Advertisement

Improving Occupational Safety and Health (OSH) in Human-System Interaction (HSI) Through Applications in Virtual Environments

  • Peter NickelEmail author
  • Andy Lungfiel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10917)

Abstract

Interactions between humans and system components of future work systems may be driven by digitalization, connectivity and agility. Though the design of future systems is not yet known or is not yet available or accessible, it would be desirable to ensure occupational safety and health (OSH) in early stages of development and design. It would also be helpful to learn about potential hazards and risks and prevent them before using work systems across their future life cycle. Since knowledge, experience and imagination might not be sufficient to predict human-system interactions (HSI) it should be possible to apply modeling and simulation such as virtual reality (VR) to overcome some of the challenges in analysis, design and evaluation of future work systems. Similar seems to be true for work systems too dangerous, too complex, or too resource demanding to investigate in reality. The concept on safety and usability through applications in virtual environments (SUTAVE) facilitates effective prevention through design in OSH to be addressed by means of innovative technology. Studies have been conducted to improve OSH in HSI supported by VR simulation; i.e. (a) risk assessments in planning stage, (b) task, interaction and information design in human robot interaction, (c) usability evaluation of safety measures in contexts of use, (d) near misses and course of events in accident investigations, (e) safety concept development. The results are encouraging to face future challenges in HSI as long as its design is taken into account early on and according to human factors and ergonomics principles.

Keywords

Occupational safety and health Human system interaction Virtual reality Human information processing 

Notes

Acknowledgements

It is a pleasant duty to acknowledge all colleagues and participants for conducting the studies and for immersing in the virtual work environments. The author is very grateful to the efforts of Mr. Andy Lungfiel for technical development of the VR scenarios.

