Advertisement

Olaparib

  • Sylvia Bochum
  • Stephanie Berger
  • Uwe M. Martens
Chapter
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 211)

Abstract

Olaparib (Lynparza [AstraZeneca, Cambridge, UK], formerly referred to as AZD2281 or KU0059436) is an oral poly(ADP-ribose) polymerase (PARP) inhibitor. It is rationally designed to act as a competitive inhibitor of NAD+ at the catalytic site of PARP1 and PARP2, both members of the PARP family of enzymes that are central to the repair of DNA single-strand breaks (SSBs) mediated via the base excision repair (BER) pathway. Inhibition of the BER pathway by olaparib leads to the accumulation of unrepaired SSBs, which leads to the formation of deleterious double-strand breaks (DSBs). In cells with an intact homologous recombination (HR) pathway, these DSBs can be repaired effectively. However, in tumors with homologous recombination repair deficiencies, olaparib causes synthetic lethality through the combination of two molecular events that are otherwise nonlethal when occurring in isolation. Olaparib is already approved for the treatment of patients with recurrent ovarian cancer and a BRCA mutation, and it has been shown to provide clinically meaningful benefits among such patients. It has also shown promising activity in patients with metastatic breast or prostate cancer and a germline BRCA mutation. Besides its usage as a single agent, olaparib can also act either as a chemo- and/or radiosensitizer, due to its ability to potentiate the cytotoxic effects of these therapeutic agents. However, a clear patient benefit for the latter application has not been demonstrated yet.

