Advertisement

On the Interaction of Functional and Inclusion Dependencies with Independence Atoms

  • Miika HannulaEmail author
  • Sebastian Link
Conference paper
  • 2.3k Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10828)

Abstract

Infamously, the finite and unrestricted implication problems for the classes of (i) functional and inclusion dependencies together, and (ii) embedded multivalued dependencies alone are each undecidable. Famously, the restriction of (i) to functional and unary inclusion dependencies in combination with the restriction of (ii) to multivalued dependencies yield implication problems that are still different in the finite and unrestricted case, but each are finitely axiomatizable and decidable in low-degree polynomial time. An important embedded tractable fragment of embedded multivalued dependencies are independence atoms. These stipulate independence between two attribute sets in the sense that for every two tuples there is a third tuple that agrees with the first tuple on the first attribute set and with the second tuple on the second attribute set. Our main results show that finite and unrestricted implication deviate for the combined class of independence atoms, unary functional and unary inclusion dependencies, but both are axiomatizable and decidable in low-degree polynomial time. This combined class adds arbitrary independence atoms to unary keys and unary foreign keys, which frequently occur in practice as surrogate keys and references to them.

Keywords

Functional dependency Inclusion dependency Independence atom Implication problem 

References

  1. 1.
    Abedjan, Z., Golab, L., Naumann, F.: Profiling relational data: a survey. VLDB J. 24(4), 557–581 (2015)CrossRefGoogle Scholar
  2. 2.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Boston (1995)zbMATHGoogle Scholar
  3. 3.
    Aho, A.V., Beeri, C., Ullman, J.D.: The theory of joins in relational databases. ACM Trans. Database Syst. 4(3), 297–314 (1979)CrossRefGoogle Scholar
  4. 4.
    Armstrong, W.W.: Dependency structures of data base relationships. In: Proceedings of IFIP World Computer Congress, pp. 580–583 (1974)Google Scholar
  5. 5.
    Beeri, C., Bernstein, P.A.: Computational problems related to the design of normal form relational schemas. ACM Trans. Database Syst. 4(1), 30–59 (1979)CrossRefGoogle Scholar
  6. 6.
    Beeri, C., Fagin, R., Howard, J.H.: A complete axiomatization for functional and multivalued dependenciesin database relations. In: SIGMOD, pp. 47–61 (1977)Google Scholar
  7. 7.
    Biskup, J., Bonatti, P.A.: Controlled query evaluation for enforcing confidentiality in complete information systems. Int. J. Inf. Sec. 3(1), 14–27 (2004)CrossRefGoogle Scholar
  8. 8.
    Casanova, M.A., Fagin, R., Papadimitriou, C.H.: Inclusion dependencies and their interaction with functional dependencies. In: PODS, pp. 171–176 (1982)Google Scholar
  9. 9.
    Casanova, M.A., Fagin, R., Papadimitriou, C.H.: Inclusion dependencies and their interaction with functional dependencies. J. Comput. Syst. Sci. 28(1), 29–59 (1984)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Chandra, A.K., Vardi, M.Y.: The implication problem for functional and inclusion dependencies is undecidable. SIAM J. Comput. 14(3), 671–677 (1985)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Codd, E.F.: Relational completeness of data base sublanguages. In: Rustin, R. (ed.) Database Systems, pp. 65–98. Prentice Hall and IBM Research Report RJ 987, San Jose (1972)Google Scholar
  12. 12.
    Cosmadakis, S.S., Kanellakis, P.C., Vardi, M.Y.: Polynomial-time implication problems for unary inclusion dependencies. J. ACM 37(1), 15–46 (1990)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Fagin, R.: Multivalued dependencies and a new normal form for relational databases. ACM Trans. Database Syst. 2, 262–278 (1977)CrossRefGoogle Scholar
  14. 14.
