Advertisement

Jotunheim –In the Realm of Giants

  • David S. Stevenson
Chapter
Part of the Springer Praxis Books book series (PRAXIS)

Abstract

In Chapters  2 and  3, we saw how plate motions brought about the rise of the Caledonides, the Appalachians and the Rockies. In this chapter, we focus on the mountains themselves as constructs and begin to examine their influence on planetary climate, leading us into Chapter  6. Chapter  5 therefore forms a natural bridge between the granites that underpin these lofty chains of rock and the climate that ultimately leads to their sculpting into the myriad forms that challenge and amaze us. We will concentrate on the Earth’s current giants: the Alpine-Himalayan system, and the mighty Tibetan lateau that lies along the Himalaya’s northern shore.

References

The Himalayan Orogen

  1. Cathaysia, Gondwanaland, and the Paleotethys in the evolution of continental Southeast Asia. (1986) Yuri G. Gatinsky & Charles S. Hutchison, GEOSEA V Proceedings, 11, Geological Society of Malaysia, Bulletin 20, 179–199.Google Scholar
  2. Evidence for mechanical coupling and strong Indian lower crust beneath southern Tibet. (2011) Alex Copley, Jean-Philippe Avouac & Brian P. Wernicke, Nature,472, 79–81; doi: https://doi.org/10.1038/nature09926CrossRefGoogle Scholar
  3. Continental collision slowing due to viscous mantle lithosphere rather than topography. (2012) Marin Kristen Clark, Nature 483, 74–78, doi: https://doi.org/10.1038/nature10848.CrossRefGoogle Scholar
  4. Uplift of the Longmen Shan and Tibetan Plateau, and the 2008 Wenchuan (M57.9) earthquake (2009) Judith Hubbard & John H. Shaw, Nature, 458, 194–197, doi: https://doi.org/10.1038/nature07837CrossRefGoogle Scholar
  5. E. Argand, Cong. Geol. Int. 1922, 171 (1922).Google Scholar
  6. The Geological Evolution of the Tibetan Plateau. (2008) Leigh H. Royden, B. Clark Burchfiel, Robert D. van der Hilst, Science 321, 1054–1058.CrossRefGoogle Scholar
  7. Late Cenozoic Xianshuihe-Xiaojiang and Red River Fault Systems of southwestern Sichuan and central Yunnan, China. (1998) E. Wang, B. C. Burchfield, H. Royden, L. Chen, J. Chen and W. Li., Spec. Pap., Geol. Soc. Am, 327, 108Google Scholar
  8. Tibetan Plateau river incision inhibited by glacial stabilization of the Tsangpo gorge. (2008) Oliver Korup & David R. Montgomery, Nature 455, 786–789; doi: https://doi.org/10.1038/nature07322CrossRefGoogle Scholar
  9. Making a mountain out of a plateau.(2017) Hugh Sinclair, Nature, 542, 41–42.CrossRefGoogle Scholar
  10. A Human Trigger for the Great earthquake of Sichuan? (2009) Richard A. Kerr and Richard Stone Science 323, 322Google Scholar
  11. Possible roles of the Zipingpu Reservoir in triggering the 2008 Wenchuan earthquake. (2011) Xinglin Lei., Journal of Asian Earth Sciences, 40 (4), 844–854;  https://doi.org/10.1016/j.jseaes.2010.05.004CrossRefGoogle Scholar
  12. Integrated analysis of stress and regional seismicity by surface loading – a case study of Zipingpu reservoir. (2008). Lei, X. L. and Ma, S. L. Seismology and Geology, 30(4), 1046–1064.Google Scholar
  13. Uplift and seismicity driven by groundwater depletion in central California. (2014) Colin B. Amos, Pascal Audet, William C. Hammond, Roland Bürgmann, Ingrid A. Johanson & Geoffrey Blewitt, Nature, 509, 483–486, doi: https://doi.org/10.1038/nature13275CrossRefGoogle Scholar
  14. Uplift of the Longmen Shan and Tibetan Plateau, and the 2008 Wenchuan (M7.9) earthquake. (2009) Judith Hubbard and John H. Shaw; Nature, 458, 194–197; doi: https://doi.org/10.1038/nature07837

Antarctica

  1. East Antarctic rifting triggers uplift of the Gamburtsev Mountains. (2011) Fausto Ferraccioli, Carol A. Finn, Tom A. Jordan, Robin E. Bell, Lester M. Anderson & Detlef Damaske, Nature, 479, 388–394, doi: https://doi.org/10.1038/nature10566.CrossRefGoogle Scholar

