Advertisement

11 Mediterranean Cold-Water Corals as Paleoclimate Archives

  • Paolo MontagnaEmail author
  • Marco Taviani
Chapter
Part of the Coral Reefs of the World book series (CORW, volume 9)

Abstract

Scleractinian cold-water corals preserve in their aragonite skeleton information on the past changes of the physico-chemical properties of the seawater in which they grew. Such information is stored as geochemical signals, such as changes in trace elements concentration (B/Ca, Li/Mg, P/Ca, Sr/Ca, Ba/Ca, U/Ca) or stable and radiogenic isotopes composition (δ11B, δ13C, δ18O, 14C, εNd), that are usually converted into environmental parameters using empirical calibration equations. The aragonite skeleton of cold-water corals is sufficiently uranium-rich to be suitable for U-series dating, providing precise and accurate ages for the last 600–700 kyrs. This opens the possibility to obtain reconstructions of key oceanographic parameters for the intermediate and deep water masses at sub-decadal scale resolution for climatically-relevant time windows in the past. However, part of the geochemical signal incorporated into the coral skeleton is modulated by the physiology of the coral, which complicates the interpretation of the geochemical proxies. This “vital effect” needs to be taken into account and corrected for to obtain reliable reconstructions of past changes in seawater temperature, pH and nutrient content. On the other hand, these biologically-induced geochemical signals can be used to investigate the processes controlling coral biomineralisation and better understand the resilience of cold-water corals to environmental and climate changes.

In the recent years, Mediterranean cold-water corals have been targeted for geochemically-oriented studies and their trace elements and isotopes composition has contributed significantly to developing and understanding new and established coral proxies. Living in an environment characterised by relatively warm seawater temperatures (13–14 °C) and high pH (8.1), the Mediterranean cold-water corals provide the end-member geochemical composition useful to derive empirical calibration equations. In particular, the analysis of several specimens of the cold-water corals species Lophelia pertusa, Madrepora oculata and Desmophyllum dianthus live-collected in the western, central and eastern Mediterranean Sea, has contributed to the development of the Li/Mg thermometer, boron isotopes pH proxy and P/Ca nutrient proxy, as well as a better understanding of the neodymium isotopic composition of cold-water corals as a water mass tracer. A multi-proxy approach has been recently applied to precisely U/Th-dated cold-water corals fragments from coral-bearing sediment cores retrieved in the western and central Mediterranean Sea, showing large changes in the dynamics of the intermediate waters during the Holocene. Further investigations of fossil cold-water corals specimens from different Mediterranean locations will open new perspectives on the reconstruction of past changes in the physico-chemical properties of sub-surface waters and their potential role in modifying the Mediterranean climate.

Keywords

Geochemical proxies Paleoclimate Natural archives Cold-water corals Mediterranean Sea 

Notes

Acknowledgements

This chapter is dedicated to the lasting memory of Sergio Silenzi whose enthusiasm and action inspired the senior author to study geochemically the Mediterranean corals (Antonioli et al. 2014). The authors benefited from CWC collections sourced from various expeditions in the Mediterranean Sea within EU projects HERMES, HERMIONE and COCONET. This work contributes to the EU Framework Program VII Projects COCONET, (contract no. 287844), and EVER-EST (contract no. 674907), DG Environment program IDEM (grant agreement No 11.0661 /2017/750680/SUB/EN V.C2), the Flag Project RITMARE (Ricerca Italiana per il Mare) and the MISTRALS/PALEOMEX/COFIMED project.

The authors wish to thank Claudio Mazzoli, Malcolm McCulloch, Julie Trotter, Eric Douville, Nadine Tisnérat-Laborde, Edwige Pons-Branchu, Norbert Frank, Steven Goldstein, Christophe Colin and Matthias López Correa for continuous inspiration, support and collaboration in the study of coral geochemistry. This manuscript benefited from constructive suggestions by Eric Douville and Dierk Hebbeln and by the Editors. This paper is ISMAR-Bologna scientific contribution n. 1928.

