Advertisement

Our Island Earth: Granite Here, Granite Everywhere?

  • David S. Stevenson
Chapter
Part of the Springer Praxis Books book series (PRAXIS)

Abstract

Even at close range within the Solar System, different terrestrial bodies display a broad variety of tectonic and volcanic features. These reflect the manner in which each body has cooled and shed its heat to the surrounding universe. Despite their differences, other bodies such as Io and Venus provide clues to how the Earth behaved in the past and how it will behave in the future. Moreover, each world illustrates how different planets (and possibly life) beyond the Solar System may evolve.

References

Io

  1. Discovery of currently active extraterrestrial volcanism. (1979) Morabito, L. A.; et al Science. 204 (4396): 972. doi: https://doi.org/10.1126/science.204.4396.972.CrossRefGoogle Scholar
  2. Lava lakes on Io: Observations of Io’s volcanic activity from Galileo NIMS during the 2001 fly-bys. (2004). Lopes, R. M. C.; et al. Icarus. 169: 140–74; doi: https://doi.org/10.1016/j.icarus.2003.11.013.CrossRefGoogle Scholar
  3. Lava lakes on Io: observations of Io’s volcanic activity from Galileo NIMS during the 2001 fly-bys. (2004) Rosaly M.C Lopes, Lucas W Kamp, William, D Smythe, Peter Mouginis-Mark, Jeff Kargel, Jani Radebaugh, Elizabeth P Turtle, Jason Perry, David A Williams, R.W Carlson, S Doute,  https://doi.org/10.1016/j.icarus.2003.11.013
  4. Melting of Io by Tidal Dissipation. (1979) Peale, S. J.; et al. Science. 203 (4383): 892–94. doi: https://doi.org/10.1126/science.203.4383.892.CrossRefGoogle Scholar
  5. New estimates for Io eruption temperatures: Implications for the interior. (2007). Laszlo Keszthelyi, Windy Jaeger, Moses Milazzo, Jani Radebaugh, Ashley Gerard Davies, Karl L. Mitchell. Icarus. 192 (2): 491–502. doi:  https://doi.org/10.1016/j.icarus.2007.07.008CrossRefGoogle Scholar
  6. Silicate volcanism on Io. (1986). Michael H. Carr. Journal of Geophysical Research. 91: 3521–32. doi: https://doi.org/10.1029/JB091iB03p03521.CrossRefGoogle Scholar
  7. Loki, Io: New ground-based observations and a model describing the change from periodic overturn. (2006) Rathbun, J. A.; Spencer, J. R. Geophysical Research Letters. 33 (17): L17201. arXiv:astro-ph/0605240, doi: https://doi.org/10.1029/2006GL026844.CrossRefGoogle Scholar
  8. Observations and initial modeling of lava-SO2 interactions at Prometheus, Io. (2001) M. P. Milazzo, L. P. Keszthelyi, A. S. McEwen, J. Geophys. Res. 106: 33121–33128. doi: https://doi.org/10.1029/2000JE001410.CrossRefGoogle Scholar
  9. Lava Fountains from the 1999 Tvashtar Catena fissure eruption on Io: Implications for dike emplacement mechanisms, eruptions rates, and crustal structure. (2001) Wilson, L.; Head, J. W. J. Geophys. Res. 106: 32,997–33; doi: https://doi.org/10.1029/2000JE001323.CrossRefGoogle Scholar
  10. Lava fountains from the 1999 Tvashtar Catena fissure eruption on Io: Implications for dike emplacement mechanisms, eruption rates, and crustal structure. (2001) Lionel Wilson, James W. Head, DOI:  https://doi.org/10.1029/2000JE001323
  11. High-temperature silicate volcanism on Jupiter’s moon Io. (1998) S. McEwen, L. Keszthelyi, J. R. Spencer, G. Schubert, D. L. Matson, R. Lopes-Gautier, K. P. Klaasen, T. V. Johnson, J. W. Head, P. Geissler, S. Fagents, A. G. Davies, M. H. Carr, H. H. Breneman, M. J. S. Belton, Science. 281 (5373): 87–90; doi: https://doi.org/10.1126/science.281.5373.87.CrossRefGoogle Scholar
  12. A post-Galileo view of Io’s interior. (2004) Laszlo Keszthelyi, Windy L Jaeger, Elizabeth P Turtle, Moses Milazzo, Jani Radebaugh, Icarus, 169 (1), 271–286;  https://doi.org/10.1016/j.icarus.2004.01.005CrossRefGoogle Scholar
  13. Formation of mountains on Io: Variable volcanism and thermal stresses. (2009) Michelle R. Kirchoff, William B. McKinnon, Icarus 201(2):598–614; DOI:  https://doi.org/10.1016/j.icarus.2009.02.006CrossRefGoogle Scholar
  14. The Lithosphere and Surface of Io. (2004) Alfred S. McEwen, Laszlo P. Keszthelyi, Rosaly Lopes, Paul M. Schenk, John R. Spencer. In: Jupiter. The planet, satellites and magnetosphere. Edited by Fran Bagenal, Timothy E. Dowling, William B. McKinnon. Cambridge planetary science, Vol. 1, Cambridge, UK: Cambridge University Press, ISBN 0-521-81808-7, 2004, p. 307–328. Available at: http://lasp.colorado.edu/~espoclass/homework/5830_2008_homework/Ch14.pdf
  15. Constraining the lithospheric thickness of Io from a modified heat-pipe model. (2014) L. M. Jozwiak, pdf45th Lunar and Planetary Science Conference (2014). Available at: https://www.hou.usra.edu/meetings/lpsc2014/pdf/1160.pdf