References

  1. 1.
    Froeneberg, B., Timm, S.: Country Profile of Occupational Health System in Germany. WHO European Centre for Environment and Health, Bonn (2012)Google Scholar
  2. 2.
    EU OSH Framework Directive 89/391/EEC of 12 June 1989 on the introduction of measures to encourage improvements in the safety and health of workers at work (with amendments 2008). Off. J. Eur. Union L 183, 1–8 (1989)Google Scholar
  3. 3.
    BS OHSAS 18001: Managing Safety the Systems Way. BSI, London (2007)Google Scholar
  4. 4.
    Lehto, M.R., Cook, B.T.: Occupational health and safety management. In: Salvendy, G. (ed.) Handbook of Human Factors and Ergonomics, pp. 701–733. Wiley, Hoboken (2012)Google Scholar
  5. 5.
    Lin, M.-L.: Practice issues in prevention through design. J. Saf. Res. 39, 157–159 (2008)CrossRefGoogle Scholar
  6. 6.
    Schulte, P.A., Rinehart, R., Okun, A., Geraci, C.L., Heidel, D.S.: National prevention through design (PtD) initiative. J. Saf. Res. 39, 115–121 (2008)CrossRefGoogle Scholar
  7. 7.
    Meister, D.: Simulation and modelling. In: Wilson, J.R., Corlett, E.N. (eds.) Evaluation of Human Work, pp. 202–228. Taylor & Francis, London (1999)Google Scholar
  8. 8.
    Wickens, C.D., Hollands, J.G., Banbury, S., Parasuraman, R.: Engineering Psychology and Human Performance. Pearson, Upper Saddle River (2013)Google Scholar
  9. 9.
    Nickel, P., Nachreiner, F.: Evaluation arbeitspsychologischer Interventionsmaßnahmen. In: Kleinbeck, U., Schmidt, K. (eds.) Arbeitspsychologie (Enzyklopädie der Psychologie, D, III, 1), pp. 1003–1038. Hogrefe, Göttingen (2010)Google Scholar
  10. 10.
    Hale, K.S., Stanney, K.M. (eds.): Handbook of Virtual Environments: Design, Implementation, and Applications. CRC Press, Boca Raton (2015)Google Scholar
  11. 11.
    Chapanis, A., van Cott, H.P.: Human engineering tests and evaluations. In: van Cott, H.P., Kinkade, R.G. (eds.) Human Engineering Guide to Equipment Design, pp. 701–728. AIR, Washington (1972)Google Scholar
  12. 12.
    Miller, C., Nickel, P., Di Nocera, F., Mulder, B., Neerincx, M., Parasuraman, R., Whiteley, I.: Human-machine interface. In: Hockey, G.R.J. (ed.) THESEUS Cluster 2: Psychology and Human-Machine Systems – Report, pp. 22–38. Indigo, Strasbourg (2012)Google Scholar
  13. 13.
    Dźwiarek, M., Grabowski, A., Jankowski, J., Strawinski, T.: Analysis of usability of the VR technology for risk assessment in machinery design. In: EMET Proceedings, Venice, pp. 146–153 (2013)Google Scholar
  14. 14.
    Ciccotelli, J., Marsot, J.: Réalite virtuelle et prévention. Apports et tendances. Hygiène et sécurité du travail 199, 99–111 (2005)Google Scholar
  15. 15.
    Määttä, T.J.: Virtual environments in machinery safety analysis and participatory ergonomics. Hum. Factors Ergon. Manuf. 17, 435–443 (2007)CrossRefGoogle Scholar
  16. 16.
    Marc, J., Belkacem, N., Marsot, J.: Virtual reality: a design tool for enhanced consideration of usability ‘validation elements’. Saf. Sci. 45, 589–601 (2007)CrossRefGoogle Scholar
  17. 17.
    ISO 6385: Ergonomic Principles in the Design of Work Systems. ISO, Brussels (2016)Google Scholar
  18. 18.
    Nickel, P., Nachreiner, F.: Evaluation of presentation of information for process control operations. Cogn. Technol. Work 10, 23–30 (2008)CrossRefGoogle Scholar
  19. 19.
    Nickel, P., Janning, M., Wachholz, T., Pröger, E., Lungfiel, A.: Shaping future work systems by OSH risk assessments early on. In: Proceedings of the 20th Triennial Congress of the International Ergonomics Association (IEA), Florence, Italy, 26–30 August 2018Google Scholar
  20. 20.
    EU Machinery Directive 2006/42/EC of the European Parliament and the Council of 17 May 2006 on machinery, and amending Directive 95/16/EC (recast). Off. J. Eur. Union L 157, 24–86 (2006)Google Scholar
  21. 21.
    EU Construction Directive 92/57/EEC on the implementation of minimum safety and health requirements at temporary or mobile construction sites. Off. J. Eur. Union L 245, 6–22 (1992)Google Scholar
  22. 22.
    European Commission. Non-binding guide to good practice for understanding and implementing Directive 92/57/EEC ‘Construction Sites’. Common, Frankfurt (2010)Google Scholar