References

  1. Adkins JF, Boyle EA (1997) Changing atmospheric Δ14C and the record of deep water paleoventilation ages. Paleoceanography 12:337–344.  https://doi.org/10.1029/97PA00379 CrossRefGoogle Scholar
  2. Adkins JF, Cheng H, Boyle EA, et al (1998) Deep-sea coral evidence for rapid change in ventilation of the deep North Atlantic 15,400 years ago. Science 280:725–728PubMedCrossRefGoogle Scholar
  3. Adkins JF, Griffin S, Kashgarian M, et al (2002) Radiocarbon dating of deep-sea corals. Radiocarbon 44:567–580CrossRefGoogle Scholar
  4. Adkins JF, Boyle EA, Curry WB, et al (2003) Stable isotopes in deep-sea corals and a new mechanism for “vital effects”. Geochim Cosmochim Acta 67:1129–1143CrossRefGoogle Scholar
  5. Adkins JF, Henderson GM, Wang S-L, et al (2004) Growth rates of the deep-sea scleractinia Desmophyllum cristagalli and Enallopsammia rostrata. Earth Planet Sci Lett 227:481–490CrossRefGoogle Scholar
  6. Aggarwal SK, You C-F (2016) A review on the determination of isotope ratios of boron with mass spectrometry. Mass Spectrom Rev 9999:1–21Google Scholar
  7. Allemand D, Ferrier-Pagès C, Furla P, et al (2004) Biomineralisation in reef-building corals: from molecular mechanisms to environmental control. Comptes Rendus Palevol 3:453–467CrossRefGoogle Scholar
  8. Anagnostou E, Sherrell RM, Gagnon A, et al (2011) Seawater nutrient and carbonate ion concentrations recorded as P/Ca, Ba/Ca, and U/Ca in the deep-sea coral Desmophyllum dianthus. Geochim Cosmochim Acta 75:2529–2543.  https://doi.org/10.1016/j.gca.2011.02.019 CrossRefGoogle Scholar
  9. Anagnostou E, Huang K-F, You C-F, et al (2012) Evaluation of boron isotope ratio as a pH proxy in the deep sea coral Desmophyllum dianthus: evidence of physiological pH adjustment. Earth Planet Sci Lett 349:251–260CrossRefGoogle Scholar
  10. Angeletti L, Canese S, Franchi F, et al (2015) The “chimney forest” of the deep Montenegrin margin, south-eastern Adriatic Sea. Mar Pet Geol 66:542–554.  https://doi.org/10.1016/j.marpetgeo.2015.04.001 CrossRefGoogle Scholar
  11. Antonioli F, Auriemma R, Anzidei M, et al (2014) Sergio Silenzi (1969–2012). Quat Int 332:1CrossRefGoogle Scholar
  12. Beck JW, Edwards RL, Ito E, et al (1992) Sea-surface temperature from coral skeletal strontium/calcium ratios. Science 257:644–648PubMedCrossRefGoogle Scholar
  13. Bethoux JP, Gentili B (1996) The Mediterranean Sea, coastal and deep-sea signatures of climatic and environmental changes. J Mar Syst 7:383–394CrossRefGoogle Scholar
  14. Blamart D, Rollion-Bard C, Meibom A, et al (2007) Correlation of boron isotopic composition with ultrastructure in the deep-sea coral Lophelia pertusa : implications for biomineralization and paleo-pH. Geochem Geophys Geosyst  https://doi.org/10.1029/2007GC001686 CrossRefGoogle Scholar
  15. Boyle E (1998) Oceanography: pumping iron makes thinner diatoms. Nature 393:733–734.  https://doi.org/10.1038/31585 CrossRefGoogle Scholar
  16. Case DH, Robinson LF, Auro ME, et al (2010) Environmental and biological controls on Mg and Li in deep-sea scleractinian corals. Earth Planet Sci Lett 300:215–225CrossRefGoogle Scholar
  17. Cheng H, Adkins J, Edwards RL, et al (2000) U-Th dating of deep-sea corals. Geochim Cosmochim Acta 64:2401–2416CrossRefGoogle Scholar
  18. Cohen AL, Gaetani GA, Lundälv T, et al (2006) Compositional variability in a cold-water scleractinian, Lophelia pertusa: New insights into “vital effects”. Geochem Geophys Geosyst  https://doi.org/10.1029/2006GC001354 CrossRefGoogle Scholar
  19. Copard K, Colin C, Douville E, et al (2010) Nd isotopes in deep-sea corals in the North-Eastern Atlantic. Quat Sci Rev 29:2499–2508.  https://doi.org/10.1016/j.quascirev.2010.05.025 CrossRefGoogle Scholar
  20. Corrège T (2006) Sea surface temperature and salinity reconstruction from coral geochemical tracers. Palaeogeogr Palaeoclimatol Palaeoecol 232:408–428.  https://doi.org/10.1016/j.palaeo.2005.10.014 CrossRefGoogle Scholar
  21. Cuif J-P, Dauphin Y (2005) The two-step mode of growth in the scleractinian coral skeletons from the micrometre to the overall scale. J Struct Biol 150:319–331PubMedCrossRefGoogle Scholar
  22. De La Rocha CL (2003) Silicon isotope fractionation by marine sponges and the reconstruction of the silicon isotope composition of ancient deep water. Geology 31:423–426CrossRefGoogle Scholar
