Advertisement

Get Well Soon! Human Factors’ Influence on Cybersickness After Redirected Walking Exposure in Virtual Reality

  • Julian Hildebrandt
  • Patric Schmitz
  • André Calero Valdez
  • Leif Kobbelt
  • Martina Ziefle
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10909)

Abstract

Cybersickness poses a crucial threat to applications in the domain of Virtual Reality. Yet, its predictors are insufficiently explored when redirection techniques are applied. Those techniques let users explore large virtual spaces by natural walking in a smaller tracked space. This is achieved by unnoticeably manipulating the user’s virtual walking trajectory. Unfortunately, this also makes the application more prone to cause Cybersickness. We conducted a user study with a semi-structured interview to get quantitative and qualitative insights into this domain. Results show that Cybersickness arises, but also eases ten minutes after the exposure. Quantitative results indicate that a tolerance towards Cybersickness might be related to self-efficacy constructs and therefore learnable or trainable, while qualitative results indicate that users’ endurance of Cybersickness is dependent on symptom factors such as intensity and duration, as well as factors of usage context and motivation. The role of Cybersickness in Virtual Reality environments is discussed in terms of the applicability of redirected walking techniques.

Keywords

Virtual Reality Cybersickness Human Factors Redirected walking Rotation gain Immersion 

Notes

Acknowledgments

We would like to thank Susanne Gohr, Fabian Comans and Jennifer Kirstgen for sharing their expertise in content analysis by participating in consensual coding. Furthermore, we would like to thank the strategy funds of RWTH Aachen University within the project house “ICT Foundations of a Digitized Economy, and Society” for funding this work. Special thanks go to Ming Li as well as Torsten Kuhlen for their huge inspiration in early stages of the project.

