The Formation of Granites & Plate Tectonics

  • David S. Stevenson
Part of the Springer Praxis Books book series (PRAXIS)


Granites and their close but more silica-poor relatives, the granodiorites, are a closely knit family of acidic (silica-rich or felsic) rocks. True granites have more than 68% silicon dioxide (silica), but their final composition varies considerably depending on their mode of formation deep underground. Moreover, differences in the manner in which granites and granodiorites crystallize and the amount of volatile materials they contain may greatly affect their appearance and subsequent popularity as a building material. This chapter explores the origin of this diverse kingdom of rocks, analyzing its many variations and the geological settings that produced them, as well as examining how the Earth cooked up the first granites from its dark, seething mantle.


Igneous Petrology and Continental Crust

  1. Classification of Granitoid Rocks Based on Tectonic Setting. After Pitcher (1983) in K. J. Hsü (ed.), Mountain Building Processes, Academic Press, London;Google Scholar
  2. The Nature and Origin of Granite. (1993) W.S. Pitcher, Blackie Academic and Professional, xiv + 321 pp. ISBN 0-7514-0080-7.Google Scholar
  3. Quantum magmatism: Magmatic compositional gaps generated by melt-crystal dynamics. (2010) Josef Dufek and Olivier Bachmann Geology 2010;38;687–690; doi:
  4. R.A. Daly’s early model of seafloor generation 40 years before the Vine–Matthews hypothesis: an outstanding theoretical achievement inspired by field work on St. Helena in 1921–1922. (2015) Dominik Letsch, Can. J. Earth Sci. Can. J. Earth Sci. 52: 893–902 doi:
  5. An Introduction to Igneous and Metamorphic Petrology. (2001) John D. Winter, Prentice Hall, ISBN-13: 978-0132403429Google Scholar
  6. A compositional tipping point governing the mobilization an eruption style of rhyolitic magma. (2017) D. Di Genova, S. Kolzenburg, S. Wiesmaier, E. Dallanave, D. R. Neuville, K.U. Hess and D. B. Dingwell, Nature, 552, 235–238; doi:
  7. No Water, No Granites - No Oceans, No Continents. (1983) Campbell I H, Taylor S R Geophysical Research Letters 10, 1061–64Google Scholar
  8. The petrogenesis of A-type magmas from the Amram Massif, southern Israel. (2003) Mushkin A, Navon O, Halicz L, Hartmann G, Stein M Journal of Petrology, 44, 815–32Google Scholar

Formation of Continental Crust

  1. First Origins of Archean Continental Crust: Assessing Experimentally the Roles of Mafic Versus Ultramafic Sources. (1999) Rapp, Robert P.. Dept. of Geosciences, State University of New YorkGoogle Scholar
  2. Plate tectonics on the Earth triggered by plume-induced subduction initiation (2016) T. V. Gerya, R. J. Stern, M. Baes, S. V. Sobolev & S. A. WhattamGoogle Scholar
  3. Continental crust formation on early Earth controlled by intrusive magmatism. (2017) A. B. Rozel, G. J. Golabek, C. Jain, P. J. Tackley, & T. Gerya, Nature 545, 332–335; doi:
  4. The tonalite-trondhjemite-granodiorite (TTG) to granodiorite-granite (GG) transition in the late Archaean plutonic rocks of the central Wyoming province. (2006) Carol D. Frost, B. Ronald Frost, Robert Kirkwood and Kevin R. Chamberlain; Canadian Journal of Earth Science, 43: 1419–1444; doi:
  5. A window for plate tectonics in terrestrial planet evolution? (2015) Craig O’Neill, Adrian Lenardic, Matthew Weller, Louis Moresi, Steve Quenette, Siqi Zhang. Physics of the Earth and Planetary Interiors 255 (2016) 80–92;
  6. Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. (2001) Gaelle Prouteau, Bruno Scaillet, Michel Pichavant & Rene Maury. Nature 410 197–200Google Scholar
  7. CO2, carbonate-rich melts, and brines in the mantle. (2014) Maria-Luce Frezzotti, Jacques L.R. Touret, Geoscience Frontiers, 5 697–710;
  8. Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab. (2013) Tatsuhiko Kawamotoa, Masako Yoshikawab, Yoshitaka Kumagaia, Ma Hannah T. Mirabuenoc, Mitsuru Okunod, and Tetsuo Kobayashie, PNAS, 110 (24), 9663–9668; doi:
  9. Oceanic slab melting and mantle metasomatism. (2001a) Bruno Scaillet, Gaelle Prouteau. Science Progress, Science Reviews 2000 Ltd.84, 335–354.Google Scholar
  10. Magmatic implications of mantle wedge plumes: Experimental study. (2008a) A. Castro, T.V. Gerya Lithos 103 138–148; doi:
  11. Oceanic slab melting and mantle metasomatism. (2001b) Bruno Scaillet, Gaelle Prouteau. Science Progress, Science Reviews, 84, pp.335–354. <hal-00089820>Google Scholar
  12. Formation of hybrid arc andesites beneath thick continental crust. (2011) Susanne M. Straub, Arturo Gomez-Tuena, Finlay M. Stuart, Georg F. Zellmer, Ramon Espinasa-Perena, Yue Cai, Yoshiyuki Iizuka. Earth and Planetary Science Letters 303, 337–347; doi:
  13. Contributions of Slab Fluid, Mantle Wedge and Crust to the Origin of Quaternary Lavas in the NE Japan Arc. (2006) Jun-Ichi Kimura and Takeyoshi Yoshida Journal of Petrology, 47 (11), 2185–2232; doi: Scholar
  14. Serpentine and the subduction zone water cycle. Lars H. Rupkea, Jason Phipps Morgana, Matthias Hortb, James A.D. Connolly Earth and Planetary Science Letters 223 (2004) 17–34; doi:
  15. Magmatic implications of mantle wedge plumes: Experimental study. (2008b) A. Castro, T.V. Gerya. Lithos 103 138–148 doi:
  16. Longitude: Linking Earth’s ancient surface to its deep interior (2008) Trond H. Torsvik, Bernhard Steinberger, L. Robin M. Cocks, Kevin Burke. Earth and Planetary Science Letters 276, 273–282; doi:

