Physiology of the Cerebrovascular System

  • Heidi L. Lujan
  • Robert A. Augustyniak
  • Stephen E. DiCarloEmail author


The brain can withstand only very short periods of ischemia because neurons produce ATP almost entirely by oxidative metabolism. Without oxygen, energy-dependent processes stop causing irreversible cellular injury. Therefore, cerebral blood flow must be maintained to ensure oxygen delivery and removal of the products of metabolism. The regulation of the cerebral circulation is an intricate and critical process that relies on the complex and interacting influences of the cardiovascular, respiratory, neural, and local metabolic systems. These physiologic systems act in complex and interacting ways to maintain an adequate cerebral blood flow by altering arterial, intracranial, and venous pressures. This is achieved by multiple mechanisms. For example, cerebral autoregulation is the response of the cerebral vessels to changes in arterial blood pressure. It is well documented that a decrease in systemic arterial blood pressure causes dilatation of the cerebral vessels and that, conversely, an increase in systemic arterial blood pressure causes vasoconstriction of the cerebral circulation. Changes in cerebral vascular tone are also mediated by putative constricting and dilating substances, and cerebral blood flow is tightly coupled with regional brain metabolism. These vasoactive substances may be supplied to the vessels via the bloodstream [e.g., arterial partial pressure of carbon dioxide (PaCO2), produced locally (adenosine, nitric oxide, potassium), or reach the vascular smooth muscle through direct autonomic innervation (acetylcholine, norepinephrine)]. Unique anatomical features, including the rigid skull, are also important considerations in the control of cerebral blood flow. In this chapter, we briefly discuss the major factors regulating cerebral blood flow including important anatomical features for a functional understanding of the regulation of the cerebral circulation.


Cerebral autoregulation Partial pressure of carbon dioxide Partial pressure of oxygen neural regulation Parasympathetic Sympathetic pH 