Keywords

Olaparib PARP inhibitor DNA repair BRCA ATM Synthetic lethality 

References

  1. Ame JC, Spenlehauer C, de Murcia G (2004) The PARP superfamily. BioEssays 26:882–893CrossRefPubMedGoogle Scholar
  2. Ashworth A (2008) A synthetic lethal therapeutic approach: poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. J Clin Oncol 26(22):3785–3790CrossRefPubMedGoogle Scholar
  3. Audeh MW, Carmichael J, Penson RT, Friedlander M, Powell B, Bell-McGuinn KM, Scott C, Weitzel JN, Oaknin A, Loman N, Lu K, Schmutzler RK, Matulonis U, Wickens M, Tutt A (2010) Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 376:245–251CrossRefPubMedGoogle Scholar
  4. Balmaña J, Tung NM, Isakoff SJ, Graña B, Ryan PD, Saura C, Lowe ES, Frewer P, Winer E, Baselga J, Garber JE (2014) Phase I trial of olaparib in combination with cisplatin for the treatment of patients with advanced breast, ovarian and other solid tumors. Ann Oncol 8:1656–1663CrossRefGoogle Scholar
  5. Bang YJ, Im SA, Lee KW et al (2015) Randomized, double-blind phase II trial with prospective classification by atm protein level to evaluate the efficacy and tolerability of olaparib plus paclitaxel in patients with recurrent or metastatic gastric cancer. J Clin Oncol 33:3858–3865CrossRefPubMedGoogle Scholar
  6. Bang YJ, Xu RH, Chin K, Lee KW, Park SH, Rha SY, Shen L, Qin S, Xu N, Im SA, Locker G, Rowe P, Shi X, Hodgson D, Liu YZ, Boku N (2017) Olaparib in combination with paclitaxel in patients with advanced gastric cancer who have progressed following first-line therapy (GOLD): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol 12:1637–1651CrossRefGoogle Scholar
  7. Bindra RS, Schaffer PJ, Meng A, Woo J, Måseide K, Roth ME, Lizardi P, Hedley DW, Bristow RG, Glazer PM Bindra RS et al (2005) Hypoxia-induced down-regulation of BRCA1 expression by E2Fs. Cancer Res 65(24):11597–11604Google Scholar
  8. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, Kyle S, Meuth M, Curtin NJ, Helleday T (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434:913–917CrossRefPubMedGoogle Scholar
  9. Campalans A, Kortulewski T, Amouroux R, Menoni H, Vermeulen W, Radicella JP (2013) Distinct spatiotemporal patterns and PARP dependence of XRCC1 recruitment to single strand break and base excision repair. Nucleic Acids Res 41(5):3115–3129CrossRefPubMedPubMedCentralGoogle Scholar
  10. Ceccaldi R, O’Connor KW, Mouw KW, Li AY, Matulonis UA, D’Andrea AD, Konstantinopoulos PA (2015) A unique subset of epithelial ovarian cancers with platinum sensitivity and PARP inhibitor resistance. Can Res 75(4):628–634CrossRefGoogle Scholar
  11. Chan N, Bristow RG (2010) “Contextual” synthetic lethality and/or loss of heterozygosity: tumor hypoxia and modification of DNA repair. Clin Cancer Res 16(18):4553–4560Google Scholar
  12. Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40(2):179–204CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dantzer F, de La Rubia G, Menissier-De Murcia J, Hostomsky Z, de Murcia G, Schreiber V (2000) Base excision repair is impaired in mammalian cells lacking poly(ADP-ribose) polymerase-1. Biochemistry 39(25):7559–7569CrossRefPubMedGoogle Scholar
  14. Dougherty BA, Lai Z, Hodgson DR, Orr MCM, Hawryluk M, Sun J et al (2017) Biological and clinical evidence for somatic mutations in BRCA1 and BRCA2 as predictive markers for olaparib response in high-grade serous ovarian cancers in the maintenance setting. Oncotarget 8(27):43653–43661CrossRefPubMedPubMedCentralGoogle Scholar
  15. Del Conte G, Sessa C, von Moos R et al (2014) Phase I study of olaparib in combination with liposomal doxorubicin in patients with advanced solid tumours. Br J Cancer 111(4):651–659CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dent RA, Lindeman GJ, Clemons M et al (2013) Phase I trial of the oral PARP inhibitor olaparib in combination with paclitaxel for first- or second-line treatment of patients with metastatic triple-negative breast cancer. Breast Cancer Res 15(5):R88CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dhillon KK, Taniguchi T (2015) Resistance to PARP inhibitors mediated by secondary BRCA1/2 mutations. In: Curtin NJ, Sharma RA (eds) PARP inhibitors for cancer therapy. Humana Press, Nex York, pp 431–452CrossRefGoogle Scholar
  18. Dianov GL, Hübscher U (2013) Mammalian base excision repair: the forgotten archangel. Nucleic Acids Res 41(6):3483–3490CrossRefPubMedPubMedCentralGoogle Scholar
  19. Domchek SM, Aghajanian C, Shapira-Frommer R, Schmutzler RK, Audeh MW, Friedlander M, Balmaña J, Mitchell G, Fried G, Stemmer SM, Hubert A, Rosengarten O, Loman N, Robertson JD, Mann H, Kaufman B (2016) Efficacy and safety of olaparib monotherapy in germline BRCA1/2 mutation carriers with advanced ovarian cancer and three or more lines of prior therapy. Gynecol Oncol 140(2):199–203CrossRefPubMedGoogle Scholar
  20. EMA (2015) European public assessment report (EPAR) for Lynparza. www.ema.europa.eu