  23. De Lange GJ, Thomson J, Reitz A, et al (2008) Synchronous basin-wide formation and redox-controlled preservation of a Mediterranean sapropel. Nat Geosci 1:606–610CrossRefGoogle Scholar
  24. Del Bianco F, Gasperini L, Angeletti L, et al (2015) Stratigraphic architecture of the Montenegro/N. Albania Continental Margin (Adriatic Sea—Central Mediterranean). Mar Geol 359:61–74CrossRefGoogle Scholar
  25. Dickson AG (1990) Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep-Sea Res Part 1 Oceanogr Res Pap 37:755–766CrossRefGoogle Scholar
  26. Dissard D, Douville E, Reynaud S, et al (2012) Light and temperature effect on δ11B and B/Ca ratios of the zooxanthellate coral Acropora sp.: results from culturing experiments. Biogeosci Discuss 9:5969–6014CrossRefGoogle Scholar
  27. Douville E, Sallé E, Frank N, et al (2010a) Rapid and accurate U-Th dating of ancient carbonates using inductively coupled plasma-quadrupole mass spectrometry. Chem Geol 272:1–11CrossRefGoogle Scholar
  28. Douville E, Paterne M, Cabioch G, et al (2010b) Abrupt sea surface pH change at the end of the Younger Dryas in the central sub-equatorial Pacific inferred from boron isotope abundance in corals (Porites). Biogeosciences 7:2445–2459CrossRefGoogle Scholar
  29. Dubois-Dauphin Q, Bonneau L, Colin C, et al (2016) South Atlantic intermediate water advances into the North-East Atlantic with reduced Atlantic meridional overturning circulation during the last glacial period. Geochem Geophys Geosyst  https://doi.org/10.1002/2016GC006281 CrossRefGoogle Scholar
  30. Dubois-Dauphin Q, Montagna P, Siani G, et al (2017) Hydrological variations of the intermediate water masses of the Western Mediterranean Sea during the past 20 ka inferred from neodymium isotopic composition in foraminifera and cold-water corals. Clim Past 13:17–37CrossRefGoogle Scholar
  31. Eltgroth SF, Adkins JF, Robinson LF, et al (2006) A deep-sea coral record of North Atlantic radiocarbon through the Younger Dryas: evidence for intermediate water/deepwater reorganization. Paleoceanography.  https://doi.org/10.1029/2005PA001192
  32. Emiliani C, Hudson JH, Shinn E, et al (1978) Oxygen and carbon isotopic growth record in a reef coral from the Florida keys and a deep-sea coral from Blake Plateau. Science 202:627–629PubMedCrossRefPubMedCentralGoogle Scholar
  33. Fallon SJ, McCulloch MT, van Woesik R, et al (1999) Corals at their latitudinal limits: laser ablation trace element systematics in Porites from Shirigai Bay, Japan. Earth Planet Sci Lett 172:221–238.  https://doi.org/10.1016/S0012-821X(99)00200-9 CrossRefGoogle Scholar
  34. Fink HG, Wienberg C, Hebbeln D, et al (2012) Oxygen control on Holocene cold-water coral development in the Eastern Mediterranean Sea. Deep-Sea Res Part 1 Oceanogr Res Pap 62:89–96CrossRefGoogle Scholar
  35. Fink HG, Wienberg C, De Pol-Holz R, et al (2013) Cold-water coral growth in the Alboran Sea related to high productivity during the Late Pleistocene and Holocene. Mar Geol 339:71–82CrossRefGoogle Scholar
  36. Fink HG, Wienberg C, De Pol-Holz R, et al (2015) Spatio-temporal distribution patterns of Mediterranean cold-water corals (Lophelia pertusa and Madrepora oculata) during the past 14,000 years. Deep-Sea Res Part 1 Oceanogr Res Pap 103:37–48CrossRefGoogle Scholar
  37. Flecha S, Pérez FF, García-Lafuente J, et al (2015) Trends of pH decrease in the Mediterranean Sea through high frequency observational data: indication of ocean acidification in the basin. Sci Rep 5:16770PubMedPubMedCentralCrossRefGoogle Scholar
  38. Foster GL (2008) Seawater pH, pCO2 and [CO3 2−] variations in the Caribbean Sea over the last 130 kyr: a boron isotope and B/Ca study of planktic foraminifera. Earth Planet Sci Lett 271:254–266CrossRefGoogle Scholar
  39. Foster GL, Pogge von Strandmann PAE, Rae JWB (2010) Boron and magnesium isotopic composition of seawater. Geochem Geophys Geosyst.  https://doi.org/10.1029/2010GC003201 CrossRefGoogle Scholar
  40. Frank N, Paterne M, Ayliffe L, et al (2004) Eastern North Atlantic deep-sea corals: tracing upper intermediate water D14C during the Holocene. Earth Planet Sci Lett 219:297–309CrossRefGoogle Scholar
  41. Fruchter N, Eisenhauer A, Dietzel M, et al (2016) 88Sr/86Sr fractionation in inorganic aragonite and in corals. Geochim Cosmochim Acta 178:268–280.  https://doi.org/10.1016/j.gca.2016.01.039 CrossRefGoogle Scholar