  1. 1.
    Wiggers C. On the action of adrenaline on cerebral vessels. Am J Phys. 1905;14:452–65.Google Scholar
  2. 2.
    Bevan J. Sites of transition between functional systemic and cerebral arteries or rabbits occur at embryological junctional sites. Science. 1979;204:635–7.CrossRefGoogle Scholar
  3. 3.
    Dunning H, Wolff H. The relative vascularity of various parts of the central and peripheral nervous system in the cat and its relation to function. J Comp Neurol. 1937;67:280–6.CrossRefGoogle Scholar
  4. 4.
    Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977;28(5):897–916.CrossRefGoogle Scholar
  5. 5.
    Nakagawa Y, Tsuru M, Yada K. Site and mechanism for compression of the venous system during experimental intracranial hypertension. J Neurosurg. 1974;41(4):427–34.CrossRefGoogle Scholar
  6. 6.
    Piechnik SK, Czosnyka M, Richards HK, Whitfield PC, Pickard JD. Cerebral venous blood outflow: a theoretical model based on laboratory simulation. Neurosurgery. 2001;49(5):1214–22.PubMedGoogle Scholar
  7. 7.
    Ursino M, Lodi CA. A simple mathematical model of the interaction between intracranial pressure and cerebral hemodynamics. J Appl Physiol. 1997;82(4):1256–69.CrossRefGoogle Scholar
  8. 8.
    Czosnyka M, Piechnik S, Richards HK, Kirkpatrick P, Smielewski P, Pickard JD. Contribution of mathematical modelling to the interpretation of bedside tests of cerebrovascular autoregulation. J Neurol Neurosurg Psychiatry. 1997;63(6):721–31.CrossRefGoogle Scholar
  9. 9.
    Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA. Glial and neuronal control of brain blood flow. Nature. 2010;468(7321):232–43.CrossRefGoogle Scholar
  10. 10.
    Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature. 2014;508(7494):55–60.CrossRefGoogle Scholar
  11. 11.
    Willie CK, Tzeng YC, Fisher JA, Ainslie PN. Integrative regulation of human brain blood flow. J Physiol. 2014;592(5):841–59.CrossRefGoogle Scholar
  12. 12.
    Schaller B. Physiology of cerebral venous blood flow: from experimental data in animals to normal function in humans. Brain Res Brain Res Rev. 2004;46(3):243–60.CrossRefGoogle Scholar
  13. 13.
    Lee SP, Duong TQ, Yang G, Iadecola C, Kim SG. Relative changes of cerebral arterial and venous blood volumes during increased cerebral blood flow: implications for BOLD fMRI. Magn Reson Med. 2001;45(5):791–800.CrossRefGoogle Scholar
  14. 14.
    Rosenblum WI. Endothelium-derived relaxing factor in brain blood vessels is not nitric oxide. Stroke. 1992;23(10):1527–32.CrossRefGoogle Scholar
  15. 15.
    Menon D. Cerebral circulation. In: Priebe H-J, Sharvans K, editors. Cardiovascular physiology. London: BMJ Publishing Group; 1995. p. 198–223.Google Scholar
  16. 16.
    Berntman L, Carlsson C, Siesjo BK. Influence of propranolol on cerebral metabolism and blood flow in the rat brain. Brain Res. 1978;151(1):220–4.CrossRefGoogle Scholar
  17. 17.
    Berntman L, Carlsson C, Siesjo BK. Cerebral oxygen consumption and blood flow in hypoxia: influence of sympathoadrenal activation. Stroke. 1979;10(1):20–5.CrossRefGoogle Scholar
  18. 18.
    Edvinsson L, Sercombe R. Influence of pH and pCO2 on alpha-receptor mediated contraction in brain vessels. Acta Physiol Scand. 1976;97(3):325–31.CrossRefGoogle Scholar
  19. 19.
    Pickard J, Simeone F, Vinall P. In: Betsz E, editor. H+, CO2, prostaglndins and cerebrovascular smooth muscle. Berlin: Springer-Verlag; 1976.Google Scholar
  20. 20.
    Busija DW, Heistad DD. Effects of cholinergic nerves on cerebral blood flow in cats. Circ Res. 1981;48(1):62–9.CrossRefGoogle Scholar
  21. 21.
    Heistad DD, Marcus ML, Ehrhardt JC, Abboud FM. Effect of stimulation of carotid chemoreceptors on total and regional cerebral blood flow. Circ Res. 1976;38(1):20–5.CrossRefGoogle Scholar
  22. 22.
    Ainslie PN, Duffin J. Integration of cerebrovascular CO2 reactivity and chemoreflex control of breathing: mechanisms of regulation, measurement, and interpretation. Am J Physiol Regul Integr Comp Physiol. 2009;296(5):R1473–95.CrossRefGoogle Scholar
  23. 23.
    Lassen N. In: Sutton J, Jones N, Houston C, editors. The brain: cerebral blood flow. New York: Thieme-Stratton; 1982.Google Scholar
  24. 24.
    Strandgaard S, Sigurdsson ST. Point: counterpoint: sympathetic activity does/does not influence cerebral blood flow. Counterpoint: sympathetic nerve activity does not influence cerebral blood flow. J Appl Physiol (1985). 2008;105(4):1366–7.CrossRefGoogle Scholar
  25. 25.
    van Lieshout JJ, Secher NH. Point: counterpoint: sympathetic activity does/does not influence cerebral blood flow. Point: sympathetic activity does influence cerebral blood flow. J Appl Physiol (1985). 2008;105(4):1364–6.CrossRefGoogle Scholar
  26. 26.
    Visocchi M, Chiappini F, Cioni B, Meglio M. Cerebral blood flow velocities and trigeminal ganglion stimulation. A transcranial Doppler study. Stereotact Funct Neurosurg. 1996;66(4):184–92.CrossRefGoogle Scholar
