Advertisement

Carfilzomib

  • Monika Engelhardt
  • Magdalena Szymaniak-Vits
  • Stefanie Ajayi
  • Sandra Maria Dold
  • Stefan Jürgen Müller
  • Sophia Scheubeck
  • Ralph Wäsch
Chapter
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 212)

Abstract

Carfilzomib (CFZ) is a potent, second-generation proteasome inhibitor (PI), with significant activity as a single agent and in combination with other antimyeloma agents in patients with relapsed or refractory multiple myeloma (RRMM). CFZ binds selectively and irreversibly to its target and leads to antiproliferative and proapoptotic effects on cancer cells. This irreversible inhibition is dose- and time-dependent in vitro and in vivo. CFZ as monotherapy and in combination with other antimyeloma agents (e.g., as CFZ and dexamethasone [Kd]) achieved very good responses, progression-free survival (PFS) and overall survival (OS). In several ongoing studies, CFZ is being investigated in triplet and quadruplet schedules of CFZ, lenalidomide and dexamethasone (KRd), CFZ, cyclophosphamide, dexamethasone (KCd) and with antibodies, like elotuzumab or daratumumab. The multitude of completed and ongoing studies confirmed a tolerable safety profile of CFZ, a significantly lower incidence of neuropathy compared to bortezomib (BTZ) and a slightly higher incidence of cardiotoxicity, which is closely observed and precautions taken to avoid them as best as possible. In July 2012, the US Food and Drug Administration (FDA) approved CFZ as a single agent for RRMM patients with disease progression after two prior therapies, including BTZ and immunomodulatory drugs (IMiDs). The combination of KRd and Kd followed, being approved by both FDA and European Medicines Agency (EMA) in 2015 and 2016, respectively. Moreover, CFZ is being evaluated in patients with newly diagnosed MM (NDMM), in high-risk smoldering MM and for maintenance approaches.

Keywords

Novel proteasome inhibitor Irreversible Carfilzomib Relapsed/refractory disease Multiple myeloma 