The Moon

  1. Compositional evidence for an impact origin of the Moon’s Procellarum basin. (2012) Ryosuke Nakamura, Satoru Yamamoto, Tsuneo Matsunaga, Yoshiaki Ishihara, Tomokatsu Morota, Takahiro Hiroi, Hiroshi Takeda, Yoshiko Ogawa, Yasuhiro Yokota, Naru Hirata, Makiko Ohtake & Kazuto Saiki, Nature Geoscience 5, 775–778 (2012) doi: https://doi.org/10.1038/ngeo1614CrossRefGoogle Scholar
  2. Structure and evolution of the lunar Procellarum region as revealed by GRAIL gravity data. (2014) Jeffrey C. Andrews-Hanna, Jonathan Besserer, James W. Head III, Carly J. A. Howett, Walter S. Kiefer, Paul J. Lucey, Patrick J. McGovern, H. Jay Melosh, Gregory A. Neumann, Roger J. Phillips, Paul M. Schenk, David E. Smith, Sean C. Solomon, & Maria T. Zuber, Nature 514, 68–71; doi: https://doi.org/10.1038/nature13697CrossRefGoogle Scholar
  3. Highly Silicic Compositions on the Moon. (2010) Timothy D. Glotch, Paul G. Lucey, Joshua L. Bandfield, Benjamin T. Greenhagen, Ian R. Thomas, Richard C. Elphic, Neil Bowles, Michael B. Wyatt, Carlton C. Allen, Kerri Donaldson Hanna, David A. Paige Science 329, 1510–1513;DOI:  https://doi.org/10.1126/science.1192148CrossRefGoogle Scholar
  4. The density and porosity of lunar rocks. (2012) Walter S. Kiefer, Robert J. Macke, Daniel T. Britt, Anthony J. Irving, and Guy J. Consolmagno Geophysical Research Letters, 39, L07201, doi: https://doi.org/10.1029/2012GL051319, 2012, Available at: http://onlinelibrary.wiley.com/doi/10.1029/2012GL051319/pdfCrossRefGoogle Scholar
  5. Major lunar crustal terranes: Surface expressions and crust-mantle origins. (2000) Bradley L. Jolliff, Jeffrey J. Gillis, Larry A. Haskin, Randy L. Korotev, Mark A. Wieczorek, Journal of Geophysical Research, 105, no. E2, 4197–4216; DOI:  https://doi.org/10.1029/1999JE001103CrossRefGoogle Scholar
  6. The lunar Gruithuisen silicic extrusive domes: Topographic configuration, morphology, ages, and internal structure. (2016) M.A. Ivanov, J.W. Head, A. Bystrov, Icarus, 273, 262–283;  https://doi.org/10.1016/j.icarus.2015.12.015CrossRefGoogle Scholar
  7. Lunar true polar wander inferred from polar hydrogen. (2016) Matt A. Siegler, (Planetary Science Institute, Tucson, Arizona) R. S. Miller, J. T. Keane, M. Laneuville, D. A. Paige, I. Matsuyama, D. J. Lawrence, A. Crotts & M. J. Poston, Nature 531, 480–484 (24 March 2016) doi: https://doi.org/10.1038/nature17166CrossRefGoogle Scholar