The Mediterranean

  1. Herculaneum victims of Vesuvius in ad 79. (2001) Giuseppe Mastrolorenzo, Pier P. Petrone, Mario Pagano, Alberto Incoronato, Peter J. Baxter, Antonio Canzanella & Luciano Fattore Nature 410, 769–770; doi: https://doi.org/10.1038/35071167CrossRefGoogle Scholar
  2. Lethal thermal impact at periphery of pyroclastic surges: evidences at Pompeii. (2010) Mastrolorenzo G., Petrone P., Pappalardo L., Guarino F.M. PLoS One;5(6):e11127. doi:  https://doi.org/10.1371/journal.pone.0011127.CrossRefGoogle Scholar
  3. The Avellino 3780-yr-B.P. catastrophe as a worst-case scenario for a future eruption at Vesuvius. (2006) Giuseppe Mastrolorenzo, Pierpaolo Petrone, Lucia Pappalardo, and Michael F. Sheridan; PNAS 103 (12), 4366–4370 DOI: https://doi.org/10.1371/journal.pone.0011127CrossRefGoogle Scholar
  4. Granular Convection Observed by Magnetic Resonance Imaging (1995) E. E. Ehrichs, H. M. Jaeger, Greg S. Karczmar, James B. Knight, Vadim Yu Kuperman, Sidney R. Nagel; Science 267(5204), 1632–1634; DOI:  https://doi.org/10.1126/science.267.5204.1632CrossRefGoogle Scholar
  5. Chapter 10 Stratigraphy and geological evolution of the Lipari volcanic complex (central Aeolian archipelago) (2013) F. Forni, F. Lucchi, A. Peccerillo, C. A. Tranne, P. L. Rossi and M. L. Frezzotti Geological Society, London, Memoirs, 37, 213–279,  https://doi.org/10.1144/M37.10CrossRefGoogle Scholar
  6. Age and petrology of the Late-Pleistocene brown tuffs on Lipari, Italy(1983), G. M. Crisci, G. Delibrias, R. De Rosa, R. Mazzuoli, M. F. Sheridan, G. M. Crisci Bulletin Volcanologique 46, (4), 381–391CrossRefGoogle Scholar
  7. Mantle dynamics in the Mediterranean. (2014) Claudio Faccenna, Thorsten W. Becker, Ludwig Auer, Andrea Billi, Lapo Boschi, Jean Pierre Brun, Fabio A. Capitanio, Francesca Funiciello, Ferenc Horvàth, Laurent Jolivet, Claudia Piromallo, Leigh Royden, Federico Rossetti, and Enrico Serpelloni; Rev. Geophys., 52, doi: https://doi.org/10.1002/2013RG000444
  8. The 1538 Monte Nuovo eruption (Campi Flegrei, Italy). (1987), Mauro Di Vito, Lucio Lirer, Giuseppe Mastrolorenzo and Giuseppe Rolandi; Bull Volcanol (1987) 49:608–615CrossRefGoogle Scholar
  9. Rapid differentiation in a sill-like magma reservoir: a case study from the campi flegrei caldera. (2012) Lucia Pappalardo and Giuseppe Mastrolorenzo; Sci Rep. 2: 712. doi: https://doi.org/10.1038/srep00712CrossRefGoogle Scholar
  10. Are subduction zones invading the Atlantic? Evidence from the southwest Iberia margin. (2013) Gutscher and António Ribeiro João C. Duarte, Filipe M. Rosas, Pedro Terrinha, Wouter P. Schellart, David Boutelier, Marc-André Geology (2013) 41 (8): 839–842; doi:  https://doi.org/10.1130/G34100.1CrossRefGoogle Scholar
  11. Catastrophic flood of the Mediterranean after the Messinian salinity crisis. (2009) D. Garcia-Castellanos, F. Estrada, I. Jiménez-Munt, C. Gorini, M. Fernàndez, J. Vergés & R. De Vicente, Nature, 462, 778–781, doi: https://doi.org/10.1038/nature08555CrossRefGoogle Scholar
  12. Structure of the Galatean Volcanic Province, Turkey. (1996) V. Toprak, Y. Savascin, N. Gulec & A. Tankut, International Geology Review, 38, 8, 747–758 DOI:  https://doi.org/10.1080/00206819709465358. Available at: https://www.researchgate.net/publication/233276688_Structure_of_the_Galatean_Volcanic_Province_TurkeyCrossRefGoogle Scholar
  13. Problems of Stratigraphic Correlation and New K-Ar Data for Ignimbrites from Cappadocia, Central Turkey. (1996) Ulrike Mues-Schumacher & Rolf Schumacher, International Geology Review, 38, 8, 737–746,  https://doi.org/10.1080/00206819709465357CrossRefGoogle Scholar

