Advertisement

Nilotinib

  • Martin Gresse
  • Theo D. Kim
  • Philipp le Coutre
Chapter
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 212)

Abstract

With imatinib still being linked to the breakthrough in CML therapy and probably being the most prescribed drug, second-generation TKIs are increasingly gaining importance. Showing higher response rates while not leading to more adverse events, nilotinib has become an attractive option in the first-line treatment of chronic-phase chronic myeloid leukemia. By reaching deep and long-lasting molecular remissions, discontinuation of TKIs is becoming one of the central topics of future CML therapy. Stopping nilotinib seems safe and provides a stable remission in about half of the eligible patients, though long-term data are still missing.

Keywords

CML TKI Nilotinib 

References

  1. Aichberger KJ, Herndlhofer S, Schernthaner G-H et al (2011) Progressive peripheral arterial occlusive disease and other vascular events during nilotinib therapy in CML. Am J Hematol 86:533–539CrossRefPubMedGoogle Scholar
  2. Apperley JF (2007) Part I: mechanisms of resistance to imatinib in chronic myeloid leukaemia. Lancet Oncol 8:1018–1029CrossRefPubMedGoogle Scholar
  3. Baccarani M, Cortes J, Pane F (2009) Chronic myeloid leukemia: an update of concepts and management recommendations of European LeukemiaNet. J Clin Oncol 27:6041–6051CrossRefPubMedPubMedCentralGoogle Scholar
  4. Baccarani M, Deininger MW, Rosti G et al (2013) European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood 122:872–894CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bradeen HA, Eide CA, O’Hare T et al (2006) Comparison of imatinib mesylate, dasatinib (BMS-354825), and nilotinib (AMN107) in an N-ethyl-N-nitrosourea (ENU)-based mutagenesis screen: high efficacy of drug combinations. Blood 108:2332–2338CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cortes JE, De Souza CA, Ayala M et al (2016) Switching to nilotinib versus imatinib dose escalation in patients with chronic myeloid leukaemia in chronic phase with suboptimal response to imatinib (LASOR): a randomised, open-label trial. Lancet Haematol 3:e581–e591CrossRefPubMedGoogle Scholar
  7. Druker BJ, Tamura S, Buchdunger E, Ohno S (1996) Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 2:561–566CrossRefPubMedPubMedCentralGoogle Scholar
  8. Druker BJ, Guilhot F, O’Brien S et al (2006) Long-term benefits of imatinib (IM) for patients newly diagnosed with chronic myelogenous leukemia in chronic phase (CML-CP): the 5-year update from the IRIS study. J Clin Oncol 24:338S–338SGoogle Scholar
  9. Ernst T, La Rosee P, Mueller MC, Hochhaus A (2011) Bcr-Abl mutations in chronic myeloid leukemia. Hematol Oncol Clin North Am 25:997–1008CrossRefPubMedGoogle Scholar
  10. Giles FJ, Larson RA, Kantarjian HM (2008) Nilotinib in patients with Philadelphia chromosome-positive chronic myelogenous leukemia in blast crisis (CML-BC) who are resistant or intolerant to imatinib—Giles et al. 26 (15 supplement): 7017—ASCO meeting abstracts. J Clin Oncol 26:7017Google Scholar
  11. Giles FJ, Abruzzese E, Rosti G et al (2010) Nilotinib is active in chronic and accelerated phase chronic myeloid leukemia following failure of imatinib and dasatinib therapy. Leukemia 24:1299–1301CrossRefPubMedPubMedCentralGoogle Scholar
  12. Giles FJ, Kantarjian HM, le Coutre PD et al (2012) Nilotinib is effective in imatinib-resistant or -intolerant patients with chronic myeloid leukemia in blastic phase. Leukemia 26:959–962CrossRefPubMedGoogle Scholar
  13. Giles FJ, le Coutre PD, Pinilla-Ibarz J et al (2013) Nilotinib in imatinib-resistant or imatinib-intolerant patients with chronic myeloid leukemia in chronic phase: 48-month follow-up results of a phase II study. Leukemia 27:107–112CrossRefPubMedGoogle Scholar
