledge on cold-water corals is urgent and time constrained. Due to the slow life cycles of the cold-water coral species, forecasting capacity is needed to understand the dynamics of their populations. Demography can give this forecasting capacity but, up to now, the paucity of data from deep coral populations still not allowed to apply demographic models to those environments. Fortunately, the application of demographic models to other species with similar characteristics can help a fast development of similar instruments to cold-water corals. The present chapter aims at introducing demography from an historical point of view, showing how this science evolved from the study of human populations to the conservation of animal populations. We then review the application of demographic modeling to coral populations and in particular we focus on the case study of the Mediterranean red coral (Corallium rubrum). This species is endemic to the Mediterranean Sea and besides it is not considered as a cold-water coral species, it dwells in relatively cold environment and can be found at considerable depths.

Keywords

Demography Population dynamics Corals Cold-water corals Mediterranean Sea 

References

  1. Álvarez-Pérez G, Busquets P, Sandoval N, et al (2005) Deep-water coral occurrences in the Strait of Gibraltar. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, pp 207–221CrossRefGoogle Scholar
  2. Arrigoni M, Manfredi P, Panigada S, et al (2011) Life-history tables of the Mediterranean fin whale from stranding data. Mar Ecol 32:1–9CrossRefGoogle Scholar
  3. Bacaer N (2010) A Short history of mathematical population dynamics. Springer, London. ISBN: 978-0-85729-114-1. e-ISBN: 978-0-85729-115-8.  https://doi.org/10.1007/978-0-85729-115-8 CrossRefGoogle Scholar
  4. Bak RPM, Meesters EH (1998) Coral population structure: the hidden information of colony size-frequency distributions. Mar Ecol Progr Ser 162:301–306CrossRefGoogle Scholar
  5. Benedetti MC, Priori C, Erra F, et al (2016) Growth patterns in mesophotic octocorals: timing the branching process in the highly-valuable Mediterranean Corallium rubrum. Est Coastl Shelf Sci 171:106–110CrossRefGoogle Scholar
  6. Beverton RJH, Holt SJ (1957) On the dynamics of exploited fish populations, fishery investigations series II vol XIX, Ministry of Agriculture, Fisheries and Food, 533 pGoogle Scholar
  7. Bo M, Bavestrello G, Angiolillo M, et al (2015) Persistence of pristine deep-sea coral gardens in the Mediterranean Sea (SW Sardinia). PLoS One 10:e0119393.  https://doi.org/10.1371/journal.pone.0119393 CrossRefGoogle Scholar
  8. Bongiorni L, Mea M, Gambi C, et al (2010) Deep-water scleractinian corals promote higher biodiversity in deep-sea meiofaunal assemblages along continental margins. Biol Conserv 143:1687–1700CrossRefGoogle Scholar
  9. Bramanti L, Magagnini G, De Maio L, et al (2005) Recruitment, early survival and growth of the Mediterranean red coral Corallium rubrum (L 1758), a 4-year study. J Exp Mar Biol Ecol 314:69–78CrossRefGoogle Scholar
  10. Bramanti L, Santangelo G, Iannelli M (2009) Mathematical modelling for conservation and management of gorgonians corals: young and olds, could they coexist? Ecol Model 20:2851–2856CrossRefGoogle Scholar
  11. Bramanti L, Vielmini I, Rossi S, et al (2014) Demographic parameters of two populations of red coral (Corallium rubrum) in the North Western Mediterranean. Mar Biol 161:1015–1026.  https://doi.org/10.1007/s00227-013-2383-5 CrossRefGoogle Scholar
