Advertisement

A Human Perspective on Maritime Autonomy

  • Tore Relling
  • Margareta Lützhöft
  • Runar Ostnes
  • Hans Petter Hildre
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10916)

Abstract

As for all of the transport segments, autonomy is gaining increasing interest by researchers and for development in the maritime industry, and introducing autonomy is expected to create new possibilities to increase efficiency and safety. Autonomy could lead to drastic changes in roles and responsibilities for involved agents (both technical systems and humans), and these changes will be an important driver for changing the rules which regulate the responsibilities of the involved actors in the maritime domain. This paper suggests a perspective of autonomy as a process of change as opposed to a defined state. The paper discusses three areas that warrant more attention in the development of autonomy in navigation in the maritime industry. Firstly; rather than the traditional reductionist safety models, it considers complexity in maritime systems with increased autonomy and explore systemic safety models to amplify positive human performance variability. Secondly; it argues that humans will be important also in systems with increased autonomy, and discusses the human involvement on strategic, tactical and operational levels. Thirdly; it discusses the importance of defining the concepts responsibility, authority and control from the perspective of humans, rather than that of the vessel.

Keywords

Human centred design Maritime autonomy Methods of control Responsibility Authority Remote operations 

References

  1. 1.
  2. 2.
    English Oxford Living Dictionaries: Definition of autonomy. https://en.oxforddictionaries.com/definition/autonomy. Accessed 19 Dec 2017
  3. 3.
    Blanchard, B.S., Fabrycky, W.J.: System Engineering and Analysis, 5th edn. Pearson Education Limited, London (2013)Google Scholar
  4. 4.
    Kaber, D.B.: A conceptual framework of autonomous and automated agents. Theor. Issues Ergon. Sci., 1–25 (2017).  https://doi.org/10.1080/1463922X.2017.1363314
  5. 5.
    Parasuraman, R., Riley, V.: Humans and automation: use, misuse, disuse, abuse. Hum. Factors: J. Hum. Factors Ergon. Soc. 39, 230–253 (1997).  https://doi.org/10.1518/001872097778543886CrossRefGoogle Scholar
  6. 6.
    Lloyds Register: LR Code for Unmanned Marine Systems (2017)Google Scholar
  7. 7.
    Endsley, M.R.: Level of automation forms a key aspect of autonomy design. J. Cogn. Eng. Decis. Mak. (2017).  https://doi.org/10.1177/1555343417723432CrossRefGoogle Scholar
  8. 8.
    Bradshaw, J.M., Hoffman, R.R., Johnson, M., Woods, D.D.: The seven deadly myths of “autonomous systems”. IEEE Intell. Syst. 28, 54–61 (2013).  https://doi.org/10.1109/mis.2013.70CrossRefGoogle Scholar
  9. 9.
    Kaber, D.B.: Issues in human-automation interaction modeling: presumptive aspects of frameworks of types and levels of automation. J. Cogn. Eng. Decis. Mak. (2017)  https://doi.org/10.1177/1555343417737203
  10. 10.
    SAE International: Surface Vehicle Recommended Practice J3016 (2016)Google Scholar
  11. 11.
    Parasuraman, R.: Designing automation for human use: empirical studies and quantitative models. Ergonomics 43, 931–951 (2000).  https://doi.org/10.1080/001401300409125CrossRefGoogle Scholar
  12. 12.
    Rolls-Royce: Autonomous ships: the next step. In: AAWA: Advanced Autonomous Waterborne Applications, vol. 7 (2016)Google Scholar
  13. 13.
    Insaurralde, C.C., Petillot, Y.R.: Capability-oriented robot architecture for maritime autonomy. Robot. Auton. Syst. 67, 87–104 (2015).  https://doi.org/10.1016/j.robot.2014.10.003CrossRefGoogle Scholar
  14. 14.
    Wahlström, M., Hakulinen, J., Karvonen, H., Lindborg, I.: Human factors challenges in unmanned ship operations – insights from other domains. Procedia Manuf. 3, 1038–1045 (2015).  https://doi.org/10.1016/j.promfg.2015.07.167CrossRefGoogle Scholar
  15. 15.
    Dekker, S.W.A., Woods, D.D.: MABA-MABA or abracadabra? Progress on human-automation co-ordination. Cogn. Technol. Work 4, 240–244 (2002)CrossRefGoogle Scholar
  16. 16.
    Van Den Broek, H., Schraagen, J.M., Brake, G., Van, J.: Approaching full autonomy in the maritime domain: paradigm choices and human factors challenges, pp. 1–11 (2017)Google Scholar
  17. 17.
    Lee, J.D.: Perspectives on automotive automation and autonomy. J. Cogn. Eng. Decis. Mak. (2017)  https://doi.org/10.1177/1555343417726476CrossRefGoogle Scholar
  18. 18.
    Munin: MUNIN’s Rationale | MUNIN (2016). http://www.unmanned-ship.org/munin/about/munins-rational/. Accessed 6 Oct 2017
  19. 19.
    Allianz: Safety and Shipping Review 2015, p. 36 (2015)Google Scholar
  20. 20.
