Advertisement

Augmenting Clinical Performance in Combat Casualty Care: Telemedicine to Automation

  • Jeremy C. Pamplin
  • Ronald Yeaw
  • Gary R. Gilbert
  • Konrad L. Davis
  • Elizabeth Mann-Salinas
  • Jose Salinas
  • Daniel Kral
  • Loretta Schlachta-Fairchild
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10916)

Abstract

Emerging efforts in information science offer the possibility for clinicians to better utilize computer technology to decrease cognitive load, enhance decision making, and, improve patient outcomes. Recent natural disasters and mass casualty events across the United States and abroad spotlight the challenges of delivering healthcare in austere contexts. Austerity is a situation defined by limited resources of some or all of the following: equipment, medicines, diagnostics, personnel, knowledge, training, skills, and expertise. It is in this context that the military is focusing efforts to develop new telemedical, autonomous, and robotic systems to support local caregivers. Military human-computer models that support telemedicine and autonomous care in austere environments may help shape similar civilian healthcare solutions in similarly austere contexts of remoteness, natural disaster, and mass casualty. This paper will discuss the clinical challenges and capability gaps of providing comprehensive medical support in this context and some of the tools the military is developing to address them.

Keywords

Military medicine Telemedicine Automation Clinical decision support 

References

  1. 1.
    Telemedicine Guide Article. https://evisit.com/what-is-telemedicine/. Accessed 22 Feb 2018
  2. 2.
    Rasmussen, T.E., Baer, D.G., Lein, B.C.: Ahead of the curve: sustained innovation for future combat casualty care. J. Trauma: Inj. Infect. Crit. Care 1–12 (2015)Google Scholar
  3. 3.
    Rasmussen, T.E., Reilly, P.A., Baer, D.G.: Why military medical research? Mil. Med. 179(8S), 1–2 (2014)CrossRefGoogle Scholar
  4. 4.
    Powell, D., McLeroy, R.D., Riesberg, J., Vasios, W.N., Miles, E.A., Dellavolpe, J.: Telemedicine to reduce medical risk in austere medical environments: the virtual critical care consultation (VC3) service. J. Spec. Oper. Med. 16(4), 102–109 (2016)Google Scholar
  5. 5.
    Riesberg, J., Powell, D., Loos, P.: The loss of the golden hour. Spec. Warf. 30(1), 49–51 (2017)Google Scholar
  6. 6.
    Perkins, G.D.G.: Multi-Domain Battle. Military Review [Internet], pp. 1–8, July–August 2017. http://www.armyupress.army.mil/Journals/Military-Review/English-Edition-Archives/July-August-2017/Perkins-Multi-Domain-Battle/
  7. 7.
    Meade, K., Lam, D.M.: A deployable telemedicine capability in support of humanitarian operations. Telemed. e-Health 13(3), 331–340 (2007)CrossRefGoogle Scholar
  8. 8.
    Vo, A.H., Brooks, G.B., Bourdeau, M., Farr, R., Raimer, B.G.: University of Texas medical branch telemedicine disaster response and recovery: lessons learned from hurricane Ike. Telemed. J. E-Health 16(5), 627–633 (2010)CrossRefGoogle Scholar
  9. 9.
    Garshnek, V., Burkle, F.M.: Applications of telemedicine and telecommunications to disaster medicine: historical and future perspectives. J. Am. Med. Inform. Assoc. 6(1), 26–37 (1999)CrossRefGoogle Scholar
  10. 10.
    Moughrabieh, A., Weinert, C.: Rapid deployment of international tele-intensive care unit services in war-torn Syria. Ann. Am. Thorac. Soc. 13(2), 165–172 (2016)CrossRefGoogle Scholar
  11. 11.
  12. 12.
    U.S. Government Accountability Office Congressional Memorandum, 14th November 2017. https://www.gao.gov/products/GAO-18-108R
  13. 13.
    Simmons, S., Alverson, D., Poropatich, R., D’Iorio, J., DeVany, M., Doarn, C.R.: Applying telehealth in natural and anthropogenic disasters. Telemed. J. E-Health 14(9), 968–971 (2008)CrossRefGoogle Scholar
  14. 14.
    Crowther, M., Poropatich, L.: Telemedicine in the U.S. army: case reports from somalia and croatia. Telemed. J. 1(1), 73–80 (2009).  https://doi.org/10.1089/tmj.1.1995.1.73CrossRefGoogle Scholar
  15. 15.
    Doarn, C.R., Merrell, R.C.: Telemedicine and the military. Telemed. J. E-Health 20(9), 759–760 (2014)CrossRefGoogle Scholar
  16. 16.
    Poropatich, R., Lappan, C., Lam, D.: Operational Use of U.S. Army Telemedicine Information Systems in Iraq and Afghanistan - Considerations for NATO Operations, 1 April 2010Google Scholar
  17. 17.
    Blanchet, K.D.: The U.S. army telemedicine and advanced technology research center (TATRC). Telemed. J. E-Health 12(4), 390–395 (2006)CrossRefGoogle Scholar
  18. 18.
    H.R. 4909 (114th): National Defense Authorization Act for Fiscal Year 2017, pp. 1–18 (2016)Google Scholar
  19. 19.
    Vasios, W.N., Pamplin, J.C., Powell, D., Loos, P.E., Riesberg, J., Keenan, S.: Teleconsultation in prolonged field care position paper. J. Spec. Oper. Med. 17(3), 141–144 (2017)Google Scholar
  20. 20.
