Definition of Strategies for the Reduction of Operational Inefficiencies in a Stroke Unit

  • Miguel Ortiz-Barrios
  • Dionicio Neira-Rodado
  • Genett Jiménez-DelgadoEmail author
  • Sally McClean
  • Osvaldo Lara
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10917)


Stroke disease is the second common cause of death in the world and is then of particular concern to policy-makers. Additionally, it is a meaningful problem leaving a high number of people with severe disabilities, placing a heavy burden on society and incurring prolonged length of stay. In this respect, it is necessary to develop analytic models providing information on care system behavior in order to detect potential operational inefficiencies along the stroke patient journey and subsequently design improvement strategies. However, modeling stroke care is highly complex due to the multiple clinical outcomes and different pathways. Therefore, this paper presents an integrated approach between Discrete-event Simulation (DES) and Markov models so that integrated planning of healthcare services relating to stroke care and the evaluation of potential improvement scenarios can be facilitated, made more logically robust and easy to understand. First, a stroke care system from Colombia was characterized by identifying the exogenous and endogenous variables of the process. Afterward, an input analysis was conducted to define the probability distributions of the aforementioned variables. Then, both DES and Markov models were designed and validated to provide deeper analysis of the entire patient journey. Finally, the possible adoption of thrombolytic treatment on patients with stroke disease was assessed based on the proposed approaches within this paper. The results evidenced that the length of stay (LOS) decreased by 12,89% and the mortality ratio was diminished by 21,52%. Evaluation of treatment cost per patient is also carried out.