Ceres

  1. Cryovolcanism on Ceres. (2016) O. Ruesch, T. Platz, P. Schenk, L. A. McFadden, J. C. Castillo-Rogez, L. C. Quick, S. Byrne, F. Preusker, D. P. O’Brien, N. Schmedemann, D. A. Williams, J.-Y. Li, M. T. Bland, H. Hiesinger, T. Kneissl, A. Neesemann, M. Schaefer, J. H. Pasckert, B. E. Schmidt, D. L. Buczkowski, M. V. Sykes, A. Nathues, T. Roatsch, M. Hoffmann, C. A. Raymond, C. T. Russell, Science, 353, no. 6303, DOI:  https://doi.org/10.1126/science.aaf4286

Mars

  1. Migration of Tharsis volcanism on Mars caused by differential rotation of the lithosphere. (2009) Shijie Zhong, Nature Geoscience 2 (1), 19–23; DOI:  https://doi.org/10.1038/NGEO392CrossRefGoogle Scholar
  2. The Volcanic Evolution of Syrtis Major Planum, Mars (2016) Peter Peter Fawdon, PhD thesis, The Open University. Available at: http://oro.open.ac.uk/48057/
  3. Supervolcanoes within an ancient volcanic province in Arabia Terra, Mars. (2013) Joseph R. Michalski & Jacob E. Bleacher, Nature 502, 47–52; doi: https://doi.org/10.1038/nature12482CrossRefGoogle Scholar
  4. Emplacement of the youngest flood lava on Mars: A short, turbulent story. (2010) W.L. Jaeger, L.P. Keszthelyi, J.A. Skinner Jr, M.P. Milazzo, A.S. McEwen, T.N. Titus, M.R. Rosiek, D.M. Galuszka, E. Howington-Kraus, R.L. Kirk, the HiRISE Team, Icarus, 205 (1), 230–243;  https://doi.org/10.1016/j.icarus.2009.09.011
  5. The Circum-Hellas Volcanic Province, Mars: Overview. (2009) David A. Williams, Ronald Greeley, Robin L. Fergason, Ruslan Kuzmin, Thomas B. McCord, Jean Phillipe Combe, James W. Head, Long Xiao, Leon Manfredi, François Poulet, Patrick Pinet, David Baratoux, Jeffrey J. Plaut, Jouko Raitala, Gerhard Neukum Planetary and Space Science 57, (8–9), 895–916CrossRefGoogle Scholar
  6. The Mars Reconnaissance Orbiter radio science gravity investigation. (2007) Maria T. Zuber, Frank G. Lemoine, David E. Smith, Alex S. Konopliv, Suzanne E. Smrekar, Sami W. Asmar, J. Geophysical Research, 112, 2156–2202; DOI:  https://doi.org/10.1029/2006JE002833CrossRefGoogle Scholar
  7. Crustal structure of Mars from gravity and topography. (2004) G. A. Neumann, M. T. Zuber, M. A. Wieczorek, P. J. McGovern, F. G. Lemoine, and D. E. Smith, Journal of Geophysical Research, 109, E08002, doi: https://doi.org/10.1029/2004JE002262, 2004. Available at: http://onlinelibrary.wiley.com/doi/10.1029/2004JE002262/pdfCrossRefGoogle Scholar
  8. Mars Orbital Laser Altimeter: experiment summary after the first year of global mapping of Mars. (2001), David E. Smith, Maria T. Zuber, Herbert V. Frey, James B. Garvin, James W. Head, Duane O. Muhleman, Gordon H. Pettengill, Roger J. Phillips, Sean C. Solomon, H. Jay Zwally, W. Bruce Banerdt, Thomas C. Duxbury, Matthew P. Golombek, Frank G. Lemoine, Gregory A. Neumann, David D. Rowlands, Oded Aharonson, Peter G. Ford, Anton B. Ivanov, Catherine L. Johnson, Patrick J. McGovern, James B. Abshire, Robert S. Afzal, Xiaoli Sun, J. Geophysical Research, 106 (E10), 23, 23689–23722; DOI:  https://doi.org/10.1029/2000JE001364CrossRefGoogle Scholar
  9. The evolution of the Martian hydrosphere: implications for the fate of a primordial ocean and the current state of the northern plains. (2001). Clifford, S.M. and Parker, T.J. Icarus 154, 40–79 doi: https://doi.org/10.1006/icar.2001.6671, available online at http://www.idealibrary.com and http://seismo.berkeley.edu/~manga/cliffordandparker2001.pdfCrossRefGoogle Scholar
  10. Degree-1 convection in the Martian mantle and the origin of the hemispheric dichotomy James H. Roberts and Shijie Zhong J. Geophysical Research, 111, E06013, doi: https://doi.org/10.1029/2005JE002668, 2006.CrossRefGoogle Scholar
  11. Martian crustal dichotomy and Tharsis formation by partial melting coupled to early plume migration Ondřej Šrámek and Shijie Zhong J. Geophysical Research, 117, E01005, doi: https://doi.org/10.1029/2011JE003867, 2012CrossRefGoogle Scholar
  12. The martian hemispheric dichotomy may be due to a giant impact. (1984) Wilhelms, D.E. and Squyres, S.W. Nature 309, 138–140; doi:  https://doi.org/10.1038/309138a0CrossRefGoogle Scholar
  13. The Borealis basin and the origin of the Martian crustal dichotomy. (2008) Jeffrey C. Andrews-Hanna, Maria T. Zuber & W. Bruce Banerdt, Nature 453, 1212–1215; doi: https://doi.org/10.1038/nature07011CrossRefGoogle Scholar
  14. Mega-impact formation of the Mars hemispheric Dichotomy. (2008) Margarita M. Marinova, Oded Aharonson & Erik Asphaug. (2008). Nature 453, 1216–1219. doi: https://doi.org/10.1038/nature07070CrossRefGoogle Scholar