  27. 27.
    Umeyama T, Kugimiya T, Ogawa T, Kandori Y, Ishizuka A, Hanaoka K. Changes in cerebral blood flow estimated after stellate ganglion block by single photon emission computed tomography. J Auton Nerv Syst. 1995;50(3):339–46.CrossRefGoogle Scholar
  28. 28.
    Iwayama T, Furness JB, Burnstock G. Dual adrenergic and cholinergic innervation of the cerebral arteries of the rat. An ultrastructural study. Circ Res. 1970;26(5):635–46.CrossRefGoogle Scholar
  29. 29.
    Nielsen KC, Owman C. Adrenergic innervation of pial arteries related to the circle of Willis in the cat. Brain Res. 1967;6(4):773–6.CrossRefGoogle Scholar
  30. 30.
    Heistad DD, Marcus ML. Evidence that neural mechanisms do not have important effects on cerebral blood flow. Circ Res. 1978;42(3):295–302.CrossRefGoogle Scholar
  31. 31.
    Purves MJ. Do vasomotor nerves significantly regulate cerebral blood flow? Circ Res. 1978;43(4):485–93.CrossRefGoogle Scholar
  32. 32.
    Owman C, Edvinsson L, Nielsen KC. Autonomic neuroreceptor mechanisms in brain vessels. Blood Vessels. 1974;11(1-2):2–31.PubMedGoogle Scholar
  33. 33.
    Duckles SP, Bevan JA. Pharmacological characterization of adrenergic receptors of a rabbit cerebral artery in vitro. J Pharmacol Exp Ther. 1976;197(2):371–8.PubMedGoogle Scholar
  34. 34.
    Edvinsson L, MacKenzie ET. Amine mechanisms in the cerebral circulation. Pharmacol Rev. 1976;28(4):275–348.PubMedGoogle Scholar
  35. 35.
    Toda N, Fujita Y. Responsiveness of isolated cerebral and peripheral arteries to serotonin, norepinephrine, and transmural electrical stimulation. Circ Res. 1973;33(1):98–104.CrossRefGoogle Scholar
  36. 36.
    Lee TJ, Su C, Bevan JA. Neurogenic sympathetic vasoconstriction of the rabbit basilar artery. Circ Res. 1976;39(1):120–6.CrossRefGoogle Scholar
  37. 37.
    Navari RM, Wei EP, Kontos HA, Patterson JL Jr. Comparison of the open skull and cranial window preparations in the study of the cerebral microcirculation. Microvasc Res. 1978;16(3):304–15.CrossRefGoogle Scholar
  38. 38.
    Oldendorf WH. Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection. Am J Phys. 1971;221(6):1629–39.Google Scholar
  39. 39.
    Tindall GT, Greenfield JC Jr. The effects of intra-arterial histamine on blood flow in the internal and external carotid artery of man. Stroke. 1973;4(1):46–9.CrossRefGoogle Scholar
  40. 40.
    MacKenzie ET, McCulloch J, O’Kean M, Pickard JD, Harper AM. Cerebral circulation and norepinephrine: relevance of the blood-brain barrier. Am J Phys. 1976;231(2):483–8.Google Scholar
  41. 41.
    Bill A, Linder J. Sympathetic control of cerebral blood flow in acute arterial hypertension. Acta Physiol Scand. 1976;96(1):114–21.CrossRefGoogle Scholar
  42. 42.
    Edvinsson L, Owman C, Siesjo B. Physiological role of cerebrovascular sympathetic nerves in the autoregulation of cerebral blood flow. Brain Res. 1976;117(3):519–23.CrossRefGoogle Scholar
  43. 43.
    Heistad DD, Marcus ML. Effect of sympathetic stimulation on permeability of the blood-brain barrier to albumin during acute hypertension in cats. Circ Res. 1979;45(3):331–8.CrossRefGoogle Scholar
  44. 44.
    Heistad DD, Marcus ML, Gross PM. Effects of sympathetic nerves on cerebral vessels in dog, cat, and monkey. Am J Phys. 1978;235(5):H544–52.Google Scholar
  45. 45.
    MacKenzie ET, McGeorge AP, Graham DI, Fitch W, Edvinsson L, Harper AM. Effects of increasing arterial pressure on cerebral blood flow in the baboon: influence of the sympathetic nervous system. Pflugers Arch. 1979;378(3):189–95.CrossRefGoogle Scholar
  46. 46.
    Lindvall M, Edvinsson L, Owman C. Sympathetic nervous control of cerebrospinal fluid production from the choroid plexus. Science. 1978;201(4351):176–8.CrossRefGoogle Scholar
  47. 47.
    Johansson B, Li CL, Olsson Y, Klatzo I. The effect of acute arterial hypertension on the blood-brain barrier to protein tracers. Acta Neuropathol. 1970;16(2):117–24.CrossRefGoogle Scholar
  48. 48.
    Hart MN, Heistad DD, Brody MJ. Effect of chronic hypertension and sympathetic denervation on wall/lumen ratio of cerebral vessels. Hypertension. 1980;2(4):419–23.CrossRefGoogle Scholar
  49. 49.
    Larsson LI, Edvinsson L, Fahrenkrug J, Hakanson R, Owman C, Schaffalitzky de Muckadell O, et al. Immunohistochemical localization of a vasodilatory polypeptide (VIP) in cerebrovascular nerves. Brain Res. 1976;113(2):400–4.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Heidi L. Lujan
    • 1
  • Robert A. Augustyniak
    • 2
  • Stephen E. DiCarlo
    • 1
    Email author
  1. 1.PhysiologyCollege of Osteopathic Medicine, Michigan State UniversityEast LansingUSA
  2. 2.Biomedical SciencesEdward Via College of Osteopathic Medicine–Carolinas CampusSpartanburgUSA

Personalised recommendations