References

  1. 1.
    Usoh, M., Arthur, K., Whitton, M.C., Bastos, R., Steed, A., Slater, M., Brooks Jr., F.P.: Walking \(>\) walking-in-place \(>\) flying, in virtual environments. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 359–364. ACM Press/Addison-Wesley Publishing Co. (1999)Google Scholar
  2. 2.
    Nilsson, N.C., Nordahl, R., Serafin, S.: Immersion revisited: a review of existing definitions of immersion and their relation to different theories of presence. Hum. Technol. 12, 108–134 (2016)CrossRefGoogle Scholar
  3. 3.
    Stanney, K.: Realizing the full potential of virtual reality: human factors issues that could stand in the way. In: Proceedings of Virtual Reality Annual International Symposium, pp. 28–34. IEEE (1995)Google Scholar
  4. 4.
    Wann, J., Mon-Williams, M.: What does virtual reality need?: human factors issues in the design of three-dimensional computer environments. Int. J. Hum. Comput. Stud. 44(6), 829–847 (1996)CrossRefGoogle Scholar
  5. 5.
    Baños, R.M., Botella, C., Alcañiz, M., Liaño, V., Guerrero, B., Rey, B.: Immersion and emotion: their impact on the sense of presence. CyberPsychol. Behav. 7(6), 734–741 (2004)CrossRefGoogle Scholar
  6. 6.
    Slater, M.: A note on presence terminology. Presence Connect 3(3), 1–5 (2003)Google Scholar
  7. 7.
    Witmer, B.G., Singer, M.J.: Measuring presence in virtual environments: a presence questionnaire. Presence 7(3), 225–240 (1998)CrossRefGoogle Scholar
  8. 8.
    Bystrom, K.E., Barfield, W., Hendrix, C.: A conceptual model of the sense of presence in virtual environments. Presence: Teleoper. Virtual Environ. 8(2), 241–244 (1999)CrossRefGoogle Scholar
  9. 9.
    Slater, M., Steed, A.: A virtual presence counter. Presence: Teleoper. Virtual Environ. 9(5), 413–434 (2000)CrossRefGoogle Scholar
  10. 10.
    Stanney, K.M., Mourant, R.R., Kennedy, R.S.: Human factors issues in virtual environments: a review of the literature. Presence 7(4), 327–351 (1998)CrossRefGoogle Scholar
  11. 11.
    von Mammen, S., Knote, A., Edenhofer, S.: Cyber sick but still having fun. In: Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology, pp. 325–326. ACM (2016)Google Scholar
  12. 12.
    Mousavi, M., Jen, Y.H., Musa, S.N.B.: A review on cybersickness and usability in virtual environments. In: Advanced Engineering Forum, vol. 10, pp. 34–39. Trans Tech Publications Ltd. (2013)CrossRefGoogle Scholar
  13. 13.
    Kennedy, R.S., Fowlkes, J.E.: Simulator sickness is polygenic and polysymptomatic: implications for research. Int. J. Aviat. Psychol. 2(1), 23–38 (1992)CrossRefGoogle Scholar
  14. 14.
    LaViola Jr., J.J.: A discussion of cybersickness in virtual environments. SIGCHI Bull. 32(1), 47–56 (2000)CrossRefGoogle Scholar
  15. 15.
    Davis, S., Nesbitt, K., Nalivaiko, E.: A systematic review of cybersickness. In: Proceedings of the 2014 Conference on Interactive Entertainment, pp. 1–9. ACM (2014)Google Scholar
  16. 16.
    Reason, J.T., Brand, J.J.: Motion Sickness. Academic Press, Cambridge (1975)Google Scholar
  17. 17.
    McCauley, M.E., Sharkey, T.J.: Cybersickness: perception of self-motion in virtual environments. Presence: Teleoper. Virtual Environ. 1(3), 311–318 (1992)CrossRefGoogle Scholar
  18. 18.
    Riccio, G.E., Stoffregen, T.A.: An ecological theory of motion sickness and postural instability. Ecol. Psychol. 3(3), 195–240 (1991)CrossRefGoogle Scholar
  19. 19.
    Stoffregen, T.A., Smart Jr., L.J.: Postural instability precedes motion sickness. Brain Res. Bull. 47(5), 437–448 (1998)CrossRefGoogle Scholar
  20. 20.
    Dennison, M.S., D’Zmura, M.: Cybersickness without the wobble: experimental results speak against postural instability theory. Appl. Ergon. 58, 215–223 (2017)CrossRefGoogle Scholar
  21. 21.
    Prothero, J.D.: The role of rest frames in vection, presence and motion sickness (1998)Google Scholar
  22. 22.
    Treisman, M.: Motion sickness: an evolutionary hypothesis. Science 197(4302), 493–495 (1977)CrossRefGoogle Scholar
  23. 23.
    Kennedy, R.S., Lane, N.E., Berbaum, K.S., Lilienthal, M.G.: Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3(3), 203–220 (1993)CrossRefGoogle Scholar
  24. 24.
    Rebenitsch, L., Owen, C.: Review on cybersickness in applications and visual displays. Virtual Reality 20(2), 101–125 (2016)CrossRefGoogle Scholar
  25. 25.
    Kennedy, R.S., Drexler, J.M., Compton, D.E., Stanney, K.M., Lanham, D.S., Harm, D.L.: Configural scoring of simulator sickness, cybersickness and space adaptation syndrome: similarities and differences. In: Virtual and Adaptive Environments: Applications, Implications, and Human Performance Issues, p. 247 (2003)Google Scholar
  26. 26.
    Stanney, K.M., Kennedy, R.S., Drexler, J.M.: Cybersickness is not simulator sickness. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 41, pp. 1138–1142. SAGE Publications, Los Angeles (1997)CrossRefGoogle Scholar
