Advertisement

Structural Biology Using Electron Microscopy

  • Chikara Sato
  • Takao Shinkawa
  • Mari Sato
  • Masataka Ohashi
  • Mitsuru Ikeda
  • Masaaki Kawata
  • Kazuhiro Mio
  • Masanori Koshino
Chapter

Abstract

Due to recent developments in cryo-transmission electron microscopy (Cryo-TEM), direct electron counting cameras and reconstruction softwares, cryo-TEM is now widely applied to determine the structure of biological samples including various kinds of proteins and their complexes. Single particle analysis (SPA) using cryo-TEM enables the reconstruction of three-dimensional (3D) structures of proteins from countable numbers of protein particles of usually less than 1 million. Apart from the requirement of crystallization and massive purification, SPA has a great potential to reveal the structures of biologically important proteins, including membrane proteins and macromolecular complexes, which are often hard to crystallize or unsuitable for mass production. Conformational changes of proteins have been implemented in the algorithms and strategies of SPA. Cryo-electron tomography is another approach used to reconstruct 3D structures of frozen samples from a series of images recorded by tilting the specimen in the EM column. It is used for much larger biological structures of higher order, e.g., cells and tissues. Atmospheric scanning electron microscopy (ASEM) directly visualizes two-dimensional (2D) images of aldehyde-fixed cells, tissues, or protein microcrystals in aqueous solution containing radical scavengers (glucose) through electron-transparent SiN membrane at nanometer resolution.

Keywords

Cryo-electron microscope Protein Macromolecular complex Single particle analysis Three-dimensional structure Tomography ASEM 

Notes

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas, Sparse modeling (to C.S.), by CREST (to C.S.), by a Grant-in-Aid for Scientific Research from JSPS (15 K14499) (to C.S.), by grants from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) (to C.S.), by a Grant-in-Aid from CANON (to C.S.), by a Strategic grant to NISP from AIST (to C.S.) and by a Grant-in-Aid from AIST (to C.S).