  12. Bramanti L, Iannelli M, Fan TY, et al (2015) Demographic models forecast the effects of climate change on scleractinian corals: Pocillopora damicornis as a case study. Coral Reefs 34: 505–515.  https://doi.org/10.1007/s00338-015-1269-z CrossRefGoogle Scholar
  13. Bramanti L, Benedetti MC, Cupido R, et al (2017) Demography of animal forests: the example of Mediterranean Gorgonians. In: Rossi S, Bramanti L, Gori A, et al (eds) Marine animal forests: the ecology of benthic biodiversity hotspots. Springer, Cham, pp 529–548.  https://doi.org/10.1007/978-3-319-17001-5_13-1 Google Scholar
  14. Brault S, Caswell H (1993) Pod-specific demography of killer whales (Orcinus orca). Ecology 74:1444–1454CrossRefGoogle Scholar
  15. Brooke S, Järnegren J (2013) Reproductive periodicity of the scleractinian coral Lophelia pertusa from the Trondheim Fjord. Nor Mar Biol 160:139–153Google Scholar
  16. Brooke S, Young CM (2005) Embryogenesis and larval biology of the ahermatypic scleractinian Oculina varicosa. Mar Biol 146:665–675CrossRefGoogle Scholar
  17. Burgess S, Babcock RC (2005) Reproductive ecology of three reef-forming, deep-sea corals in the New Zealand region. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, pp 701–713CrossRefGoogle Scholar
  18. Butler MJ, Paris CB, Goldstein JS, et al (2011) Behavior constrains the dispersal of long-lived spiny lobster larvae. Mar Ecol Progr Ser 422:223–237CrossRefGoogle Scholar
  19. Caroselli E, Zaccanti F, Mattioli G, et al (2012) Growth and demography of the solitary scleractinian coral Leptosammia pruvoti along a sea surface temperature gradient in the Mediterranean Sea. PLoS One 7:e37848.  https://doi.org/10.1371/journal.pone.0037848 CrossRefGoogle Scholar
  20. Caswell H (2001) Matrix population models, 2nd edn. Sinauer Associates, SunderlandGoogle Scholar
  21. Cau A, Bramanti L, Cannas R, et al (2016) Habitat constraints and self-thinning shape Mediterranean red coral deep population structure: implications for conservation practice. Sci Rep 6:23322.  https://doi.org/10.1038/srep23322
  22. Cau A, Follesa MC, Moccia D, et al (2017a) Leiopathes glaberrima millennial forest from SW Sardinia as nursery ground for the small spotted catshark Scyliorhinus canicula. Aquat Conserv Mar Freshw Ecosyst 27:731–735.  https://doi.org/10.1002/aqc.2717 CrossRefGoogle Scholar
  23. Cau A, Moccia D, Follesa MC, et al (2017b) Coral forests diversity in the outer shelf of the south Sardinian continental margin. Deep-Sea Res Part 1 Oceanogr Res Pap 122:60–70.  https://doi.org/10.1016/j.dsr.2017.01.016 CrossRefGoogle Scholar
  24. Cerrano C, Danovaro R, Gambi C, et al (2010) Gold coral (Savalia savaglia) and gorgonian forests enhance benthic biodiversity and ecosystem functioning in the mesophotic zone. Biodivers Conserv 19:153–167.  https://doi.org/10.1007/s10531-009-9712-5 CrossRefGoogle Scholar
  25. Costantini F, Taviani M, Remia A, et al (2010) Deep-water Corallium rubrum L. (1758) from the Mediterranean sea: preliminary genetic characterization. Mar Ecol 31:261–269CrossRefGoogle Scholar
  26. Cowen RK, Sponaugle S (2009) Larval dispersal and marine population connectivity. Annu Rev Mar Sci 1:443–466CrossRefGoogle Scholar
  27. Crouse D, Crowder L, Caswell H (1987) A stage-based population model for loggerhead sea turtles and implications for conservation. Ecology 68:1412–1423.  https://doi.org/10.2307/1939225 CrossRefGoogle Scholar