  27. 27.
    Kolasinski, E.M.: Simulator sickness in virtual environments. Technical report, Army Research Institute for the Behavioral and Social Sciences, Alexandria (1995)Google Scholar
  28. 28.
    Stanney, K.M., Hale, K.S., Nahmens, I., Kennedy, R.S.: What to expect from immersive virtual environment exposure: influences of gender, body mass index, and past experience. Hum. Factors 45(3), 504–520 (2003)CrossRefGoogle Scholar
  29. 29.
    Biocca, F.: Will simulation sickness slow down the diffusion of virtual environment technology? Presence: Teleoper. Virtual Environ. 1(3), 334–343 (1992)CrossRefGoogle Scholar
  30. 30.
    Porcino, T.M., Clua, E., Trevisan, D., Vasconcelos, C.N., Valente, L.: Minimizing cyber sickness in head mounted display systems: design guidelines and applications. In: 2017 IEEE 5th International Conference on Serious Games and Applications for Health (SeGAH), pp. 1–6. IEEE (2017)Google Scholar
  31. 31.
    Fernandes, A.S., Feiner, S.K.: Combating VR sickness through subtle dynamic field-of-view modification. In: 2016 IEEE Symposium on 3D User Interfaces (3DUI), pp. 201–210. IEEE (2016)Google Scholar
  32. 32.
    Budhiraja, P., Miller, M.R., Modi, A.K., Forsyth, D.: Rotation blurring: use of artificial blurring to reduce cybersickness in virtual reality first person shooters. arXiv preprint arXiv:1710.02599 (2017)
  33. 33.
    Kemeny, A., George, P., Mérienne, F., Colombet, F.: New VR navigation techniques to reduce cybersickness. Electron. Imaging 2017(3), 48–53 (2017)Google Scholar
  34. 34.
    Jeng-Weei Lin, J., Parker, D., Lahav, M., Furness, T.: Unobtrusive vehicle motion prediction cues reduced simulator sickness during passive travel in a driving simulator. Ergonomics 48(6), 608–624 (2005)CrossRefGoogle Scholar
  35. 35.
    Davis, S., Nesbitt, K., Nalivaiko, E.: Comparing the onset of cybersickness using the oculus rift and two virtual roller coasters. In: Proceedings of the 11th Australasian Conference on Interactive Entertainment (IE 2015), vol. 27, p. 30 (2015)Google Scholar
  36. 36.
    Dorado, J.L., Figueroa, P.A.: Ramps are better than stairs to reduce cybersickness in applications based on a HMD and a gamepad. In: 2014 IEEE Symposium on 3D User Interfaces (3DUI), pp. 47–50. IEEE (2014)Google Scholar
  37. 37.
    Razzaque, S., Kohn, Z., Whitton, M.C.: Redirected walking. In: Proceedings of EUROGRAPHICS, vol. 9, pp. 105–106. Eurographics Association, Manchester (2001)Google Scholar
  38. 38.
    Field, T., Vamplew, P.: Generalised algorithms for redirected walking in virtual environments. In: AISAT 2004 International Conference on Artificial Intelligence in Science and Technology, pp. 58–63. University of Tasmania (2004)Google Scholar
  39. 39.
    Hodgson, E., Bachmann, E.: Comparing four approaches to generalized redirected walking: simulation and live user data. IEEE Trans. Vis. & Comput. Graph. (TVCG) 19(4), 634–643 (2013)CrossRefGoogle Scholar
  40. 40.
    Hutton, C., Suma, E.: A realistic walking model for enhancing redirection in virtual reality. In: Virtual Reality Conference (VR), pp. 183–184. IEEE (2016)Google Scholar
  41. 41.
    Zhang, R., Kuhl, S.A.: Flexible and general redirected walking for head-mounted displays. In: VR, pp. 127–128. IEEE (2013)Google Scholar
  42. 42.
    Azmandian, M., Yahata, R., Bolas, M., Suma, E.: An enhanced steering algorithm for redirected walking in virtual environments. In: Virtual Reality Conference (VR), pp. 65–66. IEEE (2014)Google Scholar
  43. 43.
    Peck, T.C., Fuchs, H., Whitton, M.C.: Improved redirection with distractors: a large-scale-real-walking locomotion interface and its effect on navigation in virtual environments. In: Virtual Reality Conference (VR), pp. 35–38. IEEE (2010)Google Scholar
  44. 44.
    Peck, T.C., Fuchs, H., Whitton, M.C.: Evaluation of reorientation techniques and distractors for walking in large virtual environments. IEEE Trans. Vis. Comput. Graph. 15(3), 383–394 (2009)CrossRefGoogle Scholar
  45. 45.
    Chen, H., Fuchs, H.: Supporting free walking in a large virtual environment: imperceptible redirected walking with an immersive distractor. In: Proceedings of the Computer Graphics International Conference, p. 22. ACM (2017)Google Scholar
  46. 46.
    Suma, E.A., Lipps, Z., Finkelstein, S., Krum, D.M., Bolas, M.: Impossible spaces: maximizing natural walking in virtual environments with self-overlapping architecture. IEEE Trans. Vis. Comput. Graph. 18(4), 555–564 (2012)CrossRefGoogle Scholar
  47. 47.
    Vasylevska, K., Kaufmann, H., Bolas, M., Suma, E.A.: Flexible spaces: dynamic layout generation for infinite walking in virtual environments. In: 2013 IEEE Symposium on 3D User Interfaces (3DUI), pp. 39–42. IEEE (2013)Google Scholar
