Enhancing Audience Engagement Through Immersive 360-Degree Videos: An Experimental Study

  • Ayoung SuhEmail author
  • Guan Wang
  • Wenying Gu
  • Christian Wagner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10915)


The use of 360-degree videos to engage audiences in diverse contexts is increasing. While 360-degree videos have the potential to create new value in enhancing audiences’ viewing experiences, they often decrease audience engagement by causing motion sickness in an immersive environment. Despite increasing scholarly and practical attention to the effect of 360-videos on audience engagement, the question of how to enhance it through immersive 360-degree videos remains unanswered. Therefore, this study empirically examined the effects of different display types and viewport dynamics on audience engagement using data collected from 60 subjects during a laboratory experiment. The results show that an audience’s viewing experience in an immersive environment is influenced by the joint effects of display types and viewport dynamics. By explaining the mechanisms by which audiences are engaged with 360-degree videos, this study contributes to resolving previous inconsistent findings regarding the effect of immersive technology on audience engagement.


360-degree video Audience engagement Display device Viewport dynamics Presence Motion sickness 



This research was supported by grant from the Centre for Applied Computing and Interactive Media (ACIM) of City University of Hong Kong awarded to the third author.


  1. 1.
    Afzal, S., Chen, J., Ramakrishnan, K.: Characterization of 360-degree videos. In: Proceedings of the Workshop on Virtual Reality and Augmented Reality Network, pp. 1–6. ACM (2017)Google Scholar
  2. 2.
    Van den Broeck, M., Kawsar, F., Schöning, J.: It’s all around you: exploring 360° video viewing experiences on mobile devices. In: Proceedings of the 2017 ACM on Multimedia Conference, pp. 762–768. ACM (2017)Google Scholar
  3. 3.
    Chirico, A., Cipresso, P., Yaden, D.B., Biassoni, F., Riva, G., Gaggioli, A.: Effectiveness of immersive videos in inducing awe: an experimental study. Sci. Rep. 7(1), 1218 (2017)CrossRefGoogle Scholar
  4. 4.
    Cho, S.-H., Kang, H.-B.: An assessment of visual discomfort caused by motion-in-depth in stereoscopic 3D video. In: BMVC, pp. 1–10 (2012)Google Scholar
  5. 5.
    Cochrane, T., Cook, S., Aiello, S., Christie, D., Sinfield, D., Steagall, M., Aguayo, C.: A DBR framework for designing mobile virtual reality learning environments. Australas. J. Educ. Technol. 33, 54–68 (2017). Accepted for Special Issue on Mobile Augmented and Virtual RealityGoogle Scholar
  6. 6.
    Coxon, M., Kelly, N., Page, S.: Individual differences in virtual reality: are spatial presence and spatial ability linked? Virtual Real. 20(4), 203–212 (2016)CrossRefGoogle Scholar
  7. 7.
    De la Peña, N., Weil, P., Llobera, J., Giannopoulos, E., Pomés, A., Spanlang, B., Friedman, D., Sanchez-Vives, M.V., Slater, M.: Immersive journalism: immersive virtual reality for the first-person experience of news. Presence Teleoperators Virtual Environ. 19(4), 291–301 (2010)CrossRefGoogle Scholar
  8. 8.
    Diemer, J., Alpers, G.W., Peperkorn, H.M., Shiban, Y., Mühlberger, A.: The impact of perception and presence on emotional reactions: a review of research in virtual reality. Front. Psychol. 6(26), 1–9 (2015)Google Scholar
  9. 9.
    Ebbesen, M., Ahsan, S.: Virtual reality in experience marketing: an empirical study of the effects of immersive VR. Marketing and Brand Management, Norwegian School of Economics (2017)Google Scholar
  10. 10.
    Fernandes, A.S., Feiner, S.K.: Combating VR sickness through subtle dynamic field-of-view modification. In: 2016 IEEE Symposium on 3D User Interfaces (3DUI), pp. 201–210. IEEE (2016)Google Scholar
  11. 11.
    Ferris, S.H.: Motion parallax and absolute distance. J. Exp. Psychol. 95(2), 258 (1972)CrossRefGoogle Scholar
  12. 12.
    Fonseca, D., Kraus, M.: A comparison of head-mounted and hand-held displays for 360° videos with focus on attitude and behavior change. In: Proceedings of the 20th International Academic Mindtrek Conference, pp. 287–296. ACM (2016)Google Scholar
  13. 13.