  42. Godinot C, Ferrier-Pages C, Montagna P, et al (2011) Tissue and skeletal changes in the scleractinian coral Stylophora pistillata Esper 1797 under phosphate enrichment. J Exp Mar Biol Ecol 409:200–207CrossRefGoogle Scholar
  43. Gonzalez C, Douville E, Hall-Spencer J, et al (2012) High acidification rate of Norwegian Sea revealed by boron isotopes in the deep-sea coral Madrepora oculata. AGU fall meeting abstract 1:1994Google Scholar
  44. Grossman EL, Ku T-L (1986) Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chem Geol Isot Geosci Sect 59:59–74CrossRefGoogle Scholar
  45. Hassoun A, Gemayel E, Krasakopoulou E, et al (2015) Acidification of the Mediterranean Sea from anthropogenic carbon penetration. Deep-Sea Res Part 1 Oceanogr Res Pap 102:1–15CrossRefGoogle Scholar
  46. Hathorne EC, Felis T, Suzuki A, et al (2013) Lithium in the aragonite skeletons of massive Porites corals: a new tool to reconstruct tropical sea surface temperatures. Paleoceanography 28:143–152CrossRefGoogle Scholar
  47. Hemming NG, Hanson GN (1992) Boron isotopic composition and concentration in modern marine carbonates. Geochim Cosmochim Acta 56:537–543CrossRefGoogle Scholar
  48. Hines SKV, Southon JR, Adkins JF (2015) A high-resolution record of Southern Ocean intermediate water radiocarbon over the past 30,000 years. Earth Planet Sci Lett 432:46–58CrossRefGoogle Scholar
  49. Holcomb M, Venn AA, Tambutté E, et al (2014) Coral calcifying fluid pH dictates response to ocean acidification. Sci Rep 4:5207.  https://doi.org/10.1038/srep05207 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Holcomb M, DeCarlo TM, Gaetani GA, et al (2016) Factors affecting B/Ca ratios in synthetic aragonite. Chem Geol 437:67–76CrossRefGoogle Scholar
  51. Hönisch B, Hemming NG, Grottoli AG, et al (2004) Assessing scleractinian corals as recorders for paleo-pH: empirical calibration and vital effects. Geochim Cosmochim Acta 68:3675–3685CrossRefGoogle Scholar
  52. Hughen KA, Baillie MGL, Bard E, et al (2004) Marine04 marine radiocarbon age calibration, 0-26 cal kyr BP. Radiocarbon 46:1059–1086CrossRefGoogle Scholar
  53. Kakihana H, Kotaka M, Satoh S, et al (1977) Fundamental studies on the ion-exchange separation of boron isotopes. Bull Chem Soc Jpn 50:158–163CrossRefGoogle Scholar
  54. Klochko K, Kaufman AJ, Yao W, et al (2006) Experimental measurement of boron isotope fractionation in seawater. Earth Planet Sci Lett 248:276–285CrossRefGoogle Scholar
  55. Krief S, Hendy EJ, Fine M, et al (2010) Physiological and isotopic responses of scleractinian corals to ocean acidification. Geochim Cosmochim Acta 74:4988–5001CrossRefGoogle Scholar
  56. LaVigne M, Matthews KA, Grottoli AG, et al (2010) Coral skeleton P/Ca proxy for seawater phosphate: multi-colony calibration with a contemporaneous seawater phosphate record. Geochim Cosmochim Acta 74:1282–1293.  https://doi.org/10.1016/j.gca.2009.11.002 CrossRefGoogle Scholar
  57. Lazareth C, Soares-Pereira C, Douville E, et al (2016) Intra-skeletal calcite in a live-collected Porites sp.: impact on environmental proxies and potential formation process. Geochim Cosmochim Acta 176:279–294CrossRefGoogle Scholar
  58. Lécuyer C (2016) Seawater residence times of some elements of geochemical interest and the salinity of the oceans. Bull Soc Géol Fr 187:245–260CrossRefGoogle Scholar
  59. López Correa M, Montagna P, Vendrell-Simón B, et al (2010) Stable isotopes (δ18O and δ13C), trace and minor element compositions of Recent scleractinians and Last Glacial bivalves at the Santa Maria di Leuca deep-water coral province, Ionian Sea. Deep-Sea Res Part 2 Top Stud Oceanogr 57:471–486CrossRefGoogle Scholar
  60. Lutringer A, Blamart D, Frank N, et al (2005) Paleotemperatures from deep-sea corals: scale effects. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, pp 1081–1096Google Scholar
  61. Malinverno E, Taviani M, Rosso A, et al (2010) Stratigraphic framework of the Apulian deep-water coral province, Ionian Sea. Deep-Sea Res Part 2 Top Stud Oceanogr 57:345–359CrossRefGoogle Scholar
  62. Mangini A, Lomitschka M, Eichstädter R, et al (1998) Coral provides way to age deep water. Nature 392:347–348CrossRefGoogle Scholar
  63. Marcellin Yao K, Marcou O, Goyet C, et al (2016) Time variability of the North-Western Mediterranean Sea pH over 1995–2011. Mar Environ Res 116:51–60PubMedCrossRefGoogle Scholar
  64. Margreth S, Gennari G, Rüggeberg A, et al (2011) Growth and demise of cold-water coral ecosystems on mud volcanoes in the West Alboran Sea: the messages from the planktonic and benthic foraminifera. Mar Geol 282:26–39CrossRefGoogle Scholar
