Personalized Prescription for Comorbidity

  • Lu Wang
  • Wei Zhang
  • Xiaofeng HeEmail author
  • Hongyuan Zha
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10828)


Personalized medicine (PM) aiming at tailoring medical treatment to individual patient is critical in guiding precision prescription. An important challenge for PM is comorbidity due to the complex interrelation of diseases, medications and individual characteristics of the patient. To address this, we study the problem of PM for comorbidity and propose a neural network framework Deep Personalized Prescription for Comorbidity (PPC). PPC exploits multi-source information from massive electronic medical records (EMRs), such as demographic information and laboratory indicators, to support personalized prescription. Patient-level, disease-level and drug-level representations are simultaneously learned and fused with a trilinear method to achieve personalized prescription for comorbidity. Experiments on a publicly real world EMRs dataset demonstrate PPC outperforms state-of-the-art works.


Personalized prescription Deep learning Multi-source fusion Comorbidity 



This work was partially supported by the National Key Research and Development Program of China under Grant No. 2016YFB1000904, NSFC (61702190), NSFC-Zhejiang (U1609220), Shanghai Sailing Program (17YF1404500) and SHMEC (16CG24).


  1. 1.
    PMC2017: The personalized medicine opportunity, challenges, and the future (2017).
  2. 2.
    Spear, B., Heath-Chiozzi, M., Huff, J.: Clinical application of pharmacogenetics. Trends Mol. Med. 7(5), 201–204 (2001)CrossRefGoogle Scholar
  3. 3.
    Berwick, D.M., Finkelstein, J.A.: Preparing medical students for the continual improvement of health and health care: Abraham flexner and the new public interest. Acad. Med. S56–S65 (2010)Google Scholar
  4. 4.
    Munoz, E., Rosner, F., Friedman, R., Sterman, H., Goldstein, J., Wise, L.: Financial risk, hospital cost, and complications and comorbidities in medical non-complications and comorbidity-stratified diagnosis-related groups. Am. J. Med. 84(5), 933–939 (1988)CrossRefGoogle Scholar
  5. 5.
    Jakovljević, M., Reiner, Ž., Miličić, D., Crnčević, Ž.: Comorbidity, multimorbidity and personalized psychosomatic medicine: epigenetics rolling on the horizon. Psychiatr. Danub. 22(2), 184–189 (2010)Google Scholar
  6. 6.
    Taylor, A.W., Price, K., Gill, T.K., Adams, R., Pilkington, R., Carrangis, N., Shi, Z., Wilson, D.: Multimorbidity-not just an older person’s issue. Results from an Australian biomedical study. BMC Public Health 10(1), 718 (2010)CrossRefGoogle Scholar
  7. 7.
    Bonavita, V., De Simone, R.: Towards a definition of comorbidity in the light of clinical complexity. Neurol. Sci. 29(1), 99–102 (2008)CrossRefGoogle Scholar
  8. 8.
    Valderas, J.M., Starfield, B., Sibbald, B., Salisbury, C., Roland, M.: Defining comorbidity: implications for understanding health and health services. Ann. Family Med. 7(4), 357–363 (2009)CrossRefGoogle Scholar
  9. 9.
    Sun, L., Liu, C., Guo, C., Xiong, H., Xie, Y.: Data-driven automatic treatment regimen development and recommendation. In: KDD, pp. 1865–1874 (2016)Google Scholar
  10. 10.
    Hu, J., Perer, A., Wang, F.: Data driven analytics for personalized healthcare. In: Weaver, C.A., Ball, M.J., Kim, G.R., Kiel, J.M. (eds.) Healthcare Information Management Systems. HI, pp. 529–554. Springer, Cham (2016). Scholar
  11. 11.
    Lusted, L.B.: Introduction to medical decision making. Am. J. Phys. Med. Rehabil. 49(5), 322 (1970)Google Scholar
  12. 12.
    Cheerla, N., Gevaert, O.: Microrna based pan-cancer diagnosis and treatment recommendation. BMC Bioinform. 18(1), 32 (2017)CrossRefGoogle Scholar
  13. 13.