    Freeman, J., Avons, S.E., Pearson, D.E., IJsselsteijn, W.A.: Effects of sensory information and prior experience on direct subjective ratings of presence. Presence Teleoperators Virtual Environ. 8(1), 1–13 (1999)CrossRefGoogle Scholar
  14. 14.
    Gugenheimer, J., Wolf, D., Haas, G., Krebs, S., Rukzio, E.: Swivrchair: a motorized swivel chair to nudge users’ orientation for 360 degree storytelling in virtual reality. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 1996–2000. ACM (2016)Google Scholar
  15. 15.
    Hale, K.S., Stanney, K.M.: Handbook of Virtual Environments: Design, Implementation, and Applications. CRC Press, Boca Raton (2014)CrossRefGoogle Scholar
  16. 16.
    Hayes, A.F.: PROCESS: a versatile computational tool for observed variable mediation, moderation, and conditional process modeling. White paper (2012)Google Scholar
  17. 17.
    Hettinger, L.J., Riccio, G.E.: Visually induced motion sickness in virtual environments. Presence Teleoperators Virtual Environ. 1(3), 306–310 (1992)CrossRefGoogle Scholar
  18. 18.
    Howarth, P., Costello, P.: The occurrence of virtual simulation sickness symptoms when an HMD was used as a personal viewing system. Displays 18(2), 107–116 (1997)CrossRefGoogle Scholar
  19. 19.
    Huang, T.-L., Hsu Liu, F.: Formation of augmented-reality interactive technology’s persuasive effects from the perspective of experiential value. Internet Res. 24(1), 82–109 (2014)CrossRefGoogle Scholar
  20. 20.
    Huber, T., Paschold, M., Hansen, C., Wunderling, T., Lang, H., Kneist, W.: New dimensions in surgical training: immersive virtual reality laparoscopic simulation exhilarates surgical staff. Surg. Endosc. 31(11), 4472–4477 (2017)CrossRefGoogle Scholar
  21. 21.
    IJsselsteijn, W., de Ridder, H., Freeman, J., Avons, S.E., Bouwhuis, D.: Effects of stereoscopic presentation, image motion, and screen size on subjective and objective corroborative measures of presence. Presence Teleoperators Virtual Environ. 10(3), 298–311 (2001)CrossRefGoogle Scholar
  22. 22.
    Kasahara, S., Nagai, S., Rekimoto, J.: First person omnidirectional video: system design and implications for immersive experience. In: Proceedings of the ACM International Conference on Interactive Experiences for TV and Online Video, pp. 33–42. ACM (2015)Google Scholar
  23. 23.
    Ke, F., Lee, S., Xu, X.: Teaching training in a mixed-reality integrated learning environment. Comput. Hum. Behav. 62, 212–220 (2016)CrossRefGoogle Scholar
  24. 24.
    Kelaiah, I., Kavakli, M., Cheng, K.: Associations between simulator sickness and visual complexity of a virtual scene. Frontiers 3(2), 27–35 (2014)Google Scholar
  25. 25.
    Kennedy, R.S., Stanney, K.M., Dunlap, W.P.: Duration and exposure to virtual environments: sickness curves during and across sessions. Presence Teleoperators Virtual Environ. 9(5), 463–472 (2000)CrossRefGoogle Scholar
  26. 26.
    Lee, S.H., Sergueeva, K., Catangui, M., Kandaurova, M.: Assessing Google Cardboard virtual reality as a content delivery system in business classrooms. J. Educ. Bus. 92(4), 153–160 (2017)CrossRefGoogle Scholar
  27. 27.
    Lin, J.-W., Duh, H.B.-L., Parker, D.E., Abi-Rached, H., Furness, T.A.: Effects of field of view on presence, enjoyment, memory, and simulator sickness in a virtual environment. In: Proceedings of IEEE Virtual Reality, pp. 164–171. IEEE (2002)Google Scholar
  28. 28.
    Lin, Y.-C., Chang, Y.-J., Hu, H.-N., Cheng, H.-T., Huang, C.-W., Sun, M.: Tell me where to look: investigating ways for assisting focus in 360° video. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pp. 2535–2545. ACM (2017)Google Scholar
  29. 29.
    Linder, Å.: Key factors for feeling present during a music experience in virtual reality using 360 video. School of Computer Science and Communication, KTH Royal Institute of Technology (2017)Google Scholar
  30. 30.