  65. Martin P, Goodkin NF, Stewart JA, et al (2016) Deep-sea coral δ13C: a tool to reconstruct the difference between seawater pH and d11B-derived calcifying fluid pH. Geophys Res Lett 43:299–308.  https://doi.org/10.1002/2015GL066494 CrossRefGoogle Scholar
  66. Mason HE, Montagna P, Kubista L, et al (2011) Phosphate defects and apatite inclusions in coral skeletal aragonite revealed by solid-state NMR spectroscopy. Geochim Cosmochim Acta 75:7446–7457.  https://doi.org/10.1016/j.gca.2011.10.002 CrossRefGoogle Scholar
  67. McCulloch M, Taviani M, Montagna P, et al (2010) Proliferation and demise of deep-sea corals in the Mediterranean during the Younger Dryas. Earth Planet Sci Lett 298:143–152CrossRefGoogle Scholar
  68. McCulloch M, Falter J, Trotter J, et al (2012a) Coral resilience to ocean acidification and global warming through pH up-regulation. Nat Clim Change 2:623–627CrossRefGoogle Scholar
  69. McCulloch M, Trotter J, Montagna P, et al (2012b) Resilience of cold-water scleractinian corals to ocean acidification: boron isotopic systematics of pH and saturation state up-regulation. Geochim Cosmochim Acta 87:21–34CrossRefGoogle Scholar
  70. Mitsuguchi T, Matsumoto E, Abe O, et al (1996) Mg/Ca thermometry in coral skeletons. Science 274:961–963PubMedCrossRefGoogle Scholar
  71. Montagna P, McCulloch M, Taviani M, et al (2005) High-resolution trace and minor element compositions in deep-water scleractinian corals (Desmophyllum dianthus) from the Mediterranean Sea and the Great Australian Bight. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, pp 1109–1126Google Scholar
  72. Montagna P, McCulloch M, Taviani M, et al (2006) Phosphorus in cold-water corals as a proxy for seawater nutrient chemistry. Science 312:1788–1791PubMedCrossRefGoogle Scholar
  73. Montagna P, McCulloch M, Mazzoli C, et al (2007) The non-tropical coral Cladocora caespitosa as the new climate archive for the Mediterranean: high-resolution (∼ weekly) trace element systematics. Quat Sci Rev 26:441–462CrossRefGoogle Scholar
  74. Montagna P, McCulloch M, Mazzoli C, et al (2008a) High-resolution geochemical records from cold-water corals: proxies for paleoclimate and paleoenvironmental reconstructions and the role of coral physiology. CIESM Workshop Monogr 36:55–60Google Scholar
  75. Montagna P, Silenzi S, Devoti S, et al (2008b) Climate reconstructions and monitoring in the Mediterranean Sea: a review on some recently discovered high-resolution marine archives. Rend Lincei 19:121–140CrossRefGoogle Scholar
  76. Montagna P, Lopez Correa M, Ruggeberg A, et al (2009a) Li/Mg ratios in shallow-and deep-sea coral exoskeletons as a new temperature proxy. In: AGU fall meeting abstracts, p 1286Google Scholar
  77. Montagna P, McCulloch M, Taviani M, et al (2009b) An improved sampling method for coral P/Ca as a nutrient proxy. Geochim Cosmochim Acta 25:1888–1947Google Scholar
  78. Montagna P, Taviani M, Silenzi S, et al (2010) Marine climate archives and geochemical proxies: a review and future investigations on the Mediterranean Sea. Mar Res CNR:809–822, ISSN: 2239-5172Google Scholar
  79. Montagna P, McCulloch M, Douville E, et al (2014) Li/Mg systematics in scleractinian corals: calibration of the thermometer. Geochim Cosmochim Acta 132:288–310CrossRefGoogle Scholar
  80. Noireaux J, Mavromatis V, Gaillardet J, et al (2015) Crystallographic control on the boron isotope paleo-pH proxy. Earth Planet Sci Lett 430:398–407CrossRefGoogle Scholar
  81. Nothdurft L, Webb G (2007) Microstructure of common reef-building coral genera Acropora, Pocillopora, Goniastrea and Porites: constraints on spatial resolution in geochemical sampling. Facies 53:1–26CrossRefGoogle Scholar
  82. Pagani M, Lemarchand D, Spivack A, et al (2005) A critical evaluation of the boron isotope-pH proxy: the accuracy of ancient ocean pH estimates. Geochim Cosmochim Acta 69:953–961CrossRefGoogle Scholar
  83. Painter SC, Tsimplis MN (2003) Temperature and salinity trends in the upper waters of the Mediterranean Sea as determined from the MEDATLAS dataset. Cont Shelf Res 23:1507–1522CrossRefGoogle Scholar
  84. Palmiéri J, Orr JC, Dutay JC, et al (2015) Simulated anthropogenic CO2 storage and acidification of the Mediterranean Sea. Biogeosciences 12:781–802CrossRefGoogle Scholar
