A Maximum Likelihood Method for Estimating Performance in a Rapid Serial Visual Presentation Target-Detection Task

  • Jonroy D. Canady
  • Amar R. Marathe
  • David H. Herman
  • Benjamin T. Files
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10909)


In human-agent teams, communications are frequently limited by how quickly the human component can deliver information to the computer-based agents. Treating the human as a sensor can help relax this limitation. As an instance of this, the rapid serial visual presentation target-detection paradigm provides a fast lane for human target-detection information; however, estimating target-detection performance can be challenging when the inter-stimulus interval is short, relative to human response time variability. This difficulty stems from the uncertainty in assigning each response to the correct stimulus image. We developed a maximum likelihood method to estimate the hit rate and false alarm rate that generally outperforms classic heuristic-based approaches and our previously developed regression-based method. Simulations show that this new method provides unbiased and accurate estimates of target-detection performance across a range of true hit rate and false alarm rate values. In light of the improved estimation of hit rates and false alarm rates, this maximum likelihood method would seem the best choice for estimating human target-detection performance.


RSVP Hit rate False-alarm rate Response time Simulation 


  1. 1.
    Klien, G., et al.: Ten challenges for making automation a “team player” in joint human-agent activity. IEEE Intell. Syst. 19(6), 91–95 (2004)CrossRefGoogle Scholar
  2. 2.
    Wang, D., et al.: Using humans as sensors: an estimation-theoretic perspective. In: Proceedings of the 13th International Symposium on Information Processing in Sensor Networks, pp. 35–46 (2014)Google Scholar
  3. 3.
    Bohannon, A.W., Waytowich, N.R., Lawhern, V.J., Sadler, B.M., Lance, B.J.: Collaborative image triage with humans and computer vision. In: IEEE Systems Man and Cybernetics, pp. 004046–004051 (2016)Google Scholar
  4. 4.
    Mathan, S., Ververs, P., Dorneich, M., Whitlow, S., Carciofini, J., Erdogmus, D., et al.: Neurotechnology for image analysis: searching for needles in haystacks efficiently. In: Augmented Cognition: Past, Present and Future (2006)Google Scholar
  5. 5.
    Parra, L.C., Christoforou, C., Gerson, A.D., Dyrholm, M., Luo, A., Wagner, M., et al.: Spatiotemporal linear decoding of brain state. IEEE Signal Process. Mag. 25(1), 107–115 (2008)CrossRefGoogle Scholar
  6. 6.
    Sajda, P., Pohlmeyer, E., Wang, J., Parra, L.C., Christoforou, C., Dmochowski, J., et al.: In a blink of an eye and a switch of a transistor: cortically coupled computer vision. Proc. IEEE 98(3), 462–478 (2010)CrossRefGoogle Scholar
  7. 7.
    Files, B.T., Marathe, A.R.: A regression method for estimating performance in a rapid serial visual presentation target detection task. J. Neurosci. Methods 258(30), 114–123 (2016)CrossRefGoogle Scholar
  8. 8.
    Gerson, A.D., Parra, L.C., Sajda, P.: Cortically coupled computer vision for rapid image search. IEEE Trans. Neural Syst. Rehabil. Eng. 14(2), 174–179 (2006)CrossRefGoogle Scholar
  9. 9.
    Marathe, A.R., Lance, B.J., Nothwang, W., Metcalfe, J.S., McDowell, K.: Confidence metrics improve human-autonomy integration. In: Proceedings of 9th ACM/IEEE International Conference on Human-Robot Interaction (2014a)Google Scholar
  10. 10.
    Lacouture, Y., Cousineau, D.: How to use MATLAB to fit the ex-Gaussian and other probability functions to a distribution of response times. Tutor. Quant. Methods Psychol. 4(1), 35–45 (2008)CrossRefGoogle Scholar
  11. 11.
    Raymond, J.E., Shapiro, K.L., Arnell, K.M.: Temporary suppression of visual processing in an RSVP task: an attentional blink? J. Exp. Psychol. Hum. Percept. Perform. 18(3), 849–860 (1992)CrossRefGoogle Scholar
  12. 12.
    Shapiro, K.L., Raymond, J.E., Arnell, K.M.: The attentional blink. Trends Cogn. Sci. 1(8), 291–296 (1997)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jonroy D. Canady
    • 1
  • Amar R. Marathe
    • 1
  • David H. Herman
    • 2
  • Benjamin T. Files
    • 3
  1. 1.Human Research and Engineering DirectorateArmy Research LaboratoryAberdeen Proving GroundUSA
  2. 2.PsyMLLos AngelesUSA
  3. 3.Human Research and Engineering DirectorateArmy Research Laboratory - WestLos AngelesUSA

Personalised recommendations