Advertisement

Examination of Effectiveness of a Performed Procedural Task Using Low-Cost Peripheral Devices in VR

  • Damian Grajewski
  • Paweł Buń
  • Filip Górski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10909)

Abstract

The paper presents a Virtual Reality (VR) training system dedicated for interactive course focused on acquisition of competences in the field of manual procedural tasks. It was developed as a response for the growing market demand for low-cost VR systems supporting industrial training. A scenario for the implementation of an elementary manual operation (modified peg-in-hole task) was developed. The aim of the test was to show whether the prepared solution (along with peripheral devices) can be an effective tool for training the activities performed at the production site. The procedural task was performed by specific test groups using various peripheral devices. The paper presents preliminary results of tests regarding evaluation of effectiveness of virtual training, depending on specific peripheral devices used.

Keywords

Virtual reality training Interaction devices Haptic feedback 

References

  1. 1.
    Martin-Gutierrez, J., et al.: Improving the teaching-learning process of graphic engineering students through strengthening of their spatial skills. Int. J. Eng. Educ. 31(3), 814–828 (2015)Google Scholar
  2. 2.
    González, M.A., et al.: Virtual worlds. opportunities and challenges in the 21st century. Procedia Comput. Sci. 25, 330–337 (2013)CrossRefGoogle Scholar
  3. 3.
    Berg, L.P., Vance, J.M.: Industry use of virtual reality in product design and manufacturing: a survey. Virtual Reality 21, 1 (2017).  https://doi.org/10.1007/s10055-016-0293-9CrossRefGoogle Scholar
  4. 4.
    Hamrol, A., et al.: Virtual 3D atlas of a human body – development of an educational medical software application. Procedia Comput. Sci. 25, 302–314 (2013)CrossRefGoogle Scholar
  5. 5.
    Buń, P., et al.: Educational simulation of medical ultrasound examination. Procedia Comput. Sci. 75, 186–194 (2015)CrossRefGoogle Scholar
  6. 6.
    Grajewski, D., et al.: Improving the skills and knowledge of future designers in the field of ecodesign using virtual reality technologies. Procedia Comput. Sci. 75, 348–358 (2015)CrossRefGoogle Scholar
  7. 7.
    Wu, Y.F., Zhang, Y., Shen, J.W., Peng, T.: The Virtual Reality Applied in Construction Machinery Industry. In: Shumaker, R. (ed.) VAMR 2013. LNCS, vol. 8022, pp. 340–349. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39420-1_36CrossRefGoogle Scholar
  8. 8.
    Falah, J., Charissis, V., Khan, S., Chan, W., Alfalah, S.F.M., Harrison, D.K.: Development and evaluation of virtual reality medical training system for anatomy education. In: Arai, K., Kapoor, S., Bhatia, R. (eds.) Intelligent Systems in Science and Information 2014. SCI, vol. 591, pp. 369–383. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-14654-6_23CrossRefGoogle Scholar
  9. 9.
    Grajewski, D., et al.: Use of delta robot as an active touch device in immersive case scenarios. Procedia Comput. Sci. 104, 485–492 (2017).  https://doi.org/10.1016/j.procs.2017.01.163CrossRefGoogle Scholar
  10. 10.
    Bowman, D.A., McMahan, R.P.: Virtual reality: how much immersion is enough? Computer 40, 7 (2007)CrossRefGoogle Scholar
  11. 11.
    Hamblin, C.J.: Transfer of training from virtual reality environments. Ph.D. dissertation, Wichita State University, pp. 1–100 (2005)Google Scholar
  12. 12.
    Gick, M.L., Holyoak, K.J.: The cognitive basis of knowledge transfer. In: Cormier, S.M., Hagman, J.D. (eds.) Transfer of Learning: Contemporary Research and Applications, pp. 9–46. Academic Press, Cambridge (1987)CrossRefGoogle Scholar
  13. 13.
    Sowndararajan, A., Wang R., Bowman, D.A.: Quantifying the benefits of immersion for procedural learning. In: Proceedings of the 2008 Workshop on Immersive Projection Technologies/Emerging Display Technologies. ACM, Los Angeles (2008)Google Scholar
  14. 14.
    Lloyd, J., Persaud, N.V., Powell, T.E.: Equivalence of real-world and virtual reality route learning: a pilot study. Cyberpsychology Behav. 12(4), 423–427 (2009)CrossRefGoogle Scholar
  15. 15.
    Breuille, E.: Le simulateur de diagnostic de pannes pour le char Leclerc. Paper presented at the ESAM/NEXTER Forum (2009)Google Scholar
  16. 16.
    Górski, F., et al.: Integracja technik wirtualnej rzeczywistości i wytwarzania przyrostowego – hybrydowe podejście do rozwoju wyrobu. Part 1, Mechanik 3, 173–176, Part 2, Mechanik 4, 266–270 (2013)Google Scholar
  17. 17.
    Buń, P., et al.: Low-cost devices used in virtual reality exposure therapy, ICTE 2016. Procedia Comput. Sci. 104, 445–451 (2017)CrossRefGoogle Scholar
  18. 18.
    Grajewski, D., et al.: Immersive and haptic educational simulations of assembly workplace conditions. Procedia Comput. Sci. 75, 359–368 (2015).  https://doi.org/10.1016/j.procs.2015.12.258CrossRefGoogle Scholar
  19. 19.
    Gupta, R., Whitney, D.E., Zeltzer, D.: Prototyping and design for assembly analysis using multimodal virtual environments. Comput. Aided Des. 29(8), 585–597 (1997)CrossRefGoogle Scholar
  20. 20.
    Jayaram, S., et al.: Vade: A virtual assembly design environment. IEEE Comput. Graph. Appl. 19, 44–50 (1999)CrossRefGoogle Scholar
  21. 21.
    McDermott, S.D., Bras, B.: Development of a haptically enabled dis/re-assembly simulation environment. In: Proceedings of DETC 1999: ASME Design Engineering Technical Conferences (1999)Google Scholar
  22. 22.
    Ritchie, J.M., Lim, T., Sung, R.S., Corney, J.R., Rea, H.: The analysis of design and manufacturing tasks using haptic and immersive VR - some case studies’. In: Talaba, D., Amditis, A. (eds.) Product Engineering, vol. 5, pp. 507–522. Springer, Dordrecht (2008).  https://doi.org/10.1007/978-1-4020-8200-9_27CrossRefGoogle Scholar
  23. 23.
    Seth, A., Su, H.J., Vance, J.M.: Development of a dual-handed haptic assembly system: SHARP. J. Comput. Inf. Sci. Eng. 8, 044502 (2008)CrossRefGoogle Scholar
  24. 24.
  25. 25.
    Honczarenko, J.: Roboty przemysłowe: budowa i zastosowanie (2009). ISBN 978-83-204-3578-8Google Scholar
  26. 26.
    VISIONAIR project funded by the European Commission under grant agreement 262044, project realised in years 2011–2015Google Scholar
  27. 27.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chair of Management and Production EngineeringPoznań University of TechnologyPoznańPoland

Personalised recommendations