  14. Giles FJ, Rea D, Rosti G et al (2017) Impact of age on efficacy and toxicity of nilotinib in patients with chronic myeloid leukemia in chronic phase: ENEST1st subanalysis. J Cancer Res Clin Oncol 143:1585–1596Google Scholar
  15. Golemovic M, Verstovsek S, Giles F et al (2005) AMN107, a novel aminopyrimidine inhibitor of Bcr-Abl, has in vitro activity against imatinib-resistant chronic myeloid leukemia. Clin Cancer Res 11:4941–4947CrossRefPubMedGoogle Scholar
  16. Gorre ME, Mohammed M, Ellwood K et al (2001) Clinical resistance to STI-571 cancer therapy caused by Bcr-Abl gene mutation or amplification. Science 293:876–880CrossRefPubMedPubMedCentralGoogle Scholar
  17. Haouala A, Widmer N, Duchosal MA et al (2011) Drug interactions with the tyrosine kinase inhibitors imatinib, dasatinib, and nilotinib. Blood 117:E75–E87CrossRefPubMedGoogle Scholar
  18. Hochhaus A, Saglio G, Larson RA et al (2013) Nilotinib is associated with a reduced incidence of Bcr-Abl mutations vs imatinib in patients with newly diagnosed chronic myeloid leukemia in chronic phase. Blood 121:3703–3708CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hochhaus A, Saglio G, Hughes TP et al (2016a) Long-term benefits and risks of frontline nilotinib vs imatinib for chronic myeloid leukemia in chronic phase: 5-year update of the randomized ENESTnd trial. Leukemia 30:1044–1054CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hochhaus A, Rosti G, Cross NCP et al (2016b) Frontline nilotinib in patients with chronic myeloid leukemia in chronic phase: results from the European ENEST1st study. Leukemia 30:57–64CrossRefPubMedGoogle Scholar
  21. Hochhaus A, Masszi T, Giles FJ et al (2017) Treatment-free remission following frontline nilotinib in patients with chronic myeloid leukemia in chronic phase: results from the ENESTfreedom study. Leukemia 31:1525–1531CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hughes P, Hochhaus A, Kantarjian H et al (2014a) Safety and efficacy of switching to nilotinib 400 mg twice daily for patients with chronic myeloid leukemia in chronic phase with suboptimal response or failure on front-line imatinib or nilotinib 300 mg twice daily. Hematologica 99(7):1204–1211CrossRefGoogle Scholar
  23. Hughes TP, Saglio G, Kantarjian H et al (2014b) Early molecular response predicts outcomes in patients with chronic myeloid leukemia in chronic phase treated with frontline nilotinib or imatinib. Blood 123:1353–1360CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hughes TP, Boquimpani C, Takahashi N et al (2016) Results from ENESTop: Treatment-free remission (TFR) following switch to nilotinib in patients with chronic myeloid leukemia in chronic phase. ASCO 2016 abstract #7054Google Scholar
  25. Jain P, Kantarjian H, Nazha A et al (2013) Early responses predicts for better outcomes in patients with newly diagnosed CML: results with four TKI modalities. Blood 121:4867–4874CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kagan M, Tran P, Fischer V et al (2005) Safety, pharmacokinetics (PK), metabolism, and mass balance of [C-14]-AMN107, a novel aminopyrimidine inhibitor of Bcr-Abl tyrosine kinase, in healthy subjects. Blood 106:302B–302BGoogle Scholar
  27. Kantarjian H, Giles F, Wunderle L et al (2006) Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med 354:2542–2551CrossRefPubMedGoogle Scholar
  28. Kantarjian HM, Giles F, Gattermann N et al (2007) Nilotinib (formerly AMN107), a highly selective Bcr-Abl tyrosine kinase inhibitor, is effective in patients with Philadelphia chromosome-positive chronic myelogenous leukemia in chronic phase following imatinib resistance and intolerance. Blood 110:3540–3546CrossRefPubMedGoogle Scholar