Venus

  1. Felsic highland crust on Venus suggested by Galileo Near-Infrared Mapping Spectrometer data (2008), George L. Hashimoto, Maarten Roos-Serote, Seiji Sugita, Martha S. Gilmore, Lucas W. Kamp, Robert W. Carlson, and Kevin H. Baines; Journal of Geophysical Research, Vol. 113, E00B24, doi: https://doi.org/10.1029/2008JE003134.CrossRefGoogle Scholar
  2. Pioneer Venus Radar results altimetry and surface properties. (1980) Gordon H. Pettengill, Eric Eliason, Peter G. Ford, George B. Loriot, Harold Masursky, George E. McGill; Geophysical Research Letters 85, no. A13, 8261–8270; DOI:  https://doi.org/10.1029/JA085iA13p08261CrossRefGoogle Scholar
  3. Active submarine eruption of boninite in the northeastern Lau Basin. (2011) Joseph A. Resing, Kenneth H. Rubin, Robert W. Embley, John E. Lupton, Edward T. Baker, Robert P. Dziak, Tamara Baumberger, Marvin D. Lilley, Julie A. Huber, Timothy M. Shank, David A. Butterfield, David A. Clague, Nicole S. Keller, Susan G. Merle, Nathaniel J. Buck, Peter J. Michael, Adam Soule, David W. Caress, Sharon L. Walker, Richard Davis, James P. Cowen, Anna-Louise Reysenbach, Hans Thomas; Nature Geoscience 4, 799–806; doi: https://doi.org/10.1038/ngeo1275CrossRefGoogle Scholar
  4. Recent Hot-Spot Volcanism on Venus from VIRTIS Emissivity Data. (2010) Smrekar, Suzanne E.; Stofan, Ellen R.; Mueller, Nils; Treiman, Allan; Elkins-Tanton, Linda; Helbert, Joern; Piccioni, Giuseppe; Drossart, Pierre, Science, 328, Issue 5978, pp. 605–608; doi: https://doi.org/10.1126/science.1186785CrossRefGoogle Scholar
  5. Idunn Mons on Venus: Location and extent of recently active lava flows. (2017); Müller, Nils; Helbert, Jörn; D’Amore, Mario Planetary and Space Science, Vol. 136, p. 25–33; doi:  https://doi.org/10.1016/j.pss.2016.12.002CrossRefGoogle Scholar
  6. Variations of sulfur dioxide at the cloud top of Venus’s dynamic atmosphere. (2013) Emmanuel Marcq, Jean-Loup Bertaux, Franck Montmessin & Denis Belyaev, Nature Geoscience 6, 25–28 (2013) doi: https://doi.org/10.1038/ngeo1650CrossRefGoogle Scholar
  7. Active volcanism on Venus in the Ganiki Chasma rift zone. (2015) E. V. Shalygin, W. J. Markiewicz, A. T. Basilevsky, D. V. Titov, N. I. Ignatiev, Geophysical Research Letters 42, Issue 12, 4762–4769; DOI:  https://doi.org/10.1002/2015GL064088CrossRefGoogle Scholar
  8. The four arachnoid groups of venus. (2002) Kostama, V-P. Available at: https://www.lpi.usra.edu/meetings/lpsc2002/pdf/1115.pdf
  9. Characteristics of arachnoids from Magellan data. (1993) C.B. Dawson and L.S. Crumpler. Available at: https://www.lpi.usra.edu/meetings/lpsc1993/pdf/1193.pdf
  10. Novae on Venus: Geology, classification, and evolution. (2003) Anton S. Krassilnikov and James W. Head, Journal of Geophysical Research, 108, (E9), 5108–5119, doi: https://doi.org/10.1029/2002JE001983,CrossRefGoogle Scholar