  28. Danovaro R, Aguzzi J, Fanelli E, et al (2017) An ecosystem-based deep-ocean strategy. Science 355:452 LP-454CrossRefGoogle Scholar
  29. Deidun A, Andaloro F, Bavestrello G, et al (2015) First characterisation of a Leiopathes glaberrima (Cnidaria: Anthozoa: Antipatharia) forest in Maltese exploited fishing grounds. Ital J Zool 82:271–280.  https://doi.org/10.1080/11250003.2014.986544 CrossRefGoogle Scholar
  30. De Mol B, Henriet JP, Canals M (2005) Development of coral banks in Porcupine Seabight: do they have Mediterranean ancestors? In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, pp 137–156Google Scholar
  31. D’Onghia G, Indennidate A, Giove A, et al (2011) Distribution and behaviour of deep-sea benthopelagic fauna observed using towed cameras in the Santa Maria di Leuca cold-water coral province. Mar Ecol Progr Ser 443:95–110CrossRefGoogle Scholar
  32. D’Onghia G, Maiorano P, Carlucci R, et al (2012) Comparing deep-sea fish fauna between coral and non-coral “megahabitats” in the Santa Maria di Leuca cold-water coral province (Mediterranean Sea). PLoS One 7:e44509CrossRefGoogle Scholar
  33. Duineveld GCA, Lavaleye MSS, Berghuis EM (2004) Particle flux and food supply to a seamount cold-water community (Galicia Bank, NW Spain). Mar Ecol Progr Ser 277:13–23CrossRefGoogle Scholar
  34. Edmunds PJ (2010) Population biology of Porites astreoides and Diploria strigosa on a shallow Caribbean reef. Mar Ecol Progr Ser 418:87–104.  https://doi.org/10.3354/meps08823 CrossRefGoogle Scholar
  35. Edmunds PJ, Elahi R (2007) The demographics of a 15-year decline in cover of the Caribbean reef coral Montastrea annularis. Ecol Monogr 77:3–18CrossRefGoogle Scholar
  36. Fox AD, Henry LA, Corne DW, et al (2016) Sensitivity of marine protected area network connectivity to atmospheric variability. R Soc Open Sci 3:160494.  https://doi.org/10.1098/rsos.160494 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Freiwald A, Roberts MJ (2005) Cold water corals and ecosystems. Springer, Berlin, Heidelberg, 1243 ppGoogle Scholar
  38. Freiwald A, Fosså JH, Grehan A, et al (2004) Cold-water coral reefs: out of sight – no longer out of mind. Biodiversity series 22. UNEP World Conservation Monitoring Centre, Cambridge, 86 pp. https://archive.org/details/coldwatercoralre04frei
  39. Freiwald A, Beuck L, Rüggeberg A, et al (2009) The white coral community in the Central Mediterranean Sea revealed by ROV surveys. Oceanography 22:58–74CrossRefGoogle Scholar
  40. Freiwald A, Rogers A, Hall-Spencer J, et al (2017) Global distribution of cold-water corals (version 3.0). Second update to the dataset in Freiwald et al (2004) by UNEP-WCMC, in collaboration with Andre Freiwald and John Guinotte. Cambridge, UK: UNEP World Conservation Monitoring Centre. http://data.unep-wcmc.org/datasets/3
  41. Frier BW (2000) Demography. In: Bowman AK, Garnsey P, Rath-Bone D (eds) The Cambridge Ancient History, vol 11, 2nd edn. Cambridge University Press, Cambridge, pp 787–816CrossRefGoogle Scholar
  42. Fujiwara M, Caswell H (2001) Demography of the endangered North Atlantic right whale. Nature 414:537–541CrossRefGoogle Scholar
  43. Gallmetzer I, Haselmair A, Velimirov B (2010) Slow growth and early sexual maturity: bane and boon for the red coral Corallium rubrum. Estuar Coast Shelf Sci 90:1–10CrossRefGoogle Scholar
  44. Garrabou J, Harmelin JG (2002) A 20-year study on life-history traits of a harvested long-lived temperate coral in the NW Mediterranean: insights into conservation and management needs. J Anim Ecol 71:966–978CrossRefGoogle Scholar