    MacQuarrie, A., Steed, A.: Cinematic virtual reality: evaluating the effect of display type on the viewing experience for panoramic video. In: 2017 IEEE Virtual Reality (VR), pp. 45–54. IEEE (2017)Google Scholar
  31. 31.
    Magnus, U.: Navigating using 360° panoramic video: design challenges and implications. School of Natural Sciences, Södertörn University (2017)Google Scholar
  32. 32.
    McGill, M., Ng, A., Brewster, S.: I am the passenger: how visual motion cues can influence sickness for in-car VR. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pp. 5655–5668. ACM (2017)Google Scholar
  33. 33.
    McMahan, R.P., Bowman, D.A., Zielinski, D.J., Brady, R.B.: Evaluating display fidelity and interaction fidelity in a virtual reality game. IEEE Trans. Visual Comput. Graph. 18(4), 626–633 (2012)CrossRefGoogle Scholar
  34. 34.
    Melo, M., Sampaio, S., Barbosa, L., Vasconcelos-Raposo, J., Bessa, M.: The impact of different exposure times to 360° video experience on the sense of presence. In: Computação Gráfica e Interação (EPCGI), 2016 23° Encontro Português de, pp. 1–5. IEEE (2016)Google Scholar
  35. 35.
    Muhammad, A.S., Ahn, S.C., Hwang, J.-I.: Active panoramic VR video play using low latency step detection on smartphone. In: 2017 IEEE International Conference on Consumer Electronics (ICCE), pp. 196–199. IEEE (2017)Google Scholar
  36. 36.
    Munafo, J., Diedrick, M., Stoffregen, T.A.: The virtual reality head-mounted display Oculus Rift induces motion sickness and is sexist in its effects. Exp. Brain Res. 235(3), 889–901 (2017)CrossRefGoogle Scholar
  37. 37.
    Narciso, D., Bessa, M., Melo, M., Coelho, A., Vasconcelos-Raposo, J.: Immersive 360∘ video user experience: impact of different variables in the sense of presence and cybersickness. Univ. Access Inf. Soc. 1–11 (2017)Google Scholar
  38. 38.
    O’Brien, H.L., Toms, E.G.: The development and evaluation of a survey to measure user engagement. J. Assoc. Inf. Sci. Technol. 61(1), 50–69 (2010)CrossRefGoogle Scholar
  39. 39.
    O’Brien, H.L., Toms, E.G.: What is user engagement? A conceptual framework for defining user engagement with technology. J. Assoc. Inf. Sci. Technol. 59(6), 938–955 (2008)CrossRefGoogle Scholar
  40. 40.
    O’Brien, H.L., Toms, E.G.: Examining the generalizability of the User Engagement Scale (UES) in exploratory search. Inf. Process. Manag. 49(5), 1092–1107 (2013)CrossRefGoogle Scholar
  41. 41.
    Ozcinar, C., De Abreu, A., Smolic, A.: Viewport-aware adaptive 360 video streaming using tiles for virtual reality. In: IEEE International Conference on Image Processing (2017)Google Scholar
  42. 42.
    Palmisano, S.: Consistent stereoscopic information increases the perceived speed of vection in depth. Perception 31(4), 463–480 (2002)CrossRefGoogle Scholar
  43. 43.
    Passmore, P.J., Glancy, M., Philpot, A., Roscoe, A., Wood, A., Fields, B.: Effects of viewing condition on user experience of panoramic video. In: Proceedings of the 26th International Conference on Artificial Reality and Telexistence and the 21st Eurographics Symposium on Virtual Environments, pp. 9–16 (2016)Google Scholar
  44. 44.
    Philpot, A., Glancy, M., Passmore, P.J., Wood, A., Fields,. B.: User experience of panoramic video in CAVE-like and head mounted display viewing conditions. In: Proceedings of the 2017 ACM International Conference on Interactive Experiences for TV and Online Video, pp. 65–75. ACM (2017)Google Scholar
  45. 45.
    Prothero, J., Hoffman, H.: Widening the field of view increases the sense of presence within immersive virtual environments. Technical report, Virtual Environments Human Interface Technology Laboratory, University of Washington (1995)Google Scholar
  46. 46.
    Qiu, L., Bensabat, I.: Evaluating anthropomorphic product recommendation agents: a social relationship perspective to designing information systems. J. Manag. Inf. Syst. 25(4), 145–181 (2009)CrossRefGoogle Scholar
  47. 47.