  48. 48.
    Bolte, B., Lappe, M.: Subliminal reorientation and repositioning in immersive virtual environments using saccadic suppression. IEEE Trans. Vis. Comput. Grap. (TVCG) 21(4), 545–552 (2015)CrossRefGoogle Scholar
  49. 49.
    Langbehn, E., Bruder, G., Steinicke, F.: Subliminal reorientation and repositioning in virtual reality during eye blinks. In: Proceedings of the 2016 Symposium on Spatial User Interaction, p. 213. ACM (2016)Google Scholar
  50. 50.
    Steinicke, F., Bruder, G.: Using perceptual illusions for redirected walking. IEEE Comput. Graph. Appl. 33(1), 6–11 (2013)CrossRefGoogle Scholar
  51. 51.
    Razzaque, S.: Redirected walking. University of North Carolina at Chapel Hill (2005)Google Scholar
  52. 52.
    Steinicke, F., Bruder, G., Jerald, J., Frenz, H., Lappe, M.: Estimation of detection thresholds for redirected walking techniques. IEEE Trans. Vis. Comput. Graph. 16(1), 17–27 (2010)CrossRefGoogle Scholar
  53. 53.
    Trutoiu, L.C., Mohler, B.J., Schulte-Pelkum, J., Bülthoff, H.H.: Circular, linear, and curvilinear vection in a large-screen virtual environment with floor projection. Comput. Graph. 33(1), 47–58 (2009)CrossRefGoogle Scholar
  54. 54.
    Schmitz, P., Hildebrandt, J., Valdez, A.C., Kobbelt, L., Ziefle, M.: You spin my head right round: threshold of limited immersion for rotation gains in redirected walking. IEEE Trans. Vis. Comput. Graph. 24(4), 1623–1632 (2018)CrossRefGoogle Scholar
  55. 55.
    Ekstrom, R.B., Dermen, D., Harman, H.H.: Manual for Kit of Factor-Referenced Cognitive Tests, vol. 102. Educational Testing Service Princeton, Princeton (1976)Google Scholar
  56. 56.
    Beier, G.: Kontrollüberzeugungen im Umgang mit Technik: ein Persönlichkeitsmerkmal mit Relevanz für die Gestaltung technischer Systeme. dissertation. de (2003)Google Scholar
  57. 57.
    Tcha-Tokey, K., Christmann, O., Loup-Escande, E., Richir, S.: Proposition and validation of a questionnaire to measure the user experience in immersive virtual environments. Int. J. Virtual Reality 16(1), 33–48 (2016)Google Scholar
  58. 58.
    Pekrun, R., Goetz, T., Frenzel, A.C., Barchfeld, P., Perry, R.P.: Measuring emotions in students’ learning and performance: the achievement emotions questionnaire (AEQ). Contemp. Educ. Psychol. 36(1), 36–48 (2011)CrossRefGoogle Scholar
  59. 59.
    Venkatesh, V., Thong, J.Y., Xu, X.: Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS Q. 36, 157–178 (2012)Google Scholar
  60. 60.
    Selting, M., Auer, P., et al.: A system for transcribing talk-in-interaction: gat 2 translated and adapted for english by elizabeth couper-kuhlen and dagmar barth-weingarten. Gesprächsforschung-Online-Zeitschrift zur verbalen Interaktion 12, 1–51 (2011)Google Scholar
  61. 61.
    Kuckartz, U.: Qualitative Text Analysis: A Guide to Methods, Practice and Using Software. Sage, Thousand Oaks (2014)CrossRefGoogle Scholar
  62. 62.
    Arning, K., Ziefle, M.: Understanding age differences in PDA acceptance and performance. Comput. Hum. Behav. 23(6), 2904–2927 (2007)CrossRefGoogle Scholar
  63. 63.
    Li, M., Arning, K., Vervier, L., Ziefle, M., Kobbelt, L.: Influence of temporal delay and display update rate in an augmented reality application scenario. In: Proceedings of the 14th International Conference on Mobile and Ubiquitous Multimedia, pp. 278–286. ACM (2015)Google Scholar
  64. 64.
    Brell, J., Calero Valdez, A., Schaar, A.K., Ziefle, M.: Gender differences in usage motivation for social networks at work. In: Zaphiris, P., Ioannou, A. (eds.) LCT 2016. LNCS, vol. 9753, pp. 663–674. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39483-1_60CrossRefGoogle Scholar
  65. 65.
    Ziefle, M., Brauner, P., Speicher, F.: Effects of data presentation and perceptual speed on speed and accuracy in table reading for inventory control. Occup. Ergon. 12(3), 119–129 (2015)CrossRefGoogle Scholar
  66. 66.
    Barsky, A.J., Peekna, H.M., Borus, J.F.: Somatic symptom reporting in women and men. J. Gen. Intern. Med. 16(4), 266–275 (2001)CrossRefGoogle Scholar
  67. 67.
    Kroenke, K., Spitzer, R.L.: Gender differences in the reporting of physical and somatoform symptoms. Psychosom. Med. 60(2), 150–155 (1998)CrossRefGoogle Scholar
  68. 68.
    Ziefle, M., Schaar, A.K.: Gender differences in acceptance and attitudes towards an invasive medical stent. Electron. J. Health Inf. 6(2), 13 (2011)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Julian Hildebrandt
    • 1
  • Patric Schmitz
    • 2
  • André Calero Valdez
    • 1
  • Leif Kobbelt
    • 2
  • Martina Ziefle
    • 1
  1. 1.Human-Computer Interaction Center (HCIC) Chair of Communication ScienceRWTH Aachen UniversityAachenGermany
  2. 2.Visual Computing InstituteRWTH Aachen UniversityAachenGermany

Personalised recommendations