    Bennett, C.C., Hauser, K.: Artificial intelligence framework for simulating clinical decision-making: a Markov decision process approach. Artif. Intell. Med. 57(1), 9–19 (2013)CrossRefGoogle Scholar
  21. 21.
    Nemeth, C., Blomberg, J., Argenta, C., Pamplin, J.C., Salinas, J., Serio-Melvin, M.J.: Support for salience: IT to assist burn ICU clinician decision making and communication. In: 2015 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1122–1126. IEEE (2015)Google Scholar
  22. 22.
    Lobach, D., Sanders, G.D., Bright, T.J., Wong, A., Dhurjati, R., Bristow, E.: Enabling health care decisionmaking through clinical decision support and knowledge management. Evid. Rep. Technol. Assess. (Full Rep.) 203, 1–784 (2012)Google Scholar
  23. 23.
    Kawamoto, K., Houlihan, C.A., Balas, E.A., Lobach, D.F.: Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success. BMJ. Br. Med. J. Publ. Group 330(7494), 765 (2005)CrossRefGoogle Scholar
  24. 24.
    Nemeth, C., Pamplin, J., Anders, S.: Annual Report: A Cooperative Communication System for the Advancement of Safe, Effective, and Efficient Patient Care, pp. 1–232, February 2014Google Scholar
  25. 25.
    Nemeth, C., Anders, S., Strouse, R., Grome, A., Crandall, B., Pamplin, J.: Developing a cognitive and communications tool for burn intensive care unit clinicians. Mil. Med. 181(5S), 205–213 (2016)CrossRefGoogle Scholar
  26. 26.
    Salinas, J., Chung, K.K., Mann, E.A., Cancio, L.C., Kramer, G.C., Serio-Melvin, M.L.: Computerized decision support system improves fluid resuscitation following severe burns: an original study. Crit. Care Med. 39(9), 2031–2038 (2011)CrossRefGoogle Scholar
  27. 27.
    Ahmed, A., Chandra, S., Herasevich, V., Gajic, O., Pickering, B.W.: The effect of two different electronic health record user interfaces on intensive care provider task load, errors of cognition, and performance. Crit. Care Med. 39(7), 1626–1634 (2011)CrossRefGoogle Scholar
  28. 28.
    Salinas, J., Drew, G., Gallagher, J., Cancio, L.C., Wolf, S.E., Wade, C.E.: Closed-loop and decision-assist resuscitation of burn patients. J. Trauma: Inj. Infect. Crit. Care 64(4 Suppl.), S321–S332 (2008)CrossRefGoogle Scholar
  29. 29.
    Pauldine, R., Beck, G., Salinas, J., Kaczka, D.W.: Closed-loop strategies for patient care systems. J. Trauma: Inj. Infect. Crit. Care 64(Suppl.), S289–S294 (2008)CrossRefGoogle Scholar
  30. 30.
    Lellouche, F., Mancebo, J., Jolliet, P., Roeseler, J., Schortgen, F., Dojat, M.: A multicenter randomized trial of computer-driven protocolized weaning from mechanical ventilation. Am. J. Respir. Crit. Care Med. 174(8), 894–900 (2006)CrossRefGoogle Scholar
  31. 31.
    Bibian, S., Dumont, G.A., Black, I.: Closed-loop target-controlled infusion systems: stability and performance aspects. Mil. Med. 180(3 Suppl.), 96–103 (2015)CrossRefGoogle Scholar
  32. 32.
    Linde, A.S., Thompson, D.M.: Robotic, Semi-Autonomous and Autonomous Medical Systems: Where will the soldier-medic fit in the future fight? http://smallwarsjournal.com/jrnl/art/robotic-semi-autonomous-and-autonomous-medical-systems-where-will-the-soldier-medic-fit-in. Accessed 22 Feb 2018
  33. 33.
    Yoo, A.C., Gilbert, G.R., Broderick, T.J.: Military robotic combat casualty extraction and care. In: Rosen, J., Hannaford, B., Satava, R. (eds.) Surgical Robotics. Springer, Boston (2011).  https://doi.org/10.1007/978-1-4419-1126-1_2CrossRefGoogle Scholar
  34. 34.
    The NATO RTO-HFM 182 Symposium: Advanced Technologies and New Procedures for Medical Field Operations, Essen, Germany, April 2010Google Scholar
  35. 35.
    Fisher, N., Gilbert, G.R.: Robotic and autonomous system technology enablers for the multi-domain battle 2030–2050. Small Wars J. (2017). http://smallwarsjournal.com/print/72735. Accessed 22 Feb 2018
  36. 36.
    Cummings, M.M.: Man versus machine or man+machine? IEEE Intell. Syst. 29(5), 62–69 (2014)CrossRefGoogle Scholar
  37. 37.
  38. 38.
    Innovation in Autonomous Systems: Royal Academy of Engineering, 22 June 2015. https://www.raeng.org.uk/publications/reports/innovation-in-autonomous-systems. Accessed 22 Feb 2018

Copyright information

© This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2018

Authors and Affiliations

  • Jeremy C. Pamplin
    • 1
    • 2
  • Ronald Yeaw
    • 3
  • Gary R. Gilbert
    • 3
  • Konrad L. Davis
    • 4
  • Elizabeth Mann-Salinas
    • 5
  • Jose Salinas
    • 5
  • Daniel Kral
    • 3
  • Loretta Schlachta-Fairchild
    • 6
  1. 1.Madigan Army Medical CenterTacomaUSA
  2. 2.Uniformed Services University of the Health SciencesBethesdaUSA
  3. 3.Telemedicine and Advanced Technology Research CenterFort DetrickUSA
  4. 4.Naval Medical Center San DiegoSan DiegoUSA
  5. 5.U.S. Army Institute of Surgical ResearchSan AntonioUSA
  6. 6.U.S. Army Medical Research and Material CommandFort DetrickUSA

Personalised recommendations