Discrete-Event Simulation (DES) Healthcare modelling Markov model Stroke 


  1. 1.
    Hernández, B.J., Benjumea, P., Tuso, L.: Indicadores del desempeño clínico fisioterapéutico en el manejo hospitalario temprano del accidente cerebrovascular (ACV). Revista Ciencias de la Salud 11(1), 7–34 (2013)Google Scholar
  2. 2.
    Rosamond, W., Flegal, K., Friday, G., Furie, K., Go, A., Greenlund, K., Haase, N., Ho, M., Howard, V., Kissela, B., Kittner, S.: Heart disease and stroke statistics—2007 update. Circulation 115(5), e69–e171 (2007)CrossRefGoogle Scholar
  3. 3.
    Saka, Ö., McGuire, A., Wolfe, C.: Cost of stroke in the United Kingdom. Age Age. 38(1), 27–32 (2009)CrossRefGoogle Scholar
  4. 4.
    Sackley, C., Pound, K.: Setting priorities for a discharge plan for stroke patients entering nursing home care. Clin. Rehabil. 16(8), 859–866 (2002)CrossRefGoogle Scholar
  5. 5.
    Sundberg, G., Bagust, A., Terént, A.: A model for costs of stroke services. Health Policy 63(1), 81–94 (2003)CrossRefGoogle Scholar
  6. 6.
    Hoffmann, A., Chockalingam, P., Balint, O.H., Dadashev, A., Dimopoulos, K., Engel, R., Schmid, M., Schwerzmann, M., Gatzoulis, M.A., Mulder, B., Oechslin, E.: Cerebrovascular accidents in adult patients with congenital heart disease. Heart 96(15), 1223–1226 (2010)CrossRefGoogle Scholar
  7. 7.
    Santulli, G.: Epidemiology of cardiovascular disease in the 21st century: updated numbers and updated facts. J. Cardiovasc. Dis. 1(1), 1–2 (2013)Google Scholar
  8. 8.
    Verlaan, P.: London convention and London protocol. Int. J. Mar. Coast. L. 26, 185 (2011)CrossRefGoogle Scholar
  9. 9.
    McClean, S., Gillespie, J., Garg, L., Barton, M., Scotney, B., Kullerton, K.: Using phase-type models to cost stroke patient care across health, social and community services. Eur. J. Oper. Res. 236(1), 190–199 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Fackrell, M.: Modelling healthcare systems with phase-type distributions. Health Care Manag. Sci. 12(1), 11–26 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gunal, M.M., Pidd, M.: Discrete event simulation for performance modelling in health care: a review of the literature. J. Simul. 4(1), 42–51 (2010)CrossRefGoogle Scholar
  12. 12.
    Vasilakis, C., Marshall, A.H.: Modelling nationwide hospital length of stay: opening the black box. J. Oper. Res. Soc. 56, 862–869 (2005)zbMATHCrossRefGoogle Scholar
  13. 13.
    McClean, S.I., Barton, M., Garg, L., Fullerton, K.: Combining Markov models and discrete event simulation to plan stroke patient care. Trans. Model. Comput. Sci. 21(4) (2011). Article 25Google Scholar
  14. 14.
    Garg, L., McClean, S., Barton, M., Meenan, B.J., Fullerton, K.: Intelligent patient management and resource planning for complex, heterogeneous, and stochastic healthcare systems. IEEE Trans. Syst. Man Cybern. A Syst. Hum. 42(6), 1332–1345 (2012)CrossRefGoogle Scholar
  15. 15.
    Barton, M., McClean, S., Gillespie, J., Garg, L., Wilson, D., Fullerton, K.: Is it beneficial to increase the provision of thrombolysis- a discrete event simulation model. QJM Int. J. Med. 105(7), 665–673 (2012)CrossRefGoogle Scholar
  16. 16.
    Gillespie, J., McClean, S., Scotney, B., Garg, L., Barton, M., Fullerton, K.: Costing hospital resources for stroke patients using phase-type models. Health Care Manag. Sci. 14(3), 279–291 (2011)CrossRefGoogle Scholar
  17. 17.
    Caro, J.J., Briggs, A.H., Siebert, U., Kuntz, K.M.: Modeling good research practices-overview: a report of the ISPOR-SMDM modeling good research practices task force-1. Value Health 15(4), 796–803 (2012)CrossRefGoogle Scholar
  18. 18.
    Pari, A.A., Simon, J., Wolstenholme, J., Geddes, J.R., Goodwin, G.M.: Economic evaluations in bipolar disorder: a systematic review and critical appraisal. Bipolar Disord. 16(6), 557–582 (2014)CrossRefGoogle Scholar
  19. 19.
    van Karnebeek, C.D.M., Mohammadi, T., Tsao, N., Sinclair, G., Sirrs, S., Stockler, S., Marra, C.: Health economic evaluation of plasma oxysterol screening in the diagnosis of Niemann-Pick Type C disease among intellectually disabled using discrete event simulation. Mol. Genet. Metab. 114(2), 226–232 (2015)CrossRefGoogle Scholar
  20. 20.
    Pilgrim, H., et al.: The costs and benefits of bowel cancer service developments using discrete event simulation. J. Oper. Res. Soc. 60(10), 1305–1314 (2009)CrossRefGoogle Scholar
  21. 21.
    Stevenson, M.D., Brazier, J.E., Calvert, N.W., Lloyd-Jones, M., Oakley, J.E., Kanis, J.E.: Description of an individual patient methodology for calculating the cost-effectiveness of treatments for osteoporosis in woman. J. Oper. Res. Soc. 56(2), 214–221 (2005)zbMATHCrossRefGoogle Scholar