  11. Felsic highland crust on Venus suggested by Galileo Near-Infrared Mapping Spectrometer data. (2008) George L. Hashimoto, Maarten Roos-Serote, Seiji Sugita, Martha S. Gilmore, Lucas W. Kamp, Robert W. Carlson, and Kevin H. Baines, Journal of Geophysical Research, 113, E00B24, doi: https://doi.org/10.1029/2008JE003134,
  12. Geologic interpretation of the near-infrared images of the surface taken at the Venus Monitoring Camera, Venus Express (2012) A.T. Basilevsky, E.V. Shalygin, D.V. Titov, W.J. Markiewicz, F. Scholten Th. Roatsch, M.A. Kreslavsky, L.V. Moroz, N.I. Ignatiev, B. Fiethe, B. Osterloh, H. Michalik, Icarus, 217, 434–450. doi:  https://doi.org/10.1016/j.icarus.2011.11.03CrossRefGoogle Scholar
  13. Styles of tectonic deformation on Venus: Analysis of Veneras I5 and 16 data. (1986) Basilevsky, A. T., A. A. Pronin, L. B. Ronca, V. P. Kryuchkov, A. L. Sukhanov, and M. S. Markov, 1986, J. Geophys. Res., vol. 91, p. D399-D411.CrossRefGoogle Scholar
  14. Mantle flow tectonics and a ductile lower crust: Implications for the formation of large-scale features on Venus. (1990) Bindschadler, D. L., and E. M. Parmentier, J. Geophys. Res. 95, 21329–21344.CrossRefGoogle Scholar
  15. Magellan observations of Alpha Regio: Implications for formation of complex ridged terrains on Venus. (1992) Bindschadler, D. L., A. de Charon, K. K. Beratan, S. E. Smrekar, and J. W. Head, 1992b, J. Geophys. Res., 97, 13563–13577.CrossRefGoogle Scholar
  16. Orogenic belts on Venus. (1986) Crumpler, L. C., J. W. Head, and D. B. Campbell, Geology, vol. 14, p. 1031–1034.CrossRefGoogle Scholar
  17. Blob tectonics: A prediction of Western Aphrodite Terra, Venus. (1990) Herrick, R. R., and R. J. Phillips, Geophys. Res. Lett., 17, 2129–2132.CrossRefGoogle Scholar
  18. Styles of deformation in Ishtar Terra and their implications. (1992) Kaula, W. M., D. L. Bindschadler, R. E. Grimm, V. L. Hansen, K. M. Roberts, and S. E. Smrekar, 1992, J. Geophys. Res. 97, 16085–16120.CrossRefGoogle Scholar
  19. Pioneer Venus radar results: Geology from images and altimetry. (1980) Masursky, H., E. Eliason, P. G. Ford, G. E. McGill, G. H. Pettengill, G. G. Schaber, and G. Schubert, J. Geophys. Res. 85, 8232–8260.CrossRefGoogle Scholar
  20. Are tesserae the outcrops of feldspathic crust on Venus? (1988) Nikolayeva, O. V., A. A. Pronin, A. T. Basilevsky, M. A. Ivanov, and M. A. Kreslavsky, 1988, (abstract), LPSC XIX, 864–865.Google Scholar
  21. Geology and structure of Beta Regio, Venus: Results from Arecibo radar imaging. (1991) Senske, D. A., J. W. Head, E. R. Stofan, and D. B. Campbell, Geophys. Res. Lett.,18, 1159–1162.CrossRefGoogle Scholar