  45. Garrabou J, Sala E, Linares C, et al (2017) Re-shifting the ecological baseline for the overexploited Mediterranean red coral. Sci Rep 7:42404.  https://doi.org/10.1038/srep42404 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Gerber LR, Heppell SS, Ballantyne F, et al (2005) The role of dispersal and demography in determining the efficacy of marine reserves. Can J Fish Aquat Sci 62:863–871CrossRefGoogle Scholar
  47. GFCM (General Fisheries Commission for the Mediterranean Scientific Advisory Committee SAC) (2011) Report of the Workshop on the Regional Management Plan on Red Coral in the Mediterranean. Brussels, 21–22 January 2014. http://www.fao.org/3/a-ax793e.pdf
  48. Gori A, Orejas C, Madurell T, et al (2013) Bathymetrical distribution and size structure of cold water coral populations in the Cap de Creus and Lacaze-Duthiers canons (Northwestern Mediterranean). Biogeosciences 10:2049–2060CrossRefGoogle Scholar
  49. Guizien K, Bramanti L (2014) Modelling ecological complexity for marine species conservation: the effect of variable connectivity on species spatial distribution and age structure. Theor Biol Forum 107:47–56PubMedGoogle Scholar
  50. Guizien K, Brochier T, Duchene JC, et al (2006) Dispersal of Owenia fusiformis larvae by wind-driven currents: turbulence, swimming behaviour and mortality in a three- dimensional stochastic model. Mar Ecol Progr Ser 311:47–66CrossRefGoogle Scholar
  51. Hanski I, Ovaskainen O (2000) The metapopulation capacity of a fragmentedlandscape. Nature 404:755–758CrossRefGoogle Scholar
  52. Hastings A, Botsford LW (2006) Persistence of spatial populations depends on returning home. Proc Natl Acad Sci 103:6067–6072CrossRefGoogle Scholar
  53. Highsmith RC (1982) Reproduction by fragmentation in corals. Mar Ecol Progr Ser 7:207–226CrossRefGoogle Scholar
  54. Hughes TP (1984) Population dynamics based on individual size rather than age: a general model with a reef coral example. Am Nat 123:778–795CrossRefGoogle Scholar
  55. Hughes TP, Jackson JBC (1985) Population dynamics and life histories of foliaceous corals. Ecol Monogr 55:141–166CrossRefGoogle Scholar
  56. Jimenez C, Orejas C (2017) The Builders of the Oceans – Part II: Corals from the past to the present (The Stone from the Sea). In: Rossi S, Bramanti L, Gori A, et al (eds) Marine animal forests: the ecology of benthic biodiversity hotspots. Springer, Cham, pp 657–697Google Scholar
  57. Katz CH, Cobb JS, Spaulding M (1994) Larval behavior, hydrodynamic transport, and potential offshore-to-inshore recruitment in the American lobster Homarus americanus. Mar Ecol Progr Ser 103:265–272CrossRefGoogle Scholar
  58. Kuhrt A (1995) The Ancient near east c. 3000–330 B.C.E, vol 2. Routledge, London, p 695Google Scholar
  59. Lancaster J McCallum S, Lowe AC, et al (2014) Development of detailed ecological guidance to support the application of the Scottish MPA selection guidelines in Scotland’s seas. Scottish Natural Heritage Commissioned Report No.491. Coral Gardens – supplementary documentGoogle Scholar
  60. Larsson AI, Jarnegren J, Stromberg SM, et al (2014) Embryogenesis and larval biology of the cold-water coral Lophelia pertusa. PLoS One 9:e102222PubMedPubMedCentralGoogle Scholar
  61. Lartaud F, Pareige S, De Rafelis M, et al (2013) A new approach for assessing cold-water coral growth in situ using fluorescent calcein staining. Aquat Living Resour 26:187–196CrossRefGoogle Scholar