  21. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C et al (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434:917–921Google Scholar
  22. Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, Mortimer P, Swaisland H, Lau A, O’Connor MJ, Ashworth A, Carmichael J, Kaye SB, Schellens JHM, de Bono JS (2009) Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 361:123–134Google Scholar
  23. Fong PC, Yap TA, Boss DS, Carden CP, Mergui-Roelvink M, Gourley C, De Greve J, Lubinski J, Shanley S, Messiou C, A’Hern R, Tutt A, Ashworth A, Stone J, Carmichael J, Schellens JH, de Bono JS, Kaye SB (2010) Poly(ADP)-ribose polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval. J Clin Oncol 28:2512–2519CrossRefPubMedGoogle Scholar
  24. Friedenson B (2007) The BRCA1/2 pathway prevents hematologic cancers in addition to breast and ovarian cancers. BMC Cancer 7:152CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gassman NR, Wilson SH (2015) Micro-irradiation tools to visualize base excision repair and single-strand break repair. DNA Repair (Amst) 31:52–63CrossRefPubMedCentralGoogle Scholar
  26. Gelmon KA, Tischkowitz M, Mackay H, Swenerton K, Robidoux A, Tonkin K, Hirte H, Huntsman D, Clemons M, Gilks B, Yerushalmi R, Macpherson E, Carmichael J, Oza A (2011) Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study. Lancet Oncol 12(9):852–861CrossRefPubMedGoogle Scholar
  27. Gupta ADE, Drew Y et al (2012) Phase I study to determine the bioavailability and tolerability of a tablet formulation of the PARP inhibitor olaparib in patients with advanced solid tumors: dose-escalation phase. J Clin Oncol 30:(suppl; abstr 3051)Google Scholar
  28. Hassa PO, Hottiger MO (2008) The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerases. Front Biosci J Virtual Libr 13:3046–3082CrossRefGoogle Scholar
  29. Huber A, Bai P, de Murcia JM, de Murcia G (2004) PARP-1, PARP-2 and ATM in the DNA damage response: functional synergy in mouse development. DNA Repair (Amst) 3:1103–1108CrossRefGoogle Scholar
  30. Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461:1071–1078CrossRefPubMedPubMedCentralGoogle Scholar
  31. Javle M, Curtin NJ (2011) The potential for poly (ADP-ribose) polymerase inhibitors in cancer therapy. Ther Adv Med Oncol 3:257–267CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kaufman B, Shapira-Frommer R, Schmutzler RK, Audeh MW, Friedlander M, Balmana J et al (2015) Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol 33:244–250CrossRefPubMedGoogle Scholar
  33. Khan K, Araki K, Wang D, Li G, Li X, Zhang J, Xu W, Hoover RK, Lauter S, O’Malley B Jr, Lapidus RG, Li D (2010) Head and neck cancer radiosensitization by the novel poly(ADPribose) polymerase inhibitor GPI-15427. Head Neck 32(3):381–391Google Scholar
  34. Kim G, Ison G, McKee AE, Zhang H, Tang S, Gwise T, Sridhara R, Lee E, Tzou A, Philip R, Chiu HJ, Ricks TK, Palmby T, Russell AM, Ladouceur G, Pfuma E, Li H, Zhao L, Liu Q, Venugopal R, Ibrahim A, Pazdur R (2015) FDA approval summary: olaparib monotherapy in patients with deleterious germline BRCA-mutated advanced ovarian cancer treated with three or more lines of chemotherapy. Clin Cancer Res 21(19):4257–4261CrossRefPubMedGoogle Scholar
  35. Krokan HE, Bjørås M (2013) Base excision repair. Cold Spring Harb Perspect Biol 5(4):a012583CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kubota E, Williamson CT, Ye R et al (2014) Low ATM protein expression and depletion of p53 correlates with olaparib sensitivity in gastric cancer cell lines. Cell Cycle 13(13):2129–2137CrossRefPubMedPubMedCentralGoogle Scholar
  37. Ledermann J, Harter P, Gourley C, Friedlander M, Vergote I, Rustin G, Scott C, Meier W, Shapira-Frommer R, Safra T, Matei D, Macpherson E, Watkins C, Carmichael J, Matulonis U (2012) Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. New Engl J Med 366(15):1382–1392CrossRefPubMedGoogle Scholar
  38. Ledermann J, Harter P, Gourley C, Friedlander M, Vergote I, Rustin G, Scott CL, Meier W, Shapira-Frommer R, Safra T, Matei D, Fielding A, Spencer S, Dougherty B, Orr M, Hodgson D, Barrett JC, Matulonis U (2014) Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer: a preplanned retrospective analysis of outcomes by BRCA status in a randomised phase 2 trial. Lancet Oncol 15(8):852–861CrossRefPubMedGoogle Scholar
  39. Lee JM, Hays JL, Annunziata CM, Noonan AM, Minasian L, Zujewski JA, Yu M, Gordon N, Ji J, Sissung TM, Figg WD, Azad N, Wood BJ et al (2014) Phase I/Ib study of olaparib and carboplatin in BRCA1 or BRCA2 mutation-associated breast or ovarian cancer with biomarker analyses. J Nat Cancer Inst 106:dju089Google Scholar
  40. Lee JM, Peer CJ, Yu M, Amable L, Gordon N, Annunziata CM, Houston N, Goey AK, Sissung TM, Parker B, Minasian L, Chiou VL, Murphy RF, Widemann BC, Figg WD, Kohn EC (2017) Sequence-specific pharmacokinetic and pharmacodynamic phase I/Ib study of olaparib tablets and carboplatin in women’s cancer. Clin Cancer Res 23(6):1397–1406CrossRefPubMedGoogle Scholar