Erosion and Deposition

  1. Long-term stability of global erosion rates and weathering during late-Cenozoic cooling. (2010) Jane K. Willenbring & Friedhelm von Blanckenburg Nature, 465, 211–214 doi: https://doi.org/10.1038/nature09044CrossRefGoogle Scholar
  2. Lifespan of mountain ranges scaled by feedbacks between landsliding and erosion by rivers. (2013) David L. Egholm, Mads F. Knudsen & Mike Sandiford, Nature, 498, 475–479; doi: https://doi.org/10.1038/nature12218CrossRefGoogle Scholar
  3. Mountain erosion over 10 yr, 10 ky, and 10 my time scales. (2001) Kirchner, J.W., Finkel, R.C., Riebe, C.S., Granger, D.E., Clayton, J.L., King, J.G., and Megahan, W.F., Geology, vol. 29, p. 591–594, doi: https://doi.org/10.1130/0091-7613(2001)029<0591:MEOYKY>2.0.CO;2.CrossRefGoogle Scholar
  4. Mainly in the plain. (2013) James W. Kirchner & Ken L. Ferrier Nature, 495, 318–319.CrossRefGoogle Scholar
  5. Earth is (mostly) flat. Apportionment of the flux of continental sediment over millennial time scales. (2013) Willenbring, J.K., Codilean, A.T., and McElroy, B., Geology, vol. 41, p. 343–346, doi: https://doi.org/10.1130/G33918.1.CrossRefGoogle Scholar
  6. Earth is (mostly) flat: Apportionment of the flux of continental sediment over millennial time scales: Comment. (2014) Warrick, J.A., Milliman, J.D., Walling, D.E., Wasson, R.J., Syvitski, J.P.M., and Aalto, R.E., Geology, e316, doi: https://doi.org/10.1130/G34846C.1.

Mountains, Atmospheres and Climate

  1. Rossby waves. (2002) Peter B. Rhines, Encyclopedia of Atmospheric Sciences. Available at: https://www.gfdl.noaa.gov/wp-content/uploads/files/user_files/io/rhines.pdf
  2. Chapter 6: Rossby waves and planetary scale motions. (n.d.) Author – unknown. Available at: file://G:/astro%20writing%20stuff/The%20Earth's%20Crystal%20Skyscrapers/Chapter%205%20Granite%20Towers/rossby%20waves%20and%20planetary%20scale%20motions.pdfGoogle Scholar
  3. Large, stationary gravity wave in the atmosphere of Venus. (2017) Tetsuya Fukuhara, Masahiko Futaguchi, George L. HashimotoTakeshi Horinouchi, Takeshi Imamura, Naomoto Iwagaimi, Toru Kouyama, Shin-ya Murakami, Masato Nakamura, Kazunori Ogohara, Mitsuteru Sato, Takao M. Sato, Makoto Suzuki, Makoto Taguchi, Seiko Takagi, Munetaka Ueno, Shigeto Watanabe, Manabu Yamada, Atsushi Yamazaki, Nature Geoscience10, 85–88, doi: https://doi.org/10.1038/ngeo2873CrossRefGoogle Scholar
  4. Evolution of Asian Monsoons and Phased uplift of the Himalayan Tibetan Plateau since Late Miocene times. (2001) An Zhisheng, John E. Kutzbach, Warren L. Prell and Stephen C. Porter, Nature, 411, 62–66CrossRefGoogle Scholar
  5. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. (2005) Carolyn A. Dykoskia, R. Lawrence Edwardsa, Hai Chenga, Daoxian Yuanb, Yanjun Caic, Meiliang Zhangb, Yushi Linb, Jiaming Qingb, Zhisheng Anc, Justin Revenaugha, Earth and Planetary Science Letters 233 (2005) 71–86CrossRefGoogle Scholar

Gap and Other Mountain Winds

  1. There were no academic papers in English for the Mistral. I refer the reader to: The Mistral of Provence (2016) Margo Lestz. Available at: https://curiousrambler.com/2016/07/28/the-mistral-of-provence/
  2. The Structure and Evolution of Gap Outflow over the Gulf of Tehuantepec, Mexico. (1988) Steenburgh, W. J., D. M. Schultz, B. A. Colle, Monthly Weather Review, 126, 2673–2691CrossRefGoogle Scholar
  3. Low-level flow through the Strait of Gibraltar. (1982) Bendall, A. A., The Meteorological Magazine, 111, 149–153Google Scholar
  4. High-Resolution Observations and Numerical Simulations of Easterly Gap Flow through the Strait of Juan de Fuca on 9–10 December 1995. (2000) Colle, B. A., C. F. Mass,: Monthly Weather Review, 128, 2398–2422.CrossRefGoogle Scholar
  5. The Causes of Foehn Warming in the Lee of Mountains. (2015) Elvidge, Andrew D.; Renfrew, Ian A. Bulletin of the American Meteorological Society. 97 (3): 455–466. doi: https://doi.org/10.1175/bams-d-14-00194.1CrossRefGoogle Scholar
  6. Foehn warming distributions in nonlinear and linear flow regimes: a focus on the Antarctic Peninsula. (2016) Elvidge, Andrew D.; Renfrew, Ian A.; King, John C.; Orr, Andrew; Lachlan-Cope, Tom A. Quarterly Journal of the Royal Meteorological Society. 142 (695): 618–631. doi: https://doi.org/10.1002/qj.2489CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • David S. Stevenson
    • 1
  1. 1.NottinghamshireUK

Personalised recommendations