  62. Lartaud F, Galli G, Raza A, et al (2017) Growth patterns in long-lived coral species. In: Rossi S, Bramanti L, Gori A, et al (eds) Marine animal forests: the ecology of benthic biodiversity hotspots. Springer, Cham, pp 1–32.  https://doi.org/10.1007/978-3-319-17001-5_15-1 Google Scholar
  63. Lasker HR (1990) Clonal propagation and population dynamics of a gorgonian coral. Ecology 71:1578–1589CrossRefGoogle Scholar
  64. Leslie JPH (1945) On the use of matrices in certain population mathematics. Biometrika 33:183–212CrossRefGoogle Scholar
  65. Leslie JPH (1948) Some further notes on the use of matrices in population mathematics. Biometrika 35:213–245CrossRefGoogle Scholar
  66. Levins R (1969) Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull Entomol Soc Am 15:237–240Google Scholar
  67. Lewis EG (1942) On the generation and growth of a population. Sankhya 6:93–96Google Scholar
  68. Linares C, Coma R, Zabala M (2008) Effects of a mass mortality event on gorgonian reproduction. Coral Reefs 27:27–34.  https://doi.org/10.1007/s00338-007-0285-z CrossRefGoogle Scholar
  69. Linares C, Zabala M, Garrabou J, et al (2010) Assessing the impact of diving in coralligenous communities: the usefulness of demographic studies of red gorgonian populations. Sci Rep Port-Cros Natl Park, Fr 24:161–184Google Scholar
  70. Luiz OJ, Allen AP, Robertson DR, et al (2013) Adult and larval traits as determinants of geographic range size among tropical reef fishes. Proc Natl Acad Sci 110:16498–16502.  https://doi.org/10.1073/pnas.1304074110 CrossRefPubMedGoogle Scholar
  71. Maier C, Bils F, Weinbauer MG, et al (2013) Respiration of Mediterranean cold-water corals is not affected by ocean acidification as projected for the end of the century. Biogeosciences 10:7617–7640CrossRefGoogle Scholar
  72. Malthus TR (1798) An essay on the principle of population as it affects the future improvement of society, with remarks on the speculations of Mr Goodwin, M Condorcet and Other Writers, 1st edn. J. Johnson in St Paul’s Church-yard, London. Retrieved 20 June 2015. via Internet ArchiveGoogle Scholar
  73. Marschal C, Garrabou J, Harmelin JG, et al (2004) A new method for measuring growth and age in the precious Mediterranean red coral Corallium rubrum (L.). Coral Reefs 23:423–432CrossRefGoogle Scholar
  74. Martínez-Quintana A, Bramanti L, Viladrich N, et al (2015) Quantification of Corallium rubrum larvae motility behavior: implications for population connectivity. Mar Biol 162:309–318CrossRefGoogle Scholar
  75. Mastrototaro F, D’Onghia G, Corriero G, et al (2010) Biodiversity of the white coral ecosystem off Cape Santa Maria di Leuca (Mediterranean Sea): an update. Deep-Sea Res Part 2 Top Stud Oceanogr 57:412–430Google Scholar
  76. Molnár PK, Lewis MA, Derocher AE (2014) Estimating Allee dynamics before they can be observed: polar bears as a case study. PLoS One 9:e85410.  https://doi.org/10.1371/journal.pone.0085410 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Morrison CL, Baco AR, Nizinski MS, et al (2015) Population connectivity of deep-sea corals. In: Hourigan TF, Etnoyer PJ, Cairns SD (ed) The state of deep-sea coral and sponge ecosystems of the United States: 2015. NOAA Technical Memorandum X. NOAA, Silver Spring, pp 12-1–12-30.Google Scholar
  78. Movilla J, Orejas C, Calvo E, et al (2014) Differential response of two Mediterranean cold-water coral species to ocean acidification. Coral Reefs 33:675–686CrossRefGoogle Scholar