The Caledonian and Appalachian Mountains

  1. The Caledonian Orogeny redefined. (2000) W. S. McKerrow, C. MacNiocaill, J.F. Dewey, Journal of the Geological Society, London, 157, 1194–1154Google Scholar
  2. Plate Tectonic Evolution of the Southern Margin of Laurussia in the Paleozoic. () Jan Golonka and Aleksandra Gawęda,
  3. Evolution of the Rheic Ocean, (2008) Erdin Bozkurt, Manuel Francisco Pereira, Cecilio Quesada, Tectonophysics, 461, 1–8; doi:
  4. Avalonian and Cadomian terranes in North Dobrogea, Romania. Ballintoni, I., Balica, C., Seghedi, A. & Ducea, M.N. (2010). Precambrian Research, Vol. 182, No. 3, 217–229.Google Scholar
  5. Revised world maps and introduction, Palaeozoic palaeogeography and biogeography. (1990) Scotese, C. R. & McKerrow, W. S. McKerrow W. S. & Scotese C. R. (Eds), Geological Society of London Memoir, 12, 1–21.Google Scholar
  6. Gondwana's movement over the South Pole during the Paleozoic: evidence from lithologic indicators of climate. (1990). Scotese, C.R. & Barret, S.F. In: W.S. McKerrow and C.R.Google Scholar
  7. Transforming Siberia along the Laurussian margin. (2012). Sears, J.W. Geology, doi:
  8. Discussion on SHRIMP U–Pb zircon dating of the exhumation of the Lizard Peridotite and its emplacement over crustal rocks: constraints for tectonic models. (2003). Clark, A. H., Sandeman, H. A. I., Nutman, A.P., Green, D.H & Cook, A. C. Journal of the Geological Society, London, Vol. 160, 331–335.Google Scholar
  9. The Palaeozoic geography of Laurentia and western Laurussia: a stable craton with mobile margins (2011). Cocks, L.R.M. & Torsvik T.H.. Earth Science Reviews, Vol. 106, 1–51.Google Scholar
  10. Complex subduction and small-scale convection revealed by body-wave tomography of the western United States upper mantle. (2010) Schmandt, B., and Humphreys, E.,: Earth and Planetary Science Letters, 297, 435–445, doi:
  11. Cadomian terranes, wrench faulting and thrusting in the central Europe Variscides: geophysical and geological evidence. (1995) Edel, J. B., Weber, K., Geologische Rundschau, Vol. 84, 412–432.Google Scholar
  12. The Saxo-Danubian Granite Belt: magmatic response topost-collisional delamination of mantle lithosphere below the south-west sector of the Bohemian Massif (Variscan Orogen). (2009). Finger, F., Gerdes, A., Rene, M., & Riegler G. Geologica Carpathica, 60, (3) 205–212.Google Scholar
  13. Baltica upside down: a new plate tectonic model for Rodinia and Iapetus Ocean. (2002). E.H. Hartz, and T.H. Torsvik Geology, Vol. 30, No. 3, 255–258.Google Scholar
  14. Birthdate for the Iapetus Ocean? (1989). A precise UPb zircon and baddeleyite age for Long Range dikes, southeast Labrador. Kamo S.L., Gowar C.F., & Krogh T.E. Geology, Vol. 17, No. 7, 602–605.Google Scholar
  15. Evolution of the Rheic Ocean. (2010). Nance, R.D., Gutiérrez-Alonso, G., Keppie, J.D., Linnemann, U., Murphy, J.B., Quesada, C., Strachan, R.A. & Woodcock, N.H., Gondwana Research, Vol. 17, 194–222.Google Scholar
  16. Alleghenian orogen, The Appalachian-Ouachita Orogen in the United States (1989). Hatcher R. D., Jr, Thomas, W. A., Geiser, P. A., Snoke, A. W., Mosher S. & Wiltschko D. V., Hatcher R. D., Jr, Thomas, W. A. & Viele, G. W., (Eds.),V. F, . 233–318, Boulder, Geological Society of America, The Geology of North AmericaGoogle Scholar
  17. Terrane transfer between eastern Laurentia and western Gondwana in the Early Paleozoic: Constraints on global reconstructions, Avalonia and Related Peri-Gondwanan Terranes of the Circum-North Atlantic (1996). Keppie, J. D., Dostal J., Murphy, J. B., & Nance, R. D. Nance R. D. & Thompson M. D. (Eds), Geological Society of America Special Paper,304, 369–380.Google Scholar


