A Proposal for Combining Ultrasound, Magnetic Resonance Imaging and Force Feedback Technology, During the Pregnancy, to Physically Feel the Fetus

  • Jorge Roberto Lopes dos SantosEmail author
  • Heron Werner
  • Alberto Raposo
  • Jan Hurtado
  • Vinicius Arcoverde
  • Gerson Ribeiro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10917)


Evolutions in image-scanning technology have led to vast improvements in the fetal assessment. Ultrasound (US) is the main technology for fetal evaluation. Magnetic resonance imaging (MRI) is generally used when US cannot provide high-quality images. This paper presents an interactive bidirectional actuated human-machine interface proposal developed by the combination of a haptic device system (force-feedback technology) and a non-invasive medical image technology.


Fetus Ultrasound MRI Haptics Interaction 


  1. 1.
    Werner Júnior, H., Santos, J.L.D., Belmonte, S., Ribeiro, G., Daltro, P., Gasparetto, E.L., Marchiori, E.: Applicability of three-dimensional imaging techniques in fetal medicine. Radiologia Brasileira 49(5), 281–287 (2016)CrossRefGoogle Scholar
  2. 2.
    Yoshida, E.A., Castro, M.L., Martins, V.F.: Virtual Reality and Fetal Medicine – A Systematic Review (2017)Google Scholar
  3. 3.
    dos Santos, J.R.L., Werner, H., Ribeiro, G., Belmonte, S.L.: Combination of non invasive medical imaging technologies and virtual reality systems to generate immersive fetal 3D visualizations. In: Duffy, V.G.G. (ed.) DHM 2016. LNCS, vol. 9745, pp. 92–99. Springer, Cham (2016). Scholar
  4. 4.
    Werner, H., Gasparetto, T.D., Daltro, P., Leandro, E.G., Araujo, E.J.: Typical lesions in the fetal nervous system: correlations between fetal magnetic resonance imaging and obstetric ultrasonography findings. Ultrasonography (2017)Google Scholar
  5. 5.
    Werner, H., Lopes, J., Tonni, G., Júnior, E.A.: Physical model from 3D ultrasound and magnetic resonance imaging scan data reconstruction of lumbosacral myelomeningocele in a fetus with Chiari II malformation. Child’s Nervous Syst. 31(4), 511–513 (2015)CrossRefGoogle Scholar
  6. 6.
    Kajimoto, H., Saga, S., Konyo, M.: Pervasive Haptics. Springer, Sendei (2016)CrossRefGoogle Scholar
  7. 7.
    Okamura, A.M., Basdogan, C., Baillie, S., Harwin, W.S.: Haptics in medicine and clinical skill acquisition [special section intro.]. IEEE Trans. Haptics 4(3), 153–154 (2011)CrossRefGoogle Scholar
  8. 8.
    Kapoor, S., Arora, P., Kapoor, V., Jayachandran, M., Tiwari, M.: Haptics-Touchfeedback technology widening the horizon of medicine. J. Clin. Diagn. Res. (JCDR) 8(3), 294 (2014)Google Scholar
  9. 9.
    Prattichizzo, D., La Torre, B., Barbagli, F., Vicino, A., Severi, F.M., Petraglia, F.: The FeTouch Project: an application of haptic technologies to obstetrics and gynaecology. Int. J. Med. Robot. Comput. Assist. Surg. 1(1), 83–87 (2004)CrossRefGoogle Scholar
  10. 10.
    Sevenri, F.M., Prattichizzo, D., Casarosa, E., Barbagli, F., Ferretti, C., Altomare, A., Vicino, A., Petraglia, F.: Virtual fetal touch through a haptic interface decreases maternal anxiety and salivary cortisol. J. Soc. Gynecol. Investig. 12(1), 37–40 (2005)CrossRefGoogle Scholar
  11. 11.
    Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J.C., Pujol, S., Bauer, C., Jennings, D., Fennessy, F., Sonka, M., Buatti, J.: 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 30(9), 1323–1341 (2012)CrossRefGoogle Scholar
  12. 12.
    Yoo, T.S., Ackerman, M.J., Lorensen, W.E., Schroeder, W., Chalana, V., Aylward, S., Metaxas, D., Whitaker, R.: Engineering and algorithm design for an image processing API: a technical report on ITK-the insight toolkit. Stud. Health Technol. Inform. 85, 586–592 (2002)Google Scholar
  13. 13.
    Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. ACM SIGGRAPH Comp. Graph. 21(4), 163–169 (1987)CrossRefGoogle Scholar
  14. 14.
    Taubin, G.: A signal processing approach to fair surface design. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, pp. 351–358. ACM (1995)Google Scholar
  15. 15.
    Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., Ranzuglia, G.: Meshlab: an open-source mesh processing tool. In: Eurographics Italian Chapter Conference, vol. 2008, pp. 129–136 (2008)Google Scholar
  16. 16.
    Blender Homepage. Accessed 07 Feb 2018
  17. 17.
    Unity 3D Homepage. Accessed 07 Feb 2018
  18. 18.
    Poyade, M., Kargas, M., Portela, V.: Haptic Plug-In For Unity3D (2014)Google Scholar
  19. 19.
    Itkowitz, B., Handley, J., Zhu, W.: The OpenHaptics™ toolkit: a library for adding 3D Touch™ navigation and haptics to graphics applications, pp. 590–591 (2005).

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jorge Roberto Lopes dos Santos
    • 1
    • 2
    Email author
  • Heron Werner
    • 3
  • Alberto Raposo
    • 1
  • Jan Hurtado
    • 1
  • Vinicius Arcoverde
    • 1
  • Gerson Ribeiro
    • 1
  1. 1.Pontifícia Universidade Católica do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Instituto Nacional de Tecnologia - INTRio de JaneiroBrazil
  3. 3.Clínica de Diagnóstico por Imagem - CDPIRio de JaneiroBrazil

Personalised recommendations