    Bainbridge, L.: Ironies of automation. Automatica 19, 775–779 (1983).  https://doi.org/10.1016/0005-1098(83)90046-8CrossRefGoogle Scholar
  21. 21.
    Strauch, B.: Ironies of automation: still unresolved after all these years. IEEE Trans. Hum.-Mach. Syst., 1–15 (2017).  https://doi.org/10.1109/thms.2017.2732506
  22. 22.
    Boy, G.A.: Orchestrating Human-Centered Design. Springer, London (2013).  https://doi.org/10.1007/978-1-4471-4339-0CrossRefGoogle Scholar
  23. 23.
    Anderson, P.W.: More is different. Science 177(4047), 393–396 (1972)CrossRefGoogle Scholar
  24. 24.
    Anderson, P.W.: More and Different: Notes from a Thoughtful Curmudgeon. World Scientific Publishing Company, Singapore (2011)CrossRefGoogle Scholar
  25. 25.
    Rasmussen, J.: Risk management in a dynamic society - a modelling problem. Saf. Sci. 27, 183–213 (1997)CrossRefGoogle Scholar
  26. 26.
    Leveson, N.: A new accident model for engineering safer systems. Saf. Sci. 42, 237–270 (2004).  https://doi.org/10.1016/S0925-7535(03)00047-XCrossRefGoogle Scholar
  27. 27.
    Hollnagel, E.: A tale of two safeties. Nucl. Saf. Simul. 4, 1–9 (2012)Google Scholar
  28. 28.
    Hollnagel, E.: Coping with complexity: past, present and future. Cogn. Technol. Work 14, 199–205 (2012).  https://doi.org/10.1007/s10111-011-0202-7CrossRefGoogle Scholar
  29. 29.
    Stanton, N.A., Salmon, P.M., Rafferty, L.A., Walker, G.H., Baber, C., Jenkins, D.P.: Human Factors Methods - A Practical Guide for Engineering and Design, 2nd edn. Ashgate Publishing Limited, Farnham (2013)CrossRefGoogle Scholar
  30. 30.
    Stanton, N.A., Harvey, C.: Beyond human error taxonomies in assessment of risk in sociotechnical systems: a new paradigm with the EAST “broken-links” approach. Ergonomics 60, 221–233 (2017).  https://doi.org/10.1080/00140139.2016.1232841CrossRefGoogle Scholar
  31. 31.
    Sheridan, T.B.: Comments on “issues in human–automation interaction modeling: presumptive aspects of frameworks of types and levels of automation” by David B. Kaber. J. Cogn. Eng. Decis. Mak. (2017)  https://doi.org/10.1177/1555343417724964
  32. 32.
    Hollnagel, E.: FRAM: The Functional Resonance Analysis Method: Modelling Complex Socio-Technical Systems. Ashgate Publishing Ltd., Farnham (2012)Google Scholar
  33. 33.
    Ackoff, R.L.: Strategy. Syst. Pract. 3, 521–524 (1990).  https://doi.org/10.1007/bf01059636CrossRefGoogle Scholar
  34. 34.
    Michon, J.A.: A critical view of driver behavior models. In: Evans, L., Schwing, R.C. (eds.) Human Behavior and Traffic Safety, pp. 485–520. Springer, Boston (1985).  https://doi.org/10.1007/978-1-4613-2173-6_19CrossRefGoogle Scholar
  35. 35.
    Forsvaret: Forsvarets fellesoperative doktrine - Norwegian Armed Forces Joint Operational Doctrine (2014)Google Scholar
  36. 36.
    NATO: Nato Standard AJP-01 Allied Joint Doctrine (2017)Google Scholar
  37. 37.
    Hollnagel, E.: Time and time again. Theor. Issues Ergon. Sci. 3, 143–158 (2002).  https://doi.org/10.1080/14639220210124111CrossRefGoogle Scholar
  38. 38.
    Hollnagel, E.: Safer Complex Industrial Environments. CRC Press, Boca Raton (2009)CrossRefGoogle Scholar
  39. 39.
    Parasuraman, R., Sheridan, T.B., Wickens, C.D.: A model for types and levels of human interaction with automation. IEEE Trans. Syst. Man Cybern. - Part A: Syst. Hum. 30, 286–297 (2000).  https://doi.org/10.1109/3468.844354CrossRefGoogle Scholar
  40. 40.
    Jamieson, G.A., Skraaning, G.: Levels of automation in human factors models for automation design: why we might consider throwing the baby out with the bathwater. J. Cogn. Eng. Decis. Mak. (2017)  https://doi.org/10.1177/1555343417732856
  41. 41.
    Wickens, C.: Automation stages & levels, 20 years after. J. Cogn. Eng. Decis. Mak. (2017)  https://doi.org/10.1177/1555343417727438
  42. 42.
    Pritchett, A.R., Kim, S.Y., Feigh, K.M.: Modeling human-automation function allocation. J. Cogn. Eng. Decis. Mak. 8, 33–51 (2014).  https://doi.org/10.1177/1555343413490944CrossRefGoogle Scholar
  43. 43.
    Leveson, N.G.: Engineering a Safer World: Systems Thinking Applied to Safety. MIT Press, Cambridge (2011)Google Scholar
  44. 44.
    Ornfelt, M., (SARUMS): Safety and regulations for unmanned maritime systems. In: Unmanned Surface Vessel Regulation Conference (2016). http://www.ukmarinealliance.co.uk/sites/default/files/SARUMS-2016-MASRWG.pdf
  45. 45.
    Lighthouse- Swedish Maritime Competence: Autonomous safety on vessels (2016)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Tore Relling
    • 1
  • Margareta Lützhöft
    • 2
  • Runar Ostnes
    • 1
  • Hans Petter Hildre
    • 1
  1. 1.Norwegian University of Science and TechnologyAalesundNorway
  2. 2.Western Norway University of Applied SciencesHaugesundNorway

Personalised recommendations