References

  1. Adams J (2004) The proteasome: a suitable antineoplastic target. Nat Rev Cancer 4:349.  https://doi.org/10.1038/nrc1361CrossRefPubMedGoogle Scholar
  2. Badros AZ, Vij R, Martin T et al (2013) Carfilzomib in multiple myeloma patients with renal impairment: pharmacokinetics and safety. Leukemia 27:1707–1714.  https://doi.org/10.1038/leu.2013.29CrossRefPubMedPubMedCentralGoogle Scholar
  3. Berenson JR, Cartmell A, Bessudo A et al (2016) CHAMPION-1: a phase 1/2 study of once-weekly carfilzomib and dexamethasone for relapsed or refractory multiple myeloma. Blood 127:3360–3368.  https://doi.org/10.1182/blood-2015-11-683854CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bhutani M, Costello R, Korde N et al (2013) Serum heavy-light chains (HLC) and free light chains (FLC) As predictors for early CR In newly diagnosed myeloma patients treated with carfilzomib, lenalidomide, and dexamethasone (CRd). Blood 122:762Google Scholar
  5. Bhutani M, Lee M-J, Tomita Y et al (2014) Early biomarkers of response to carfilzomib in multiple myeloma (MM): modulation of CXCR4 and induction of autophagy. J Clin Oncol 32:e19572–e19572.  https://doi.org/10.1200/jco.2014.32.15_suppl.e19572CrossRefGoogle Scholar
  6. Bringhen S, Petrucci MT, Larocca A et al (2014) Carfilzomib, cyclophosphamide, and dexamethasone in patients with newly diagnosed multiple myeloma: a multicenter, phase 2 study. Blood 124:63–69.  https://doi.org/10.1182/blood-2014-03-563759CrossRefPubMedGoogle Scholar
  7. Bringhen S, D’Agostino M, Paoli LD et al (2017) Phase 1/2 study of weekly carfilzomib, cyclophosphamide, dexamethasone in newly diagnosed transplant-ineligible myeloma. Leukemia.  https://doi.org/10.1038/leu.2017.327CrossRefPubMedGoogle Scholar
  8. Ciechanover A (2005) Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol 6:79.  https://doi.org/10.1038/nrm1552CrossRefPubMedGoogle Scholar
  9. Dalton WS (2004) The proteasome. Semin Oncol 31:3–9.  https://doi.org/10.1053/j.seminoncol.2004.10.012CrossRefPubMedGoogle Scholar
  10. Demo SD, Kirk CJ, Aujay MA et al (2007) Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. Cancer Res 67:6383–6391.  https://doi.org/10.1158/0008-5472.CAN-06-4086CrossRefPubMedGoogle Scholar
  11. Dimopoulos MA, Moreau P, Palumbo A et al (2016) Carfilzomib and dexamethasone versus bortezomib and dexamethasone for patients with relapsed or refractory multiple myeloma (ENDEAVOR): a randomised, phase 3, open-label, multicentre study. Lancet Oncol 17:27–38.  https://doi.org/10.1016/S1470-2045(15)00464-7CrossRefPubMedGoogle Scholar
  12. Dimopoulos MA, Goldschmidt H, Niesvizky R et al (2017a) Carfilzomib or bortezomib in relapsed or refractory multiple myeloma (ENDEAVOR): an interim overall survival analysis of an open-label, randomised, phase 3 trial. Lancet Oncol 18:1327–1337.  https://doi.org/10.1016/S1470-2045(17)30578-8CrossRefPubMedGoogle Scholar
  13. Dimopoulos MA, Stewart AK, Masszi T et al (2017b) Carfilzomib–lenalidomide–dexamethasone vs lenalidomide–dexamethasone in relapsed multiple myeloma by previous treatment. Blood Cancer J 7:e554.  https://doi.org/10.1038/bcj.2017.31CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dimopoulos MA, Stewart AK, Masszi T et al (2017c) Carfilzomib, lenalidomide, and dexamethasone in patients with relapsed multiple myeloma categorised by age: secondary analysis from the phase 3 ASPIRE study. Br J Haematol 177:404–413.  https://doi.org/10.1111/bjh.14549CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gay FM, Scalabrini DR, Belotti A et al (2017) Paper: A randomized study of carfilzomib-lenalidomide-dexamethasone vs carfilzomib-cyclophosphamide-dexamethasone induction in newly diagnosed myeloma patients eligible for transplant: high efficacy in high- and standard-risk patientsGoogle Scholar