    Bajor, J.M., Lasko, T.A.: Predicting medications from diagnostic codes with recurrent neural networks. In: ICLR (2017)Google Scholar
  14. 14.
    Zhang, Y., Chen, R., Tang, J., Stewart, W.F., Sun, J.: Leap: learning to prescribe effective and safe treatment combinations for multimorbidity. In: KDD, pp. 1315–1324 (2017)Google Scholar
  15. 15.
    Jakovljevi, M., Ostoji, L.: Comorbidity and multimorbidity in medicine today: challenges and opportunities for bringing separated branches of medicine closer to each other. Psychiatr Danub 25, 18–28 (2013)Google Scholar
  16. 16.
    Hart, A., Wyatt, J.: Connectionist models in medicine: an investigation of their potential. In: Hunter, J., Cookson, J., Wyatt, J. (eds.) AIME 89, pp. 115–124. Springer, Heidelberg (1989). Scholar
  17. 17.
    Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRefGoogle Scholar
  18. 18.
    Lipton, Z.C., Kale, D.C., Elkan, C., Wetzell, R.: Learning to diagnose with LSTM recurrent neural networks. In: ICLR (2016)Google Scholar
  19. 19.
    Chung, J., Gulcehre, C., Cho, K.H., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)
  20. 20.
    Choi, E., Bahadori, M.T., Schuetz, A., Stewart, W.F., Sun, J.: Doctor AI: predicting clinical events via recurrent neural networks. In: Machine Learning for Healthcare Conference, pp. 301–318 (2016)Google Scholar
  21. 21.
    Zhang, P., Wang, F., Hu, J., Sorrentino, R.: Towards personalized medicine: leveraging patient similarity and drug similarity analytics. In: AMIA Joint Summits on Translational Science Proceedings, p. 132 (2014)Google Scholar
  22. 22.
    Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)
  23. 23.
    Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R., Bengio, Y.: Show, attend and tell: neural image caption generation with visual attention. In: ICML, pp. 2048–2057 (2015)Google Scholar
  24. 24.
    Yang, L., Ai, Q., Guo, J., Croft, W.B.: aNMM: ranking short answer texts with attention-based neural matching model. In: CIKM, pp. 287–296 (2016)Google Scholar
  25. 25.
    Zhang, W., Wang, W., Wang, J., Zha, H.: User-guided hierarchical attention network for multi-modal social image popularity prediction. In: WWW (2018)Google Scholar
  26. 26.
    Choi, E., Bahadori, M.T., Sun, J., Kulas, J., Schuetz, A., Stewart, W.: Retain: an interpretable predictive model for healthcare using reverse time attention mechanism. In: NIPS, pp. 3504–3512 (2016)Google Scholar
  27. 27.
    Rumelhart, D.E., Hinton, G.E., McClelland, J.L., et al.: A general framework for parallel distributed processing. Parallel Distrib. Process.: Explor. Microstruct. Cogn. 1, 45–76 (1986)Google Scholar
  28. 28.
    Riccardo, M., Li, L., Kidd, B.A., Dudley, J.T.: Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci. Rep. 6, 26094 (2016)CrossRefGoogle Scholar
  29. 29.
    Choi, E., Bahadori, M.T., Song, L., Stewart, W.F., Sun, J.: GRAM: graph-based attention model for healthcare representation learning. In: KDD, pp. 787–795 (2017)Google Scholar
  30. 30.
    Johnson, A.E.W., Pollard, T.J., Shen, L., Lehman, L.H., Feng, M., Ghassemi, M., Moody, B., Szolovits, P., Celi, L.A., Mark, R.G.: MIMIC-III, a freely accessible critical care database. Sci. Data 3, 160035 EP (2016)CrossRefGoogle Scholar
  31. 31.
    Zhang, M.L., Zhou, Z.H.: A review on multi-label learning algorithms. TKDE 26(8), 1819–1837 (2014)Google Scholar
  32. 32.
    Zhang, W., Wang, L., Yan, J., Wang, X., Zha, H.: Deep extreme multi-label learning. arXiv preprint arXiv:1704.03718 (2017)
  33. 33.
    Maaten, L.V.D., Hinton, G.: Viualizing data using T-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Computer Science and Software EngineeringEast China Normal UniversityShanghaiChina
  2. 2.Georgia Institute of TechnologyAtlantaUSA

Personalised recommendations