  29. Kantarjian HM, Giles FJ, Bhalla KN et al (2011a) Nilotinib is effective in patients with chronic myeloid leukemia in chronic phase after imatinib resistance or intolerance: 24-month follow-up results. Blood 117:1141–1145CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kantarjian HM, Hochhaus A, Saglio G et al (2011b) Nilotinib versus imatinib for the treatment of patients with newly diagnosed chronic phase, Philadelphia chromosome-positive, chronic myeloid leukaemia: 24-month minimum follow-up of the phase 3 randomised ENESTnd trial. Lancet Oncol 12:841–851CrossRefPubMedGoogle Scholar
  31. Kim TD, Schwarz M, Nogai H et al (2010) Thyroid dysfunction caused by second-generation tyrosine kinase inhibitors in Philadelphia chromosome-positive chronic myeloid leukemia. Thyroid 20(11):1209–1214CrossRefPubMedGoogle Scholar
  32. Kim TD, Rea D, Schwarz M et al (2013) Peripheral artery occlusive disease in chronic phase chronic myeloid leukemia patients treated with nilotinib or imatinib. Leukemia 27:1316–1321CrossRefPubMedGoogle Scholar
  33. Larson RA, Hochhaus A, Hughes TP et al (2012) Nilotinib vs imatinib in patients with newly diagnosed Philadelphia chromosome-positive chronic myeloid leukemia in chronic phase: ENESTnd 3-year follow-up. Leukemia 26:2197–2203CrossRefPubMedGoogle Scholar
  34. Larson RA, Hochhaus A, Saglio G et al (2013) Nilotinib vs imatinib in patients with newly diagnosed chronic myeloid leukemia in chronic phase (CML-CP): ENESTnd 4-year update. J Clin Oncol (suppl) 31:abstr. 7052Google Scholar
  35. le Coutre P, Ottmann OG, Giles F et al (2008) Nilotinib (formerly AMN107), a highly selective Bcr-Abl tyrosine kinase inhibitor, is active in patients with imatinib-resistant or -intolerant accelerated-phase chronic myelogenous leukemia. Blood 111:1834–1839CrossRefPubMedGoogle Scholar
  36. le Coutre P, Rea D, Abruzzese E et al (2011) Severe peripheral arterial disease during nilotinib therapy. J Natl Cancer Inst 103:1347–1348CrossRefPubMedGoogle Scholar
  37. le Coutre PD, Giles FJ, Hochhaus A et al (2012) Nilotinib in patients with Ph+ chronic myeloid leukemia in accelerated phase following imatinib resistance or intolerance: 24-month follow-up results. Leukemia 26:1189–1194CrossRefPubMedGoogle Scholar
  38. Mahon F-X, Rea D, Guilhot J et al (2010) Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre stop imatinib (STIM) trial. Lancet Oncol 11:1029–1035CrossRefPubMedGoogle Scholar
  39. Mahon FX, Richter J, Guilhot J et al (2016) Cessation of tyrosine kinase inhibitors treatment in chronic myeloid leukemia patients with deep molecular response: results of the euro-ski trial. Blood 128:787Google Scholar
  40. Manley PW, Breitenstein W, Brüggen J et al (2004) Urea derivatives of STI571 as inhibitors of Bcr-Abl and PDCFR kinases. Bioorg Med Chem Lett 14:5793–5797CrossRefPubMedGoogle Scholar
  41. Mori S, Vagge E, le Coutre P et al (2015) Age and dPCR can predict relapse in CML patients who discontinued imatinib: the ISAV study. Am J Hematol 90(10):910–914CrossRefPubMedGoogle Scholar
  42. Nowell PC, Hungerford DA (1960) A minute chromosome in human chronic granulocytic leukemia. Science 142:1497Google Scholar
  43. O’Hare T, Walters DK, Stoffregen EP et al (2005) In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer Res 65:4500–4505CrossRefPubMedGoogle Scholar
  44. O’Hare T, Eide CA, Deininger MWN (2007) Bcr-Abl kinase domain mutations, drug resistance, and the road to a cure for chronic myeloid leukemia. Blood 110:2242–2249CrossRefPubMedGoogle Scholar
  45. Quintás-Cardama A, Kantarjian H, Cortes J (2012) Nilotinib-associated vascular events. Clin Lymphoma Myeloma Leuk 12:337–340CrossRefPubMedGoogle Scholar