  85. Pelejero C, Calvo E, McCulloch MT, et al (2005) Preindustrial to modern interdecadal variability in coral reef pH. Science 309:2204–2207PubMedCrossRefGoogle Scholar
  86. Raddatz J, Liebetrau V, Rüggeberg A, et al (2013) Stable Sr-isotope, Sr/Ca, Mg/Ca, Li/Ca and Mg/Li ratios in the scleractinian cold-water coral Lophelia pertusa. Chem Geol 352:143–152CrossRefGoogle Scholar
  87. Reimer PJ, Bard E, Bayliss A, et al (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:1869–1887CrossRefGoogle Scholar
  88. Reynaud S, Hemming NG, Juillet-Leclerc A, et al (2004) Effect of pCO2 and temperature on the boron isotopic composition of the zooxanthellate coral Acropora sp. Coral Reefs 23:539–546Google Scholar
  89. Rixen M, Beckers J-M, Levitus S, et al (2005) The Western Mediterranean deep water: a proxy for climate change. Geophys Res Lett L12608: 1–4.  https://doi.org/10.1029/2005GL022702 CrossRefGoogle Scholar
  90. Roberts JM, Wheeler AJ, Freiwald A (2006) Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312:543–547CrossRefGoogle Scholar
  91. Robinson LF, Adkins JF, Frank N, et al (2014) The geochemistry of deep-sea coral skeletons: a review of vital effects and applications for palaeoceanography. Deep-Sea Res Part 2 Top Stud Oceanogr 99:184–198CrossRefGoogle Scholar
  92. Rohling EJ, Marino G, Grant KM (2015) Mediterranean climate and oceanography, and the periodic development of anoxic events (sapropels). Earth-Sci Rev 143:62–97CrossRefGoogle Scholar
  93. Rollion-Bard C, Blamart D (2014) SIMS method and examples of applications in coral biomineralization. In: Gower LB (ed) Biomineralization sourcebook, characterization of biominerals and biomimetic materials. CRC Press, Boca Raton, pp 249–261CrossRefGoogle Scholar
  94. Rollion-Bard C, Blamart D, Cuif J-P, et al (2003) Microanalysis of C and O isotopes of azooxanthellate and zooxanthellate corals by ion microprobe. Coral Reefs 22:405–415.  https://doi.org/10.1007/s00338-003-0347-9 CrossRefGoogle Scholar
  95. Romanek CS, Grossman EL, Morse JW (1992) Carbon isotopic fractionation in synthetic aragonite and calcite: effects of temperature and precipitation rate. Geochim Cosmochim Acta 56:419–430CrossRefGoogle Scholar
  96. Rüggeberg A, Fietzke J, Liebetrau V, et al (2008) Stable strontium isotopes (δ88/86Sr) in cold-water corals — a new proxy for reconstruction of intermediate ocean water temperatures. Earth Planet Sci Lett 269:570–575CrossRefGoogle Scholar
  97. Sabatier P, Reyss J-L, Hall-Spencer JM, et al (2012) 210Pb-226Ra chronology reveals rapid growth rate of Madrepora oculata and Lophelia pertusa on world’s largest cold-water coral reef. Biogeosciences 9:1253–1265.  https://doi.org/10.5194/bg-9-1253-2012 CrossRefGoogle Scholar
  98. Sarnthein M, Winn K, Duplessy J-C, et al (1988) Global variations of surface ocean productivity in low and mid latitudes: influence on CO2 reservoirs of the deep ocean and atmosphere during the last 21,000 years. Paleoceanography 3:361–399.  https://doi.org/10.1029/PA003i003p00361 CrossRefGoogle Scholar
  99. Schneider A, Wallace DWR, Körtzinger A (2007) Alkalinity of the Mediterranean Sea. Geophys Res Lett 34:L15608:1–5.  https://doi.org/10.1029/2006GL028842
  100. Schröder-Ritzrau A, Freiwald A, Mangini A (2005) U/Th-dating of deep-water corals from the Eastern North Atlantic and the Western Mediterranean Sea. In: Freiwald A, Roberts JM (eds). Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, pp 157–172Google Scholar
  101. Schroeder K, Millot C, Bengara L, et al (2013) Long-term monitoring programme of the hydrological variability in the Mediterranean Sea: a first overview of the HYDROCHANGES network. Ocean Sci 9:301–324CrossRefGoogle Scholar
  102. Shen GT, Boyle EA, Lea DW (1987) Cadmium in corals as a tracer of historical upwelling and industrial fallout. Nature 328:794–796.  https://doi.org/10.1038/328794a0 CrossRefGoogle Scholar
  103. Sherwood OA, Lehmann MF, Schubert CJ, et al (2011) Nutrient regime shift in the Western North Atlantic indicated by compound-specific δ15N of deep-sea gorgonian corals. Proc Natl Acad Sci U S A 108:1011–1015.  https://doi.org/10.1073/pnas.1004904108 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Shirai K, Kusakabe M, Nakai S, et al (2005) Deep-sea coral geochemistry: implication for the vital effect. Chem Geol 224:212–222CrossRefGoogle Scholar