  1. The exceptional magnitude and intensity of the Toba eruption, Sumatra: An example of using deep-sea tephra layers as a geological tool. (1978) Ninkovich, D., Sparks, R.S.J., and Ledbetter, M.T., Bulletin of Volcanologique, v. 41, p. 286–298.Google Scholar
  2. Dispersal of ash in the great Toba eruption, 75 ka Rose, W.I., and Chesner, C.A., 1987: Geology, v. 15, p. 913–917. Available at:
  3. Ash from the Toba supereruption in Lake Malawi shows no volcanic winter in East Africa at 75 ka. (2013) Christine S. Lanea, Ben T. Chorn, and Thomas C. Johnson, PNAS, 110 (20), 8025–8029, doi:

Volcanism in the Western States

  1. Seismic evidence for a cold serpentinized mantle wedge beneath Mount St Helens. (2016) S. M. Hansen, B. Schmandt, A. Levander, E. Kiser, J. E. Vidale, G. A. Abers & K. C. Creager, Nature Communications 7, Article number: 13242, doi:
  2. Epeirogenic transients related to mantle lithosphere removal in the southern Sierra Nevada region, California, part I: Implications of thermomechanical modelling. (2012) J. Saleeby, L. Le Pourhiet, Z. Saleeby, and M. Gurnis Geosphere;. 8; no. 6; p. 1286–1309; doi:

Biological Succession and Granite as a Niche

  1. Laboratory experiments on bacterial weathering of granite and its constituent minerals. (2010) Wonsuh Song, Naoto Ogawa, Chiaki Takashima-Oguchi, Tamao Hatta and Yukinori Matsukura, Géomorphologie : relief, processus, environnement, 16 (4), 327–336; DOI :
  2. Weathering-associated bacteria from the Damma glacier forefield: physiological capabilities and impact on granite dissolution. (2010) Frey B, Rieder SR, Brunner I, Plötze M, Koetzsch S, Lapanje A, Brandl H, Furrer G. Applied Environmental Microbiology, 76(14):4788-4796. doi: 10.1128/AEM.00657-10. Epub 2010 Jun 4.Google Scholar
  3. Bacillus Endospores Isolated from Granite: Close Molecular Relationships to Globally Distributed Bacillus spp. From Endolithic and Extreme Environments. (2006) Patricia Fajardo-Cavazos and Wayne Nicholson, Applied and Environmental Microbiology, 72, 4, 2856–2863; doi:–2863.2006
  4. Ecological Responses to the 1980 Eruption of Mount St. Helens. (2005) Dale, Virginia, Frederick J. Swanson, and Charles M. Crisafulli, eds.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • David S. Stevenson
    • 1
  1. 1.NottinghamshireUK

Personalised recommendations