  16. Hájek R, Bryce R, Ro S et al (2012) Design and rationale of FOCUS (PX-171-011): a randomized, open-label, phase 3 study of carfilzomib versus best supportive care regimen in patients with relapsed and refractory multiple myeloma (R/R MM). BMC Cancer 12:415.  https://doi.org/10.1186/1471-2407-12-415CrossRefPubMedPubMedCentralGoogle Scholar
  17. Harvey RD (2014) Incidence and management of adverse events in patients with relapsed and/or refractory multiple myeloma receiving single-agent carfilzomib. Clin Pharmacol Adv Appl 6:87–96.  https://doi.org/10.2147/CPAA.S62512CrossRefGoogle Scholar
  18. Hu B, Chen Y, Usmani SZ et al (2013) Characterization of the molecular mechanism of the bone-anabolic activity of carfilzomib in multiple myeloma. PLoS ONE 8:e74191.  https://doi.org/10.1371/journal.pone.0074191CrossRefPubMedPubMedCentralGoogle Scholar
  19. Jagannath S, Vij R, Stewart AK et al (2012) An open-label single-arm pilot phase II study (PX-171-003-A0) of low-dose, single-agent carfilzomib in patients with relapsed and refractory multiple myeloma. Clin Lymphoma Myeloma Leuk 12:310–318.  https://doi.org/10.1016/j.clml.2012.08.003CrossRefPubMedGoogle Scholar
  20. Jakubowiak AJ (2014) Evolution of carfilzomib dose and schedule in patients with multiple myeloma: a historical overview. Cancer Treat Rev 40:781–790.  https://doi.org/10.1016/j.ctrv.2014.02.005CrossRefPubMedGoogle Scholar
  21. Jonsson F, Ou Y, Claret L et al (2015) A tumor growth inhibition model based on M-protein levels in subjects with relapsed/refractory multiple myeloma following single-agent carfilzomib use. CPT Pharmacomet Syst Pharmacol 4:711–719.  https://doi.org/10.1002/psp4.12044CrossRefGoogle Scholar
  22. Khan ML, Stewart AK (2011) Carfilzomib: a novel second-generation proteasome inhibitor. Future Oncol 7:607–612.  https://doi.org/10.2217/fon.11.42CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kisselev AF, Goldberg AL (2001) Proteasome inhibitors: from research tools to drug candidates. Chem Biol 8:739–758.  https://doi.org/10.1016/S1074-5521(01)00056-4CrossRefPubMedGoogle Scholar
  24. Kisselev AF, Goldberg AL (2005) Monitoring activity and inhibition of 26S proteasomes with fluorogenic peptide substrates. In: Methods in enzymology. Academic Press, pp 364–378Google Scholar
  25. Kisselev AF, van der Linden WA, Overkleeft HS (2012) Proteasome inhibitors: an expanding army attacking a unique target. Chem Biol 19:99–115.  https://doi.org/10.1016/j.chembiol.2012.01.003CrossRefPubMedPubMedCentralGoogle Scholar
  26. Korde N, Dosani T, Simakova O et al (2014) Biomarker proteasome levels predict response to combination therapy with carfilzomib, lenalidomide, and dexamethasone in newly diagnosed multiple myeloma patients. Blood 124:2080Google Scholar
  27. Kortuem KM, Stewart AK (2013) Carfilzomib. Blood 121:893–897.  https://doi.org/10.1182/blood-2012-10-459883CrossRefPubMedGoogle Scholar
  28. Kubiczkova L, Pour L, Sedlarikova L et al (2014) Proteasome inhibitors—molecular basis and current perspectives in multiple myeloma. J Cell Mol Med 18:947–961.  https://doi.org/10.1111/jcmm.12279CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kuhn DJ, Chen Q, Voorhees PM et al (2007) Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma. Blood 110:3281–3290.  https://doi.org/10.1182/blood-2007-01-065888CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kuhn DJ, Hunsucker SA, Chen Q et al (2009) Targeted inhibition of the immunoproteasome is a potent strategy against models of multiple myeloma that overcomes resistance to conventional drugs and nonspecific proteasome inhibitors. Blood 113:4667–4676.  https://doi.org/10.1182/blood-2008-07-171637CrossRefPubMedPubMedCentralGoogle Scholar