  23. 23.
    De Cillis, E., Maida, L., Patrucco, M., Cirio, C.: Mobile elevating work platforms: a discussion on the main causes of accidents and some suggestions for prevention. In: Podofillini, L., Sudret, B., Stojadinovic, B., Zio, E., Kröger, W. (eds.) Safety and Reliability of Complex Engineered Systems (ESREL), pp. 3229–3236. Taylor & Francis, London (2015)CrossRefGoogle Scholar
  24. 24.
    ISO 16368: Mobile Elevating Work Platforms – Design, Calculations, Safety Requirements and Test Methods. ISO, Geneva (2010)Google Scholar
  25. 25.
    Nischalke-Fehn, G., Bömer, T.: Use of a modified joystick for the avoidance of crushing accidents on elevating work platforms. Focus on IFA’s work, no. 0332, pp. 1–2 (2011)Google Scholar
  26. 26.
    Nickel, P., Lungfiel, A., Bömer, T., Koppenborg, M., Trabold, R.-J.: Wirksamkeit einer ergänzenden Schutzmaßnahme in virtueller Realität zur Unfallprävention bei Hubarbeitsbühnen. In: GfA (ed.) Gestaltung der Arbeitswelt der Zukunft, pp. 85–87. GfA-Press, Dortmund (2014)Google Scholar
  27. 27.
    Dempsey, P.G.: Accident and incident investigation. In: Salvendy, G. (ed.) Handbook of Human Factors and Ergonomics, pp. 1085–1091. Wiley, Hoboken (2012)Google Scholar
  28. 28.
    Nickel, P., Lungfiel, A., Trabold, R.-J.: Reconstruction of near misses and accidents for analyses from virtual reality usability study. In: Barbic, J., D’Cruz, M., Latoschik, M.E., Slater, M., Bourdot, P. (eds.) EuroVR 2017. LNCS, vol. 10700, pp. 182–191. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-72323-5_12CrossRefGoogle Scholar
  29. 29.
    Naber, B., Lungfiel, A., Winter, G., Diedrich, W., Nickel, P.: Machbarkeitsstudie zur Modellierung von Gefahrenpotenzialen beim Entladen von Lkws über Hubladebühnen. In: GfA (ed.) Arbeit(s).wissen.schaf(f)t – Grundlage für Management & Kompetenzentwicklung. GfA-Press, Dortmund (2018)Google Scholar
  30. 30.
    ISO/TS 15066: Robots and Robotic Devices — Collaborative Robots. ISO, Geneva (2016)Google Scholar
  31. 31.
    Burdea, G.C., Coiffet, P.: Virtual Reality Technology. Wiley, New York (2003)CrossRefGoogle Scholar
  32. 32.
    Naber, B., Lungfiel, A., Nickel, P., Huelke, M.: Human Factors zu Robotergeschwindigkeit und -distanz in der virtuellen Mensch-Roboter-Kollaboration. In: GfA (ed.) Chancen durch Arbeits-, Produkt- und Systemgestaltung – Zukunftsfähigkeit für Produktions- und Dienstleistungsunternehmen, pp. 421–424. GfA-Press, Dortmund (2013)Google Scholar
  33. 33.
    Naber, B., Koppenborg, M., Nickel, P., Lungfiel, A., Huelke, M.: Effects of movement speed, movement predictability and distance in human-robot-collaboration. In: XX World Congress on Safety and Health at Work 2014 ‘Sharing a Vision for Sustainable Prevention’, Forum for Prevention, F02.26. ILO, ISSA, DGUV, Frankfurt (2014)Google Scholar
  34. 34.
    Koppenborg, M., Nickel, P., Naber, B., Lungfiel, A., Huelke, M.: Effects of movement speed and predictability in human-robot-collaboration. Hum. Factors Ergon. Manuf. Serv. Ind. 27(4), 197–209 (2017)CrossRefGoogle Scholar
  35. 35.
    Kaufeld, M.: Auswirkungen von Aufgabenpassung und Informationssignalisierung in der Mensch-Roboter-Interaktion auf die psychische Beanspruchung. Eine empirische Studie in virtueller Realität (Master thesis, Psychology). Universität, Bonn (2016)Google Scholar
  36. 36.
    ISO 12100: Safety of Machinery – General Principles for Design – Risk Assessment and Risk Reduction. ISO, Geneva 2010Google Scholar
  37. 37.
    Hauke, M., Naber, B.: Anordnung und Gestaltung dreidimensionaler Schutzräume an Maschinen. Focus on IFA’s work, no. 0360, pp. 1–2 (2014)Google Scholar
  38. 38.
    Nickel, P.: Extending the effective range of prevention through design by OSH applications in virtual reality. In: Nah, F.-H., Tan, C.-H. (eds.) HCIBGO 2016. LNCS, vol. 9752, pp. 325–336. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39399-5_31CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Accident Prevention – Product SafetyInstitute for Occupational Safety and Health of the German Social Accident Insurance (IFA)Sankt AugustinGermany

Personalised recommendations