  41. Liu JF, Barry WT, Birrer M et al (2014) Combination cediranib and olaparib versus olaparib alone for women with recurrent platinum-sensitive ovarian cancer: a randomised phase 2 study. Lancet Oncol 15:1207–1214CrossRefPubMedPubMedCentralGoogle Scholar
  42. Masson M, Niedergang C, Schreiber V, Muller S, Menissier-de Murcia J, de Murcia G (1998) XRCC1 is specifically associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage. Mol Cell Biol 18(6):3563–3571CrossRefPubMedPubMedCentralGoogle Scholar
  43. Mateo J, Carreira S, Sandhu S, Miranda S, Mossop H, Perez-Lopez R et al (2015) DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med 373(18):1697–1708CrossRefPubMedPubMedCentralGoogle Scholar
  44. Mateo J, Moreno V, Gupta A, Kaye SB, Dean E, Middleton MR, Friedlander M, Gourley C, Plummer R, Rustin G, Sessa C, Leunen K, Ledermann J, Swaisland H, Fielding A, Bannister W, Nicum S, Molife LR (2016) An adaptive study to determine the optimal dose of the tablet formulation of the PARP inhibitor olaparib. Target Oncol 3:401–415CrossRefGoogle Scholar
  45. McCabe N, Turner NC, Lord CJ, Kluzek K, Bialkowska A, Swift S, Giavara S, O’Connor MJ, Tutt AN, Zdzienicka MZ, Smith GC, Ashworth A (2006) Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res 66:8109–8115Google Scholar
  46. Menissier de Murcia J, Ricoul M, Tartier L et al (2003) Functional interaction between PARP-1 and PARP-2 in chromosome stability and embryonic development in mouse. EMBO J 22:2255–2263CrossRefPubMedPubMedCentralGoogle Scholar
  47. Min A, Im SA, Yoon YK, Song SH, Nam HJ, Hur HS, Kim HP, Lee KH, Han SW, Oh DY, Kim TY, O’Connor MJ, Kim WH, Bang YJ (2013) RAD51C-deficient cancer cells are highly sensitive to the PARP inhibitor olaparib. Mol Cancer Ther 12(6):865–877CrossRefPubMedGoogle Scholar
  48. Murai J, Huang SY, Das BB, Renaud A, Zhang Y, Doroshow JH, Ji J, Takeda S, Pommier Y (2012) Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res 72(21):5588–5599CrossRefPubMedPubMedCentralGoogle Scholar
  49. Oza AM, Cibula D, Benzaquen AO, Poole C, Mathijssen RH, Sonke GS, Colombo N, Špaček J, Vuylsteke P, Hirte H, Mahner S, Plante M, Schmalfeldt B, Mackay H, Rowbottom J, Lowe ES, Dougherty B, Barrett JC, Friedlander M (2015) Olaparib combined with chemotherapy for recurrent platinum-sensitive ovarian cancer: a randomised phase 2 trial. Lancet Oncol 16(1):87–97CrossRefPubMedGoogle Scholar
  50. Pennington KP et al (2014) Germline and somatic mutations in homologous recombination genes predict platinum response and survival in ovarian, fallopian tube, and peritoneal carcinomas. Clin Cancer Res 20(3):764–775CrossRefPubMedGoogle Scholar
  51. Ricks TK, Chiu HJ, Ison G et al (2015) Successes and challenges of PARP inhibitors in cancer therapy. Front Oncol 5:222CrossRefPubMedPubMedCentralGoogle Scholar
  52. Robson M, Im SA, Senkus E, Xu B, Domchek SM, Masuda N, Delaloge S, Li W, Tung N, Armstrong A, Wu W, Goessl C, Runswick S, Conte P (2017) Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med 377(6):523–533CrossRefPubMedGoogle Scholar
  53. Rottenberg S, Jaspers JE, Kersbergen A, van der Burg E, Nygren AO, Zander SA et al (2008) High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc Natl Acad Sci U S A 105(44):17079–17084CrossRefPubMedPubMedCentralGoogle Scholar
  54. Rouleau M, Patel A, Hendzel MJ, Kaufmann SH, Poirier GG (2010) PARP inhibition: PARP1 and beyond. Nat Rev Cancer 10:293–301CrossRefPubMedPubMedCentralGoogle Scholar
  55. Russo AL, Kwon HC, Burgan WE, Carter D, Beam K, Weizheng X, Zhang J, Slusher BS, Chakravarti A, Tofilon PJ, Camphausen K (2009) In vitro and in vivo radiosensitization of glioblastoma cells by the poly (ADP-ribose) polymerase inhibitor E7016. Clin Cancer Res 15(2):607–612Google Scholar
  56. Samol J, Ranson M, Scott E, Macpherson E, Carmichael J, Thomas A, Cassidy J (2012) Safety and tolerability of the poly(ADP-ribose) polymerase (PARP) inhibitor, olaparib (AZD2281) in combination with topotecan for the treatment of patients with advanced solid tumors: a phase I study. Invest New Drugs 30(4):1493–1500CrossRefPubMedGoogle Scholar
  57. Schreiber V, Ame JC, Dolle P, Schultz I, Rinaldi B, Fraulob V, Menissier-de Murcia J, de Murcia G (2002) Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1. J Biol Chem 277(25):23028–23036CrossRefPubMedGoogle Scholar
  58. Schreiber V, Dantzer F, Ame JC, de Murcia G (2006) Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7(7):517–528Google Scholar
  59. Scott CL, Swisher EM, Kaufmann SH (2015) Poly (ADP-ribose) polymerase inhibitors: recent advances and future development. J Clin Oncol 33:1397–1406CrossRefPubMedPubMedCentralGoogle Scholar
  60. Tutt A, Robson M, Garber JE et al (2010) Oral poly(ADP-ribose) polymerase inhibitor olaparib trial. Lancet 376:235–244Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sylvia Bochum
    • 1
  • Stephanie Berger
    • 1
  • Uwe M. Martens
    • 1
  1. 1.Cancer Center Heilbronn-FrankenSLK-Kliniken Heilbronn GmbH and MOLIT Institute for Personalized MedicineHeilbronnGermany

Personalised recommendations