  79. Orejas C, Gori A, Gili JM (2008) Growth rates of live Lophelia pertusa and Madrepora oculata from the Mediterranean Sea maintained in aquaria. Coral Reefs 27:255–264CrossRefGoogle Scholar
  80. Orejas C, Gori A, Lo Iacono C, et al (2009) Cold-water corals in the Cap de Creus canyon, northwestern Mediterranean: spatial distribution, density and anthropogenic impact. Mar Ecol Progr Ser 307:37–51CrossRefGoogle Scholar
  81. Orejas C, Ferrier-Pagès C, Reynaud S, et al (2011) Long-term growth rates of four Mediterranean cold-water coral species maintained in aquaria. Mar Ecol Progr Ser 429:57–65.  https://doi.org/10.3354/meps09104 CrossRefGoogle Scholar
  82. Priori C, Mastascusa V, Erra F, et al (2013) Demography of deep-dwelling red coral populations. Age and reproductive structure assessment. Estuar Coast Shelf Sci 116:1–7CrossRefGoogle Scholar
  83. Quattrini AM, Etnoyer PJ, Doughty C, et al (2014) A phylogenetic approach to octocoral community structure in the deep Gulf of Mexico. Deep-Sea Res Part 2 Top Stud Oceanogr 99:92–102CrossRefGoogle Scholar
  84. Ricklefs RE, Miller GL (2000) Ecology. WH Freeman and Co, New York City, 849 ppGoogle Scholar
  85. Roark EB, Guilderson TP, Dunbar RB, et al (2006) Radiocarbon-based ages and growth rates of Hawaiian deep-sea corals. Mar Ecol Progr Ser 327:1–14CrossRefGoogle Scholar
  86. Roberts JM, Wheeler AJ, Freiwald A (2006) Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312:543–547.  https://doi.org/10.1126/science.1119861 CrossRefGoogle Scholar
  87. Roberts JM, Wheeler AJ, Freiwald A, et al (2009) Cold-water corals: the biology and geology of deep-sea coral habitats. Cambridge University Press, Cambridge, New York, p 334Google Scholar
  88. Rossi S, Tsounis G, Orejas C, et al (2008) Survey of deep-dwelling red coral (Corallium rubrum) populations at Cap de Creus (NW Mediterranean). Mar Biol 154:533–545CrossRefGoogle Scholar
  89. Rossi S, Bramanti L, Gori A, et al (2017a) Animal forests of the wold: an overview. In: Rossi S, Bramanti L, Gori A, et al (eds) Marine animal forests: the ecology of benthic biodiversity hotspots. Springer, Cham, pp 1–28Google Scholar
  90. Rossi A, Scordamaglia E, Bellingeri M, et al (2017b) Demography of the bottlenose dolphin Tursiops truncatus (Mammalia: Delphinidae) in the Eastern Ligurian Sea (NW Mediterranean): quantification of female reproductive parameters. Eur Zool J 84.  https://doi.org/10.1080/24750263.2017.1334839 CrossRefGoogle Scholar
  91. Santangelo G, Abbiati M (2001) Red coral: conservation and management of an overexploited Mediterranean species. Aquat Conserv Mar Freshw Ecosyst 11:253–259CrossRefGoogle Scholar
  92. Santangelo G, Bramanti L (2006) Ecology through time, an overview. Riv Biol/Biol Forum 99:395–424Google Scholar
  93. Santangelo G, Bramanti L, Iannelli M (2007) Population dynamics and conservation biology of the over-exploited Mediterranean Red coral. J Theor Biol 244:416–423CrossRefGoogle Scholar
  94. Santangelo G, Carletti E, Maggi E, et al (2003) Reproduction and population of the sexual structure of the overexploited Mediterranean red coral Corallium rubrum. Mar Ecol Progr Ser 248:99–108CrossRefGoogle Scholar
  95. Santangelo G, Bramanti L, Rossi S, et al (2012) Patterns of variation in recruitment and post-recruitment processes of the Mediterranean precious gorgonian coral Corallium rubrum. J Exp Mar Biol Ecol 411:7–13CrossRefGoogle Scholar