  105. Silenzi S, Bard E, Montagna P, et al (2005) Isotopic and elemental records in a non-tropical coral (Cladocora caespitosa): discovery of a new high-resolution climate archive for the Mediterranean Sea. Glob Planet Change 49:94–120.  https://doi.org/10.1016/j.gloplacha.2005.05.005 CrossRefGoogle Scholar
  106. Sinclair DJ, Kinsley LPJ, McCulloch MT (1998) High resolution analysis of trace elements in corals by laser ablation ICP-MS. Geochim Cosmochim Acta 62:1889–1901CrossRefGoogle Scholar
  107. Smith JE, Schwarcz HP, Risk MJ, et al (2000) Paleotemperatures from deep-sea corals: overcoming “vital effects”. PALAIOS 15:25–32.  https://doi.org/10.2307/3515589 CrossRefGoogle Scholar
  108. Spooner PT, Guo W, Robinson LF, et al (2016) Clumped isotope composition of cold-water corals: a role for vital effects? Geochim Cosmochim Acta 179:123–141CrossRefGoogle Scholar
  109. Stewart JA, Anagnostou E, Foster GL (2016) An improved boron isotope pH proxy calibration for the deep-sea coral Desmophyllum dianthus through sub-sampling of fibrous aragonite. Chem Geol 447:148–160CrossRefGoogle Scholar
  110. Stolarski J (2003) Three-dimensional micro- and nanostructural characteristics of the scleractinian coral skeleton: a biocalcification proxy - Acta Palaeontologica Polonica. Acta Palaeontol Pol 48:497–530Google Scholar
  111. Stuiver M, Polach H (1977) Discussion reporting of 14C data. Radiocarbon 19:355–363CrossRefGoogle Scholar
  112. Taviani M, Vertino A, Correa ML, et al (2011) Pleistocene to recent scleractinian deep-water corals and coral facies in the Eastern Mediterranean. Facies 57:579–603CrossRefGoogle Scholar
  113. Taviani M, Angeletti L, Beuck L, et al (2016) Reprint of “On and off the beaten track: Megafaunal sessile life and Adriatic cascading processes”. Mar Geol 375:146–160.  https://doi.org/10.1016/j.margeo.2015.10.003 CrossRefGoogle Scholar
  114. Taviani M, Angeletti L, Canese S, et al (2017) The “Sardinian cold-water coral province” in the context of the Mediterranean coral ecosystems. Deep-Sea Res Part 2 Top Stud Oceanogr 145:61–78.  https://doi.org/10.1016/j.dsr2.2015.12.008 CrossRefGoogle Scholar
  115. Tesi T, Asioli A, Minisini D, et al (2017) Large-scale response of the Eastern Mediterranean thermohaline circulation to African monsoon intensification during sapropel S1 formation. Quat Sci Rev 159:139–154CrossRefGoogle Scholar
  116. Thiagarajan N, Adkins J, Eiler J (2011) Carbonate clumped isotope thermometry of deep-sea corals and implications for vital effects. Geochim Cosmochim Acta 75:4416–4425CrossRefGoogle Scholar
  117. Thil F, Blamart D, Assailly C, et al (2016) Development of laser ablation multi-collector inductively coupled plasma mass spectrometry for boron isotopic measurement in marine biocarbonates: new improvements and application to a modern Porites coral. Rapid Commun Mass Spectrom 30:359–371.  https://doi.org/10.1002/rcm.7448 CrossRefPubMedGoogle Scholar
  118. Titschack J, Fink HG, Baum D, et al (2016) Mediterranean cold-water corals - an important regional carbonate factory? Depos Rec 2:74–96.  https://doi.org/10.1002/dep2.14 CrossRefGoogle Scholar
  119. Touratier F, Goyet C (2011) Impact of the Eastern Mediterranean Transient on the distribution of anthropogenic CO2 and first estimate of acidification for the Mediterranean Sea. Deep-Sea Res Part 1 Oceanogr Res Pap 58:1–15CrossRefGoogle Scholar
  120. Trotter J, Montagna P, McCulloch M, et al (2011) Quantifying the pH “vital effect”in the temperate zooxanthellate coral Cladocora caespitosa: validation of the boron seawater pH proxy. Earth Planet Sci Lett 303:163–173CrossRefGoogle Scholar
  121. Tsimplis MN, Baker TF (2000) Sea level drop in the Mediterranean Sea: an indicator of deep water salinity and temperature changes? Geophys Res Lett 27:1731–1734CrossRefGoogle Scholar
  122. van de Flierdt T, Robinson LF, Adkins JF (2010) Deep-sea coral aragonite as a recorder for the neodymium isotopic composition of seawater. Geochim Cosmochim Acta 74:6014–6032CrossRefGoogle Scholar
  123. Vengosh A, Kolodny Y, Starinsky A, et al (1991) Coprecipitation and isotopic fractionation of boron in modern biogenic carbonates. Geochim Cosmochim Acta 55:2901–2910CrossRefGoogle Scholar
  124. Xie RC, Galer SJG, Abouchami W, et al (2015) The cadmium–phosphate relationship in the Western South Atlantic — the importance of mode and intermediate waters on the global systematics. Mar Chem 177:110–123.  https://doi.org/10.1016/j.marchem.2015.06.011 CrossRefGoogle Scholar

