Advertisement

34 Lophelia pertusa and Madrepora oculata: An Archaea Riddle?

  • Markus G. WeinbauerEmail author
  • Davide Oregioni
  • Cornelia Maier
Chapter
Part of the Coral Reefs of the World book series (CORW, volume 9)

Abstract

Lophelia pertusa and Madrepora oculata are the two main species building cold-water coral reefs. Habitats within cold-water coral reefs ecosystems such as the water column, sediments, coral rubble, sponges and other corals host a diverse archaeal community. However, L. pertusa and M. oculata host, if at all, a different archaeal community. The question arises why (some) Archaea are excluded from the holobiont and whether this is potentially contributing to the success of L. pertusa and M. oculata as cold-water coral reef builders.

Keywords

Bacteria Archaea Corals Diversity Holobiont 

Notes

Acknowledgements

We thank the captain and the crew of the RV Pelagia for their support. This research has been supported by the Dutch NWO/ALW project BIOSYS (no. 835.30.024 and 814.01.005) and the European Project on Ocean Acidification (EPOCA) which received funding from the European Community’s Seventh Framework Programme (PP7/2007-2013) under grant agreement no. 211384.

References

  1. Beman JM, Roberts KJW, Rohwer F, et al (2007) Distribution and diversity of archaeal ammonia monooxygenase genes associated with corals. Appl Environ Microbiol 73:5642–5647CrossRefGoogle Scholar
  2. Delong EF, Pace NR (2001) Environmental diversity of Bacteria and Archaea. Syst Biol 50:470–478CrossRefGoogle Scholar
  3. Delong EF, Wu KY, Prézeli BB, et al (1994) High abundance of Archaea in Antarctic marine phytoplankton. Nature 371:695–697CrossRefGoogle Scholar
  4. Emblem A, Karlsen BO, Evertsen J, et al (2012) Mitogenome polymorphism in a single branch sample revealed by solid deep sequencing of the Lophelia pertusa coral genome. Gene 506:344–349CrossRefGoogle Scholar
  5. Frade PR, Roll K, Bergauer K, et al (2016) Archaeal and bacterial communities associated with the surface mucus of Caribbean corals differ in their degree of host specificity and community turnover. PLoS One.  https://doi.org/10.1371/journal.pone.0144702 CrossRefGoogle Scholar
  6. Fuhrman J, Ouverney C (1998) Marine microbial diversity studied via 16S rRNA sequences: cloning results from coastal waters and counting of native archaea with fluorescent single cell probes. Aquat Ecol 32:3–15CrossRefGoogle Scholar
  7. Fuhrman JA, McCallum K, Davies AA (1992) Novel major archaebacterial group from marine plankton. Nature 356:148–149CrossRefGoogle Scholar
  8. Glasl B, Pongaerts P, Elizabeth NH, et al (2017) Microbiome variation in corals with distinct depth distribution ranges across a shallow–mesophotic gradient (15–85 m). Coral Reefs 36:447–452CrossRefGoogle Scholar
  9. Hansson L, Agis M, Maier C, et al (2009) Community composition of bacteria associated with cold-water coral Madrepora oculata: within and between colony variability. Mar Ecol Progr Ser 397:89–102CrossRefGoogle Scholar
  10. Karner MB, Delong EF, Karl DM (2001) Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409:507–510CrossRefGoogle Scholar
  11. Kellogg C (2004) Tropical Archaea: diversity associated with the surface microlayer of corals. Mar Ecol Progr Ser 272:81–88CrossRefGoogle Scholar
  12. Massana R, Murray AE, Preston CM, et al (1997) Vertical distribution and phylogenetic characterization of marine planktonic archaea in the Santa Barbara channel. Appl Environ Microbiol 63:50–56PubMedPubMedCentralGoogle Scholar
  13. van Bleijsweijk JDL, Whalen C, Duineveld GCA, et al (2015) Microbial assemblages on a cold-water coral mound at the SE Rockall Bank (NE Atlantic): interactions with hydrography and topography. Biogeosciences 12:4483–4496CrossRefGoogle Scholar
  14. van Duyl FC, Hegeman J, Hoogstraten A, et al (2008) Dissolved carbon fixation by sponge-microbe consortia of deep water coral mounds in the NE Atlantic Ocean. Mar Ecol Progr Ser 358:137–150CrossRefGoogle Scholar
  15. Vetriani C, Jannasch HW, Macgregor BJ, et al (1999) Population structure and phylogenetic characterization of marine benthic Archaea in deep-sea sediments. Appl Environ Microbiol 65:4375–4384PubMedPubMedCentralGoogle Scholar
  16. Wegley L, Yu Y, Breitbart M, et al (2004) Coral-associated Archaea. Mar Ecol Progr Ser 273:89–96CrossRefGoogle Scholar
  17. Winter C, Kerros ME, Weinbauer MG (2009) Seasonal changes of bacterial and archaeal communities in the dark ocean: evidence from the Mediterranean sea. Limnol Oceanogr 54:160–170CrossRefGoogle Scholar
  18. Yakimov MM, Cappello S, Crisafi E, et al (2006) Phylogenetic survey of metabolically active microbial communities associated with the deep-sea coral Lophelia pertusa from the Apulian plateau, central Mediterranean sea. Deep-Sea Res Part 1 Oceanogr Res Pap 53:62–75CrossRefGoogle Scholar

Cross Reference

  1. Weinbauer MG, Oregoni D, Grosskurth A, et al (this volume) Diversity of bacteria associated with the cold-water corals Lophelia pertusa and Madrepora oculata Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Markus G. Weinbauer
    • 1
    Email author
  • Davide Oregioni
    • 1
  • Cornelia Maier
    • 1
  1. 1.Sorbonne Universités, CNRS, Laboratoire d’Océanographie de VillefrancheVillefranche-sur-MerFrance

Personalised recommendations