  46. Radich JP, Deininger M, Abboud CN et al (2017) NCCN guidelines version 1.2018 chronic myeloid leuemia. NCCN, Professionals, Physician Guidelines, Chronic Myeloid Leukemia. Accessed on Sept 10 2017Google Scholar
  47. Ray A, Cowan-Jacob SW, Manley PW et al (2007) Identification of Bcr-Abl point mutations conferring resistance to the Abl kinase inhibitor AMN107 (nilotinib) by a random mutagenesis study. Blood 109:5011–5015CrossRefPubMedGoogle Scholar
  48. Rea D, Rosti G, Cross N et al (2015) Enestpath: a phase III study to assess the effect of nilotinib treatment duration on treatment-free remission (TFR) in chronic phase-chronic myeloid leukemia (CP-CML) patients (pts) previously treated with imatinib: interim analysis from the first year of induction phase. Blood 126:4040Google Scholar
  49. Rea D, Nicolini FE, Tulliez M et al (2016) Discontinuation of dasatinib or nilotinib in chronic myeloid leukemia: interim analysis of the STOP 2G-TKI study. Blood 129:846–854CrossRefPubMedGoogle Scholar
  50. Redaelli S, Mologni L, Rostagno R et al (2012) Three novel patient-derived BCR/ABL mutants show different sensitivity to second and third generation tyrosine kinase inhibitors. Am J Hematol 87:E125–E128CrossRefPubMedGoogle Scholar
  51. Rix U, Hantschel O, Duernberger G et al (2007) Chemical proteomic profiles of the Bcr-Abl inhibitors imatinib, nilotinib, and dasatinib, reveal novel kinase and nonkinase targets. Blood 110:4055–4063CrossRefPubMedGoogle Scholar
  52. Rowley JD (1973) A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243(5405):290–293CrossRefGoogle Scholar
  53. Saglio G, Kim D-W, Issaragrisil S et al (2010) Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. N Engl J Med 362:2251–2259CrossRefPubMedGoogle Scholar
  54. Shah NP, Nicoll JM, Nagar B et al (2002) Multiple Bcr-Abl kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2:117–125CrossRefPubMedGoogle Scholar
  55. Soverini S, Colarossi S, Gnani A et al (2006) Contribution of ABL kinase domain mutations to imatinib resistance in different subsets of Philadelphia-positive patients: by the GIMEMA working party on chronic myeloid leukemia. Clin Cancer Res 12(24):7374–7379CrossRefPubMedGoogle Scholar
  56. Steegmann JL, Baccarani M, Breccia M et al (2016) European leukemia net recommendations for the management and avoidance of adverse events of treatment in chronic myeloid leukaemia. Leukemia 30:1648–1671CrossRefPubMedPubMedCentralGoogle Scholar
  57. Tanaka C, Yin OQP, Sethuraman V et al (2009) Clinical pharmacokinetics of the Bcr-Abl tyrosine kinase inhibitor nilotinib. Clin Pharmacol Ther 87:197–203CrossRefPubMedGoogle Scholar
  58. Tanaka C, Yin OQP, Smith T et al (2011) Effects of rifampin and ketoconazole on the pharmacokinetics of nilotinib in healthy participants. J Clin Pharmacol 51:75–83CrossRefPubMedGoogle Scholar
  59. von Bubnoff N, Manley PW, Mestan J et al (2006) Bcr-Abl resistance screening predicts a limited spectrum of point mutations to be associated with clinical resistance to the Abl kinase inhibitor nilotinib (AMN107). Blood 108:1328–1333CrossRefGoogle Scholar
  60. Weisberg E, Manley PW, Breitenstein W et al (2005) Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 7:129–141CrossRefPubMedGoogle Scholar
  61. Weisberg E, Manley P, Mestan J et al (2006) AMN107 (nilotinib): a novel and selective inhibitor of Bcr-Abl. Br J Cancer 94:1765–1769CrossRefPubMedPubMedCentralGoogle Scholar
  62. Yin OQP, Gallagher N, Li A et al (2010) Effect of grapefruit juice on the pharmacokinetics of nilotinib in healthy participants. J Clin Pharmacol 50:188–194CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Martin Gresse
    • 1
  • Theo D. Kim
    • 1
  • Philipp le Coutre
    • 1
  1. 1.Division of Hematology and Oncology, Medical DepartmentCharité Universitätsmedizin BerlinBerlinGermany

Personalised recommendations