  22. 22.
    Caro, J., Moller, J., Getsios, D.: Discrete event simulation: the preferred technique for health economic evaluations? Value Health 13(8), 1056–1060 (2010)CrossRefGoogle Scholar
  23. 23.
    Neil, N.: Transparently, with validation. Med. Decis. Mak. 32(5), 660–662 (2012)CrossRefGoogle Scholar
  24. 24.
    Ortiz Barrios, M.A., Escorcia Caballero, J., Sánchez Sánchez, F.: A methodology for the creation of integrated service networks in outpatient internal medicine. In: Bravo, J., Hervás, R., Villarreal, V. (eds.) AmIHEALTH 2015. LNCS, vol. 9456, pp. 247–257. Springer, Cham (2015). Scholar
  25. 25.
    Ortiz Barrios, M., Felizzola Jiménez, H.: Reduction of average lead time in outpatient service of obstetrics through six sigma methodology. In: Bravo, J., Hervás, R., Villarreal, V. (eds.) AmIHEALTH 2015. LNCS, vol. 9456, pp. 293–302. Springer, Cham (2015). Scholar
  26. 26.
    Barrios, M.A.O., Jiménez, H.F.: Use of six sigma methodology to reduce appointment lead-time in obstetrics outpatient department. J. Med. Syst. 40(10), 220 (2016)CrossRefGoogle Scholar
  27. 27.
    Martischnig, A.: Modeling Healthcare Systems (2009)Google Scholar
  28. 28.
    Coronado Hernandez, J.R., Viloria, A., Gaitán Angulo, M., Mercado Caruso, N.N., Arias Perez, J.E.: Analysis of Probability of Dropout, Continuation and Graduation through Markovian Chains of University Students in Bolivar, Colombia (2016)Google Scholar
  29. 29.
    Eldabi, T., Paul, R.J., Young, T.: Simulation modelling in healthcare: reviewing legacies and investigating futures. J. Oper. Res. Soc. 58(2), 262–270 (2007)zbMATHCrossRefGoogle Scholar
  30. 30.
    Shankar, R.: Process Improvement Using Six Sigma: A DMAIC Guide. ASQ Quality Press, Milwaukee (2009)Google Scholar
  31. 31.
    Hamza, S.E.A.: Design process improvement through the DMAIC Six Sigma approach: a case study from the Middle East. Int. J. Six Sigma Competitive Adv. 4(1), 35–47 (2008)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Briggs, A.H., Weinstein, M.C., Fenwick, E.A., Karnon, J., Sculpher, M.J., Paltiel, A.D.: Model parameter estimation and uncertainty: a report of the ISPOR-SMDM modeling good research practices task force-6. Value Health 15(6), 835–842 (2012)CrossRefGoogle Scholar
  33. 33.
    Langhorne, P., Pollock, A.: What are the components of effective stroke unit care? Age Age. 31(5), 365–371 (2002)CrossRefGoogle Scholar
  34. 34.
    Feigin, V.L., Krishnamurthi, R.V., Parmar, P., Norrving, B., Mensah, G.A., Bennett, D.A., Barker-Collo, S., Moran, A.E., Sacco, R.L., Truelsen, T., Davis, S.: Update on the global burden of ischemic and hemorrhagic stroke in 1990-2013: the GBD 2013 study. Neuroepidemiology 45(3), 161–176 (2015)CrossRefGoogle Scholar
  35. 35.
    Gordon, A.S., Marshall, A.H., Zenga, M.: Predicting elderly patient length of stay in hospital and community care using a series of conditional Coxian phase-type distributions, further conditioned on a survival tree. Health Care Manag. Sci., 1–12 (2017) Google Scholar
  36. 36.
    Mohiuddin, S., Busby, J., Savović, J., Richards, A., Northstone, K., Hollingworth, W., Donovan, J.L., Vasilakis, C.: Patient flow within UK emergency departments: a systematic review of the use of computer simulation modelling methods. BMJ Open 7(5), e015007 (2017)CrossRefGoogle Scholar
  37. 37.
    Dorn, F., Prothmann, S., Patzig, M., Lockau, H., Kabbasch, C., Nikoubashman, O., Liebig, T., Zimmer, C., Brückmann, H., Wiesmann, M., Stetefeld, H.: Stent retriever thrombectomy in patients who are ineligible for intravenous thrombolysis: a multicenter retrospective observational study. Am. J. Neuroradiol. 37(2), 305–310 (2016)CrossRefGoogle Scholar
  38. 38.
    Collazos, M.M., Gutiérrez, Á.M., Londoño, D., Bayona, H., Herrán, S., Enrique, G.: Stroke in Colombia: a cost-effectiveness study Artículo original. Acta Neurol. Colomb. 24(4), 158–173 (2008)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Miguel Ortiz-Barrios
    • 1
  • Dionicio Neira-Rodado
    • 1
  • Genett Jiménez-Delgado
    • 2
    Email author
  • Sally McClean
    • 3
  • Osvaldo Lara
    • 4
  1. 1.Department of Industrial Management, Agroindustry and OperationsUniversidad de La Costa CUCBarranquillaColombia
  2. 2.Department of Engineering in Industrial Processes, Engineering FacultyInstitución Universitaria ITSASoledad, AtlánticoColombia
  3. 3.School of ComputingUniversity of UlsterColeraineUK
  4. 4.Department of NeurologyClinica de la CostaBarranquillaColombia

Personalised recommendations