    Galil, Z.: An almost linear-time algorithm for computing a dependency basis in a relational database. J. ACM 29(1), 96–102 (1982)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Geiger, D., Paz, A., Pearl, J.: Axioms and algorithms for inferences involving probabilistic independence. Inf. Comput. 91(1), 128–141 (1991)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hannula, M.: Reasoning about embedded dependencies using inclusion dependencies. In: LPAR-20, pp. 16–30 (2015)Google Scholar
  17. 17.
    Hannula, M., Kontinen, J.: A finite axiomatization of conditional independence and inclusion dependencies. In: FoIKS, pp. 211–229 (2014)Google Scholar
  18. 18.
    Hannula, M., Kontinen, J.: A finite axiomatization of conditional independence and inclusion dependencies. Inf. Comput. 249, 121–137 (2016)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Hannula, M., Kontinen, J., Link, S.: On independence atoms and keys. In: CIKM, pp. 1229–1238 (2014)Google Scholar
  20. 20.
    Hannula, M., Kontinen, J., Link, S.: On the finite and general implication problems of independence atoms and keys. J. Comput. Syst. Sci. 82(5), 856–877 (2016)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Hannula, M., Kontinen, J., Link, S.: On the interaction of inclusion dependencies with independence atoms. In: LPAR-21, pp. 212–226 (2017)Google Scholar
  22. 22.
    Hannula, M., Link, S.: On the interaction of functional and inclusion dependencies with independence atoms. Report CDMTCS-518. Centre for Discrete Mathematics and Theoretical Computer Science, University of Auckland, Auckland, New Zealand, February 2018Google Scholar
  23. 23.
    Herrmann, C.: On the undecidability of implications between embedded multivalued database dependencies. Inf. Comput. 122(2), 221–235 (1995)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Herrmann, C.: Corrigendum to on the undecidability of implications between embedded multivalued database dependencies. Inf. Comput. 204(12), 1847–1851 (2006)CrossRefGoogle Scholar
  25. 25.
    Kahn, A.B.: Topological sorting of large networks. Commun. ACM 5(11), 558–562 (1962)CrossRefGoogle Scholar
  26. 26.
    Kanellakis, P.C.: Elements of relational database theory. In: Handbook of Theoretical Computer Science, pp. 1073–1156 (1990)Google Scholar
  27. 27.
    Kontinen, J., Link, S., Väänänen, J.A.: Independence in database relations. In: WoLLIC, pp. 179–193 (2013)Google Scholar
  28. 28.
    Leinders, D., Van den Bussche, J.: On the complexity of division and set joins in the relational algebra. In: PODS, pp. 76–83 (2005)Google Scholar
  29. 29.
    Levene, M., Loizou, G.: How to prevent interaction of functional and inclusion dependencies. Inf. Process. Lett. 71(3–4), 115–125 (1999)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Levene, M., Loizou, G.: Guaranteeing no interaction between functional dependencies and tree-like inclusion dependencies. Theor. Comput. Sci. 254(1–2), 683–690 (2001)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing implications of data dependencies. ACM Trans. Database Syst. 4(4), 455–469 (1979)CrossRefGoogle Scholar
  32. 32.
    Mitchell, J.C.: The implication problem for functional and inclusion dependencies. Inf. Control 56(3), 154–173 (1983)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Mitchell, J.C.: Inference rules for functional and inclusion dependencies. In: PODS, pp. 58–69 (1983)Google Scholar
  34. 34.
    Papenbrock, T., Ehrlich, J., Marten, J., Neubert, T., Rudolph, J.-P., Schönberg, M., Zwiener, J., Naumann, F.: Functional dependency discovery: an experimental evaluation of seven algorithms. PVLDB 8(10), 1082–1093 (2015)Google Scholar
  35. 35.
    Paredaens, J.: The interaction of integrity constraints in an information system. J. Comput. Syst. Sci. 20(3), 310–329 (1980)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Parker Jr., D.S., Parsaye-Ghomi, K.: Inferences involving embedded multivalued dependencies and transitive dependencies. In: SIGMOD, pp. 52–57 (1980)Google Scholar
  37. 37.
    Thalheim, B.: Dependencies in Relational Databases. Teubner, Stuttgart (1991)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceThe University of AucklandAucklandNew Zealand

Personalised recommendations