Cross References

  1. Lartaud F, Mouchi V, Chapron L, et al (this volume) Growth patterns of Mediterranean calcifying cold-water coralsGoogle Scholar
  2. Maier C, Weinbauer MG, Gattuso JP (this volume) Fate of Mediterranean scleractinian cold-water corals as a result of global climate change. A synthesisGoogle Scholar
  3. Movilla J (this volume) A case study: variability in the calcification response of Mediterranean cold-water corals to ocean acidificationGoogle Scholar
  4. Orejas C, Taviani M, Ambroso S, et al (this volume) Cold-water coral in aquaria: advances and challenges. A focus on the MediterraneanGoogle Scholar
  5. Taviani M, Vertino A, Angeletti L, et al (this volume) Paleoecology of Mediterranean cold-water coralsGoogle Scholar
  6. Vertino A, Corselli C (this volume) Did Quaternary climate fluctuations affect Mediterranean deep-sea coral communities?Google Scholar
  7. Vertino A, Taviani M, Corselli C (this volume) Spatio-temporal distribution of Mediterranean cold-water coralsGoogle Scholar
  8. Wienberg C (this volume) A deglacial cold-water coral boom in the Alborán Sea: from coral mounds and species dominanceGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1. Institute of Marine Sciences (ISMAR-CNR)BolognaItaly
  2. 2.Laboratoire des Sciences du Climat et de l’Environnement LSCE/IPSL, CEA-CNRS-UVSQUniversité Paris-SaclayGif-sur-YvetteFrance
  3. 3.Lamont-Doherty Earth ObservatoryColumbia UniversityPalisadesUSA
  4. 4.Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleUSA
  5. 5.Stazione Zoologica Anton DohrnNaplesItaly

Personalised recommendations