    Rupp, M.A., Kozachuk, J., Michaelis, J.R., Odette, K.L., Smither, J.A., McConnell, D.S.: The effects of immersiveness and future VR expectations on subjec-tive-experiences during an educational 360° video. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, pp. 2108–2112. SAGE Publications Sage CA, Los Angeles (2016)CrossRefGoogle Scholar
  48. 48.
    Sánchez Laws, A.L.: Can immersive journalism enhance empathy? Digit. Journal. 1–16 (2017)Google Scholar
  49. 49.
    Sheikh, A., Brown, A., Watson, Z., Evans, M.: Directing attention in 360-degree video. In: IBC 2016 Conference (2016)Google Scholar
  50. 50.
    Shin, D., Biocca, F.: Exploring immersive experience in journalism. New Media Soc. 19(11) 1–24 (2017)Google Scholar
  51. 51.
    Singla, A., Fremerey, S., Robitza, W., Raake, A.: Measuring and comparing QoE and simulator sickness of omnidirectional videos in different head mounted displays. In: 2017 Ninth International Conference on Quality of Multimedia Experience (QoMEX), pp. 1–6. IEEE (2017)Google Scholar
  52. 52.
    Slater, M., Usoh, M., Steed, A.: Depth of presence in virtual environments. Presence Teleoperators Virtual Environ. 3(2), 130–144 (1994)CrossRefGoogle Scholar
  53. 53.
    So, R.H., Lo, W., Ho, A.T.: Effects of navigation speed on motion sickness caused by an immersive virtual environment. Hum. Factors 43(3), 452–461 (2001)CrossRefGoogle Scholar
  54. 54.
    Sundar, S.S., Kang, J., Oprean, D.: Being there in the midst of the story: how immersive journalism affects our perceptions and cognitions. Cyberpsychol. Behav. Soc. Netw. 20(11), 672–682 (2017)CrossRefGoogle Scholar
  55. 55.
    Sylaiou, S., Mania, K., Karoulis, A., White, M.: Exploring the relationship between presence and enjoyment in a virtual museum. Int. J. Hum. Comput. Stud. 68(5), 243–253 (2010)CrossRefGoogle Scholar
  56. 56.
    Tam, W.J., Stelmach, L.B., Corriveau, P.J.: Psychovisual aspects of viewing stereoscopic video sequences. In: Stereoscopic Displays and Virtual Reality Systems V, pp. 226–236. International Society for Optics and Photonics (1998)Google Scholar
  57. 57.
    Tse, A., Jennett, C., Moore, J., Watson, Z., Rigby, J., Cox, A.L.: Was I there?: impact of platform and headphones on 360 video immersion. In: Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems, pp. 2967–2974. ACM (2017)Google Scholar
  58. 58.
    Venkatesh, V., Thong, J.Y.L., Chan, F.K.Y., Hu, P.J.-H., Brown, S.A.: Extending the two-stage information systems continuance model: incorporating UTAUT predictors and the role of context. Inf. Syst. J. 21(6), 527–555 (2011)CrossRefGoogle Scholar
  59. 59.
    Visch, V.T., Tan, E.S., Molenaar, D.: The emotional and cognitive effect of immersion in film viewing. Cogn. Emot. 24(8), 1439–1445 (2010)CrossRefGoogle Scholar
  60. 60.
    Von Der Pütten, A.M., Klatt, J., Ten Broeke, S., McCall, R., Krämer, N.C., Wetzel, R., Blum, L., Oppermann, L., Klatt, J.: Subjective and behavioral presence measurement and interactivity in the collaborative augmented reality game TimeWarp. Interact. Comput. 24(4), 317–325 (2012)CrossRefGoogle Scholar
  61. 61.
    Witmer, B.G., Singer, M.J.: Measuring presence in virtual environments: a presence questionnaire. Presence 7(3), 225–240 (1998)CrossRefGoogle Scholar
  62. 62.
    Zhou, C., Li, Z., Liu, Y.: A measurement study of Oculus 360 degree video streaming. In: Proceedings of the 8th ACM on Multimedia Systems Conference, pp. 27–37 (2017)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ayoung Suh
    • 1
    Email author
  • Guan Wang
    • 1
  • Wenying Gu
    • 1
  • Christian Wagner
    • 1
  1. 1.School of Creative MediaCity University of Hong KongKowloon TongChina

Personalised recommendations