Advertisement

Augmented Reality Views: Discussing the Utility of Visual Elements by Mediation Means in Industrial AR from a Design Perspective

  • Jens Keil
  • Florian Schmitt
  • Timo Engelke
  • Holger Graf
  • Manuel Olbrich
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10910)

Abstract

In this paper we present and discuss common visual elements in Augmented Reality which create a distinct information context while presenting them in either video- or optical-see-though setups, and which align with the promise of AR being able to bridge the gap between real world objects and the digital information space about them.

Reflecting on nowadays common elements with these premises in mind, we collected and categorized a variety of visual elements, e.g. annotation & labels, visual highlights, assisting visual aids and trans-media elements. Focusing on industrial AR applications, we discuss their suitability in terms of mediation and communication goals, instead of technological and implementation considerations.

In doing so, we seek to identify the currently most relevant visual elements and discuss the deployed meaning that can be created in utilizing these elements for a informed and successful communication. From there we introduce a first framing meta-model that on the one hand helps clarifying the mediation strength of these elements and on the other enables to reflect their suitability on a more strategic level.

Keywords

Adaptive and personalized interfaces Human centered design Information visualization Interaction design 

References

  1. 1.
    Vlahakis, V., et al.: Archeoguide: first results of an augmented reality, mobile computing system in cultural heritage sites. In: Proceedings of the VAST Conference on Virtual Reality, Archeology, and Cultural Heritage (2001)Google Scholar
  2. 2.
    Katifori, A., et al.: CHESS: personalized storytelling experiences in museums. In: Mitchell, A., Fernández-Vara, C., Thue, D. (eds.) ICIDS 2014. LNCS, vol. 8832, pp. 232–235. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-12337-0_28CrossRefGoogle Scholar
  3. 3.
    Keil, J., Engelke, T., Schmitt, M., Bockholt, U., Pujol, L.: Lean in or lean back? Aspects on interactivity & mediation in handheld augmented reality in the museum. In: EGCH Eurographics Workshop on Graphics and Cultural Heritage (2014)Google Scholar
  4. 4.
    MacEachren, A.M., Taylor, D.R.F.: Visualization in Modern Cartography, vol. 2. Elsevier, New York City (1994)Google Scholar
  5. 5.
    Bier, E.A., Stone, M.C., Pier, K., Buxton, W., DeRose, T.D.: Toolglass and magic lenses: the see-through interface. In: Proceedings of the ACM SIGGRAPH Conference on Computer Graphics and Interactive Techniuqes (1993)Google Scholar
  6. 6.
    Feiner, S., Seligmann, D.D.: Cutaways and ghosting: satisfying visibility constraints in dynamic 3D illustrations. Vis. Comput. 8, 292–302 (1992)CrossRefGoogle Scholar
  7. 7.
    Götzelmann, T., Hartmann, K., Strothotte, T.: Agent-based annotation of interactive 3D visualizations. In: Butz, A., Fisher, B., Krüger, A., Olivier, P. (eds.) SG 2006. LNCS, vol. 4073, pp. 24–35. Springer, Heidelberg (2006).  https://doi.org/10.1007/11795018_3CrossRefGoogle Scholar
  8. 8.
    Camba, J., Contero, M., Johnson, M.: Management of visual clutter in annotated 3D CAD models: a comparative study. In: Marcus, A. (ed.) DUXU 2014. LNCS, vol. 8518, pp. 405–416. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07626-3_37CrossRefGoogle Scholar
  9. 9.
    Bereuter, P., Weibel, R.: Real-time generalization of point data in mobile and web mapping using quadtrees. Cartogr. Geogr. Inf. Sci. 40, 271–281 (2013)CrossRefGoogle Scholar
  10. 10.
    Webel, S., Bockholt, U., Keil, J.: Design criteria for AR-based training of maintenance and assembly tasks. In: Shumaker, R. (ed.) VMR 2011. LNCS, vol. 6773, pp. 123–132. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22021-0_15CrossRefGoogle Scholar
  11. 11.
    Julier, S.J., Baillot, Y., Brown, D., Lanzagorta, M.: Information filtering for mobile augmented reality. IEEE Comput. Graph. Appl. 22(5), 12–15 (2002)CrossRefGoogle Scholar
  12. 12.
    Wither, J., DiVerdi, S., Hoellerer, T.: Annotation in outdoor augmented reality. Comput. Graph. 33, 679–689 (2009)CrossRefGoogle Scholar
  13. 13.
    Hartmann, F., Bauer, E.K.: Bildsprache: Otto Neurath Visualisierungen. In: Facultas Verlags- und Buchhandels AG (2006). ISBN-10: 3-7089-0000-6Google Scholar
  14. 14.
    Xu, Y., Barba, E., Radu, I., Gandy, M., Shemaka, R. Schrank, B., Tseng, T., MacIntyre, B.: Pre-patterns for designing embodied interactions in handheld augmented reality games. In: Proceedings of the IEEE ISMAR International Symposium on Mixed and Augmented Reality - Arts, Media, and Humanities (2011)Google Scholar
  15. 15.
    Grasset, R., Langlotz, T., Kalkofen, D., Tatzgern, M., Schmalstieg, D.: Image-driven view management for augmented reality browsers. In: Proceedings of the IEEE ISMAR International Symposium on Mixed and Augmented Reality (2012)Google Scholar
  16. 16.
    Keil, J., Zoellner, M., Engelke, T., Wientapper, F., Schmitt, M.: Controlling and filtering information density with spatial interaction techniques via handheld augmented reality. In: Shumaker, R. (ed.) VAMR 2013. LNCS, vol. 8021, pp. 49–57. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39405-8_6CrossRefGoogle Scholar
  17. 17.
    Seo, B.-K., Wuest, H.: A direct method for robust model-based 3D object tracking from a monocular RGB image. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 551–562. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-49409-8_48CrossRefGoogle Scholar
  18. 18.
    Schmalstieg, D., Hoellerer, T.: Augmented Reality: Principles and Practice. Addison-Wesley, Boston (2016). ISBN-10: 0-321-88357-8CrossRefGoogle Scholar
  19. 19.
    Henders, S., Feiner, S.: Augmented reality in the psychomotor phase of a procedural task. In: Proceedings of the IEEE ISMAR International Symposium on Mixed and Augmented Reality (2011)Google Scholar
  20. 20.
    National Institute of Standards and Technology NIST: Focus: Augmented Reality for Standards Development. http://www.nist.gov/publications/focus-augmented-reality-standards-development. Accessed Feb 2018
  21. 21.
    Augmented Reality for Enterprise Alliance. http://thearea.org/. Accessed Feb 2018
  22. 22.
    Courtesy of Metaio (2015)Google Scholar
  23. 23.
    Courtesy of Wikitude (2011)Google Scholar
  24. 24.
    Courtesy of Bentley (2012)Google Scholar
  25. 25.
    Courtesy of Continental Automotive GbmH (2014)Google Scholar
  26. 26.
    Courtesy of Augmented Traveler (2014). https://www.youtube.com/watch?v=HlbA7G8V3jA. Accessed Feb 2018

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Fraunhofer IGDDarmstadtGermany
  2. 2.Visometry GmbHDarmstadtGermany

Personalised recommendations