  31. Lendvai N, Devlin S, Patel M, Knapp KM (2015) Paper: Biomarkers of cardiotoxicity among multiple myeloma patients subsequently treated with proteasome inhibitor therapyGoogle Scholar
  32. Li Y-F, Wang X (2011) The role of the proteasome in heart disease. Biochim Biophys Acta 1809:141–149.  https://doi.org/10.1016/j.bbagrm.2010.09.001CrossRefPubMedGoogle Scholar
  33. Ludwig H, Delforge M, Facon T et al (2017) Prevention and management of adverse events of novel agents in multiple myeloma: a consensus of the european myeloma network. Leukemia.  https://doi.org/10.1038/leu.2017.353CrossRefPubMedPubMedCentralGoogle Scholar
  34. Mikhael JR, Reeder CB, Libby EN et al (2015) Phase Ib/II trial of CYKLONE (cyclophosphamide, carfilzomib, thalidomide and dexamethasone) for newly diagnosed myeloma. Br J Haematol 169:219–227.  https://doi.org/10.1111/bjh.13296CrossRefPubMedPubMedCentralGoogle Scholar
  35. Muchtar E, Gertz MA, Magen H (2016) A practical review on carfilzomib in multiple myeloma. Eur J Haematol 96:564–577.  https://doi.org/10.1111/ejh.12749CrossRefPubMedGoogle Scholar
  36. O’Connor OA, Stewart AK, Vallone M et al (2009) A phase 1 dose escalation study of the safety and pharmacokinetics of the novel proteasome inhibitor carfilzomib (PR-171) in patients with hematologic malignancies. Clin Cancer Res Off J Am Assoc Cancer Res 15:7085–7091.  https://doi.org/10.1158/1078-0432.CCR-09-0822CrossRefGoogle Scholar
  37. Onyx Pharmaceuticals (2012) Kyprolis® (carfilzomib) prescribing informationGoogle Scholar
  38. Parlati F, Lee SJ, Aujay M et al (2009) Carfilzomib can induce tumor cell death through selective inhibition of the chymotrypsin-like activity of the proteasome. Blood 114:3439–3447.  https://doi.org/10.1182/blood-2009-05-223677CrossRefPubMedGoogle Scholar
  39. Rajkumar SV, Kumar S (2016) Multiple myeloma: diagnosis and treatment. Mayo Clin Proc 91:101–119.  https://doi.org/10.1016/j.mayocp.2015.11.007CrossRefPubMedPubMedCentralGoogle Scholar
  40. Riz I, Hawley RG (2017) Increased expression of the tight junction protein TJP1/ZO-1 is associated with upregulation of TAZ-TEAD activity and an adult tissue stem cell signature in carfilzomib-resistant multiple myeloma cells and high-risk multiple myeloma patients. Oncoscience 4:79–94.  https://doi.org/10.18632/oncoscience.356CrossRefPubMedPubMedCentralGoogle Scholar
  41. Rock KL, Gramm C, Rothstein L et al (1994) Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78:761–771CrossRefPubMedGoogle Scholar
  42. Ruschak AM, Slassi M, Kay LE, Schimmer AD (2011) Novel proteasome inhibitors to overcome bortezomib resistance. J Natl Cancer Inst 103:1007–1017.  https://doi.org/10.1093/jnci/djr160CrossRefPubMedGoogle Scholar
  43. Shah JJ, Stadtmauer EA, Abonour R et al (2015) Carfilzomib, pomalidomide, and dexamethasone for relapsed or refractory myeloma. Blood 126:2284–2290.  https://doi.org/10.1182/blood-2015-05-643320CrossRefPubMedPubMedCentralGoogle Scholar
  44. Siegel DS, Martin T, Wang M et al (2012) A phase 2 study of single-agent carfilzomib (PX-171-003-A1) in patients with relapsed and refractory multiple myeloma. Blood 120:2817–2825.  https://doi.org/10.1182/blood-2012-05-425934CrossRefPubMedPubMedCentralGoogle Scholar
  45. Stewart AK (2012) Novel therapeutics in multiple myeloma. Hematol Amst Neth 17:S105–S108.  https://doi.org/10.1179/102453312X13336169156131CrossRefGoogle Scholar
  46. Stewart AK, Rajkumar SV, Dimopoulos MA et al (2015) Carfilzomib, lenalidomide, and dexamethasone for relapsed multiple myeloma. N Engl J Med 372:142–152.  https://doi.org/10.1056/NEJMoa1411321CrossRefPubMedGoogle Scholar