  22. Gravitational spreading of high terrain in Ishtar Terra, Venus. (1992) Smrekar, S. E., and S. C. Solomon, J. Geophys. Res., vol. 97, p. 16121–16148.CrossRefGoogle Scholar
  23. Venus banded terrain: Tectonic models for band formation and their relationship to lithospheric thermal structure. (1984) Solomon, S. C., and J. W. Head, J. Geophys. Res., 89, 6885–6897.CrossRefGoogle Scholar
  24. Venus tectonics: Initial analysis from Magellan. (1991) Solomon, S. C., J. W. Head, W. M. Kaula, D. McKenzie, B. Parsons, R. J. Phillips, G. Schubert, M. Talwani, Science, 252, 297–312.CrossRefGoogle Scholar
  25. Venus tectonics: An overview of Magellan observations. (1992) Solomon, S. C., S. E. Smrekar, D. L. Bindschadler, R. E. Grimm, W. M. Kaula, G. E. McGill, R. J. Phillips, R. S. Saunders, G. Schubert, S. W. Squyres, and E. R. Stofan, J. Geophys. Res. 97, 13199–13255.CrossRefGoogle Scholar
  26. Critical taper wedge mechanics of fold-and-thrust belts on Venus: Initial results from Magellan. (1992) Suppe, J., and C. Connors, J. Geophys. Res., 97, 13545–13561.CrossRefGoogle Scholar
  27. Wrinkle ridge assemblages on the terrestrial planets. (1998) Watters, T. R., J. Geophys. Research, 93, 10236 10254.CrossRefGoogle Scholar
  28. Plains tectonism on Venus. (1992) Squyres, S. W., D. G. Jankowski, M. Simons, S. C. Solomon, B. H. Hagar, G. E. McGill, J. Geophys. Res., vol. 97, p. 13579–13599. https://authors.library.caltech.edu/44276/1/jgre82.pdfCrossRefGoogle Scholar
  29. Coronae on Venus: Morphology and distribution. (1990) Pronin, A. A., and E. R. Stofan, Icarus, 87, 452474.CrossRefGoogle Scholar
  30. Plume-induced crustal convection: 3D thermomechanical model and implications for the origin of novae and coronae on Venus. (2014) Gerya T, Earth and Planetary Science Letters, 391, 183–192, DOI:  https://doi.org/10.1016/j.epsl.2014.02.005CrossRefGoogle Scholar
  31. The morphology and evolution of coronae on Venus (1992) Squyres, S. W., D. M. Janes, G. Baer, D. L. Bindschadler, G. Schubert, V. L. Sharpton, and E. R. Stofan, J. Geophys. Res., 97, 13611–13634.Google Scholar
  32. Global distribution and characteristics of coronae and related features on Venus: Implications for origin and relation to mantle processes. (1992) Stofan, E. R., V. L. Sharpton, G. Schubert, G. Baer, D. L. Bindschadler, D. M. Janes, and S. W. Squyres, J. Geophys. Res., 97, 13347–13378.CrossRefGoogle Scholar
  33. Global distribution and characteristics of coronae and related features on Venus: Implications for origin and relation to mantle processes. (1992) Ellen R. Stofan, Virgil L. Sharpton, Gerald Schubert, Gidon Baer, Duane L. Bindschadler, Daniel M. Janes, Steven W. SquyresGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • David S. Stevenson
    • 1
  1. 1.NottinghamshireUK

Personalised recommendations