  96. Santangelo G, Cupido R, Cocito S, et al (2015) Effects of increased mortality on gorgonian corals (Cnidaria, Octocorallia): different demographic features may lead affected populations to unexpected recovery and new equilibrium points. Hydrobiologia 759:171–187.  https://doi.org/10.1007/s10750-015-2241-1 CrossRefGoogle Scholar
  97. Savini A, Vertino A, Marchese F, et al (2014) Mapping cold-water coral habitats at different scales within the Northern Ionian Sea (Central Mediterranean): an assessment of coral coverage and associated vulnerability. PLoS One 9:e87108CrossRefGoogle Scholar
  98. Scheidel W (2007) Demography. In: Scheidel W, Morris I, Saller R (eds) The Cambridge economic history of the Greco-Roman world, Cambridge, pp 38–86Google Scholar
  99. Shannon RE (1975) Simulation modelling and methodology. ACM SIGSIM Simulation 8:33–38. ACM, New York.  https://doi.org/10.1145/1102766.1102770 CrossRefGoogle Scholar
  100. Taviani M, Freiwald A, Zibrowius H (2005) Deep coral growth in the Mediterranean Sea: an overview. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, pp 137–156CrossRefGoogle Scholar
  101. Thiem O, Ravagnan E, Fosså JH, et al (2006) Food supply mechanisms for cold-water corals along a continental shelf edge. J Mar Syst 60:207–219CrossRefGoogle Scholar
  102. Tsounis G, Rossi S, Grigg R, et al (2010) The exploitation and conservation of precious corals. Oceanogr Mar Biol Annu Rev 48:161–221CrossRefGoogle Scholar
  103. Tsounis G, Rossi S, Bramanti L, et al (2013) Management hurdles for sustainable harvesting of Corallium rubrum. Mar Policy 39:361–364CrossRefGoogle Scholar
  104. Verhulst PF (1838) Notice sur la loi que la population suit dans son accroissement. Correspondance mathématique et physique 10:113–121Google Scholar
  105. Volterra V (1931) Variations and fluctuations of the number of individuals in animal species living together. In: Chapman RN (ed) Animal Ecology. McGraw-Hill, New YorkGoogle Scholar
  106. Waller RG (2005) Deep-water Scleractinia (Cnidaria: Anthozoa): current knowledge of reproductive processes. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, pp 691–700Google Scholar
  107. Waller RG, Tyler PA (2005) The reproductive biology of two deep-water, reef-building scleractinians from the NE Atlantic Ocean. Coral Reefs 24:514–522CrossRefGoogle Scholar
  108. Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191PubMedPubMedCentralGoogle Scholar

Cross References

  1. Altuna A, Poliseno A (this volume) Taxonomy, genetics and biodiversity of Mediterranean deep-sea corals and cold-water coralsGoogle Scholar
  2. Bo M, Bavestrello G (this volume) Mediterranean black coral communitiesGoogle Scholar
  3. Chimienti G, Bo M, Taviani M, et al (this volume) Occurrence and biogeography of Mediterranean cold-water coralsGoogle Scholar
  4. Knittweis L, Evans J, Aguilar R, et al (this volume) Recent discoveries of extensive cold-water coral assemblages in Maltese watersGoogle Scholar
  5. Rueda JL, Urra J, Aguilar R, et al (this volume) Cold-water coral associated fauna in the Mediterranean Sea and adjacent areasGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Lorenzo Bramanti
    • 1
    Email author
  • Giovanni Santangelo
    • 2
  • Maria Carla Benedetti
    • 2
  • Mimmo Iannelli
    • 3
  • Katell Guizien
    • 1
  1. 1.CNRS, Laboratoire d’Ecogéochimie des Environnements Benthiques (LECOB), Observatoire OcéanologiqueSorbonne Universités, UPMC Univ Paris 06Banyuls/MerFrance
  2. 2.Dipartimento di BiologiaUniversity of PisaPisaItaly
  3. 3.Dipartimento di MatematicaUniversity of TrentoPovoItaly

Personalised recommendations