  47. Stewart AK, Dimopoulos MA, Masszi T et al (2016) Health-Related quality-of-life results from the open-label, randomized, phase III ASPIRE trial evaluating carfilzomib, lenalidomide, and dexamethasone versus lenalidomide and dexamethasone in patients with relapsed multiple myeloma. J Clin Oncol Off J Am Soc Clin Oncol 34:3921–3930.  https://doi.org/10.1200/JCO.2016.66.9648CrossRefGoogle Scholar
  48. Stewart AK, Siegel D, Ludwig H et al (2017) Overall survival (OS) of patients with relapsed/refractory multiple myeloma (RRMM) treated with carfilzomib, lenalidomide, and dexamethasone (KRd) versus lenalidomide and dexamethasone (Rd): final analysis from the randomized phase 3 aspire trial. Blood 130:743Google Scholar
  49. Tsakiri EN, Kastritis E, Bagratuni T et al (2013) The novel proteasome inhibitors carfilzomib and oprozomib induce milder degenerative effects compared to bortezomib when administered via oral feeding in an in vivo drosophila experimental model: a biological platform to evaluate safety/efficacy of proteasome inhibitors. Blood 122:1930Google Scholar
  50. Tuch BB, Loehr A, Degenhardt JD et al (2014) Abstract 898: Expression of immunoglobulin and its receptor are major determinants of multiple myeloma patient sensitivity to proteasome inhibitors. Cancer Res 74:898.  https://doi.org/10.1158/1538-7445.AM2014-898CrossRefGoogle Scholar
  51. Vij R, Siegel DS, Jagannath S et al (2012a) An open-label, single-arm, phase 2 study of single-agent carfilzomib in patients with relapsed and/or refractory multiple myeloma who have been previously treated with bortezomib. Br J Haematol 158:739–748.  https://doi.org/10.1111/j.1365-2141.2012.09232.xCrossRefPubMedPubMedCentralGoogle Scholar
  52. Vij R, Wang M, Kaufman JL et al (2012b) An open-label, single-arm, phase 2 (PX-171-004) study of single-agent carfilzomib in bortezomib-naive patients with relapsed and/or refractory multiple myeloma. Blood 119:5661–5670.  https://doi.org/10.1182/blood-2012-03-414359CrossRefPubMedPubMedCentralGoogle Scholar
  53. Waldschmidt JM, Simon A, Wider D et al (2017) CXCL12 and CXCR7 are relevant targets to reverse cell adhesion-mediated drug resistance in multiple myeloma. Br J Haematol 179:36–49.  https://doi.org/10.1111/bjh.14807CrossRefPubMedGoogle Scholar
  54. Wang M, Martin T, Bensinger W et al (2013a) Phase 2 dose-expansion study (PX-171-006) of carfilzomib, lenalidomide, and low-dose dexamethasone in relapsed or progressive multiple myeloma. Blood 122:3122–3128.  https://doi.org/10.1182/blood-2013-07-511170CrossRefPubMedPubMedCentralGoogle Scholar
  55. Wang Z, Yang J, Kirk C et al (2013b) Clinical pharmacokinetics, metabolism, and drug-drug interaction of carfilzomib. Drug Metab Dispos Biol Fate Chem 41:230–237.  https://doi.org/10.1124/dmd.112.047662CrossRefPubMedGoogle Scholar
  56. Yang J, Wang Z, Fang Y et al (2011) Pharmacokinetics, pharmacodynamics, metabolism, distribution, and excretion of carfilzomib in rats. Drug Metab Dispos 39:1873–1882.  https://doi.org/10.1124/dmd.111.039164CrossRefPubMedGoogle Scholar
  57. Yong K, Hinsley S, Auner HW et al (2017) Carfilzomib, cyclophosphamide and dexamethasone (KCD) versus bortezomib, cyclophosphamide and dexamethasone (VCD) for treatment of first relapse or primary refractory multiple myeloma (MM): first final analysis of the phase 2 Muk five study. Blood 130:835Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Monika Engelhardt
    • 1
    • 2
  • Magdalena Szymaniak-Vits
    • 1
  • Stefanie Ajayi
    • 1
    • 2
  • Sandra Maria Dold
    • 1
  • Stefan Jürgen Müller
    • 1
  • Sophia Scheubeck
    • 1
  • Ralph Wäsch
    • 1
  1. 1.Hematology and Oncology, Faculty of MedicineUniversity of FreiburgFreiburgGermany
  2. 2.Comprehensive Cancer Center Freiburg (CCCF)FreiburgGermany

Personalised recommendations