References

  1. Abbe E (1873) Über einen neuen Beleuchtungsapparat am Mikroskop [about a new illumination apparatus to the microscope]. Arch Mikrosk Anat 9:469–480CrossRefGoogle Scholar
  2. Adrian M, Dubochet J, Lepault J, McDowall AW (1984) Cryo-electron microscopy of viruses. Nature 308:32–36CrossRefPubMedGoogle Scholar
  3. Bartesaghi A, Merk A, Banerjee S, Matthies D, Wu X, Milne JL, Subramaniam S (2015) 2.2 A resolution cryo-EM structure of beta-galactosidase in complex with a cell-permeant inhibitor. Science 348:1147–1151CrossRefPubMedGoogle Scholar
  4. Baumeister W (2002) Electron tomography: towards visualizing the molecular organization of the cytoplasm. Curr Opin Struct Biol 12:679–684CrossRefPubMedGoogle Scholar
  5. Beck F, Unverdorben P, Bohn S, Schweitzer A, Pfeifer G, Sakata E, Nickell S, Plitzko JM, Villa E, Baumeister W, Forster F (2012) Near-atomic resolution structural model of the yeast 26S proteasome. Proc Natl Acad Sci U S A 109:14870–14875CrossRefPubMedPubMedCentralGoogle Scholar
  6. Borgnia M J, Banerjee S, Merk A, Matthies D, Bartesaghi A, Rao P, Pierson J, Earl L A, Falconieri V, Subramaniam S, Milne J L S (2016) Using Cryo-EM to Map Small Ligands on Dynamic Metabolic Enzymes: Studies with Glutamate Dehydrogenase. Molecular pharmacology 89: 645–51Google Scholar
  7. Bottcher B, Wynne SA, Crowther RA (1997) Determination of the fold of the core protein of hepatitis B virus by electron cryomicroscopy. Nature 386:88–91CrossRefPubMedGoogle Scholar
  8. Brandt F, Carlson LA, Hartl FU, Baumeister W, Grunewald K (2010) The three-dimensional organization of polyribosomes in intact human cells. Mol Cell 39:560–569CrossRefPubMedGoogle Scholar
  9. Bremer A, Henn C, Engel A, Baumeister W, Aebi U (1992) Has negative staining still a place in biomacromolecular electron microscopy? Ultramicroscopy 461:85–111CrossRefGoogle Scholar
  10. Brilot AF, Chen JZ, Cheng A, Pan J, Harrison SC, Potter CS, Carragher B, Henderson R, Grigorieff N (2012) Beam-induced motion of vitrified specimen on holey carbon film. J Struct Biol 177:630–637CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cao E, Liao M, Cheng Y, Julius D (2013) TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504:113–118CrossRefPubMedPubMedCentralGoogle Scholar
  12. Crowther RA (1971) Procedures for three-dimensional reconstruction of spherical viruses by Fourier synthesis from electron micrographs. Philos Trans R Soc Lond Ser B Biol Sci 261:221–230CrossRefGoogle Scholar
  13. De Rosier DJ, Klug A (1968) Reconstruction of three dimensional structures from electron micrographs. Nature 217:130–134CrossRefPubMedGoogle Scholar
  14. Egerton R F, Li P, and Malac M (2004) Radiation Damage in the Tem and Sem. Micron 35(6):399–409Google Scholar
  15. Egerton RF (2011) Electron energy-loss spectroscopy in the electron microscope, 3rd edn. Springer, New YorkCrossRefGoogle Scholar
  16. Fischer N, Neumann P, Konevega AL, Bock LV, Ficner R, Rodnina MV, Stark H (2015) Structure of the E. coli ribosome-EF-Tu complex at <3 A resolution by Cs-corrected cryo-EM. Nature 520:567–570CrossRefPubMedGoogle Scholar
  17. Frank J (1992) Electron tomography: three-dimensional imaging with the transmission electron microscope. Plenum Press, New YorkCrossRefGoogle Scholar
  18. Frank J (2006) Three-dimensional Electron microscopy of macromolecular assemblies: visualization of biological molecules in their native state. Oxford University Press, New YorkCrossRefGoogle Scholar
  19. Frank J, Agrawal RK (2000) A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature 406:318–322CrossRefPubMedGoogle Scholar
  20. Frank J, Goldfarb W, Eisenberg D, Baker TS (1978) Reconstruction of glutamine synthetase using computer averaging. Ultramicroscopy 3:283–290CrossRefPubMedPubMedCentralGoogle Scholar
  21. Frank J, Zhu J, Penczek P, Li Y, Srivastava S, Verschoor A, Radermacher M, Grassucci R, Lata RK, Agrawal RK (1995) A model of protein synthesis based on cryo-electron microscopy of the E. coli ribosome. Nature 376:441–444CrossRefPubMedGoogle Scholar
  22. Frank J, Radermacher M, Penczek P, Zhu J, Li Y, Ladjadj M, Leith A (1996) SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J Struct Biol 116:190–199CrossRefPubMedGoogle Scholar
  23. Fujiyoshi Y, Mizusaki T, Morikawa K, Yamagishi H, Aoki Y, Kihara H, Harada Y (1991) Development of a superfluid-helium stage for high-resolution electron-microscopy. Ultramicroscopy 38:241–251CrossRefGoogle Scholar
  24. Grigorieff N (2007) FREALIGN: high-resolution refinement of single particle structures. J Struct Biol 157:117–125CrossRefPubMedGoogle Scholar
  25. Grigorieff N (2013) Direct detection pays off for electron cryo-microscopy. elife 2:e00573CrossRefPubMedPubMedCentralGoogle Scholar
  26. Haider M, Uhlemann S, Schwan E, Rose H, Kabius B, Urban K (1998) Electron microscopy image enhanced. Nature 392:768–769CrossRefGoogle Scholar
  27. Henderson R (2004) Realizing the potential of electron cryo-microscopy. Q Rev Biophys 37:3–13CrossRefPubMedGoogle Scholar
  28. Hirano K, Kinoshita T, Uemura T, Motohashi H, Watanabe Y, Ebihara T, Nishiyama H, Sato M, Suga M, Maruyama Y, Tsuji NM, Yamamoto M, Nishihara S, Sato C (2014) Electron microscopy of primary cell cultures in solution and correlative optical microscopy using ASEM. Ultramicroscopy 143:52–66CrossRefPubMedGoogle Scholar
  29. Hobbs LW (1984) Radiation effects in analysis by tem. In: Quantitative Electron microscopy. SUSSP Publications, Edinburgh, pp 399–445Google Scholar
  30. Jin L, Milazzo AC, Kleinfelder S, Li S, Leblanc P, Duttweiler F, Bouwer JC, Peltier ST, Ellisman MH, Xuong NH (2008) Applications of direct detection device in transmission electron microscopy. J Struct Biol 161:352–358CrossRefPubMedGoogle Scholar
  31. Kawata M, Sato C (2007) A statistically harmonized alignment-classification in image space enables accurate and robust alignment of noisy images in single particle analysis. J Electron Microsc 56:83–92CrossRefGoogle Scholar
  32. Kawata M, Sato C (2013) Multi-reference-based multiple alignment statistics enables accurate protein-particle pickup from noisy images. Microscopy 62:303–315CrossRefPubMedGoogle Scholar
  33. Kawate T, Gouaux E (2006) Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14:673–681CrossRefPubMedGoogle Scholar
  34. Kisielowski C, Freitag B, Bischoff M, van Lin H, Lazar S, Knippels G, Tiemeijer P, van der Stam M, von Harrach S, Stekelenburg M, Haider M, Uhlemann S, Muller H, Hartel P, Kabius B, Miller D, Petrov I, Olson EA, Donchev T, Kenik EA, Lupini AR, Bentley J, Pennycook SJ, Anderson IM, Minor AM, Schmid AK, Duden T, Radmilovic V, Ramasse QM, Watanabe M, Erni R, Stach EA, Denes P, Dahmen U (2008) Detection of single atoms and buried defects in three dimensions by aberration-corrected electron microscope with 0.5-a information limit. Microsc Microanal 14:469–477CrossRefPubMedGoogle Scholar
  35. Lawson, C. L., Patwardhan, A., Baker, M. L., Hryc, C., Garcia, E. S., Hudson, B. P., Lagerstedt, I., Ludtke, S. J., Pintilie, G., Sala, R., Westbrook, J. D., Berman, H. M., Kleywegt, G. J. & Chiu, W. (2016). Nucleic Acids Res. 44:D396–D403Google Scholar
  36. Li X, Zheng SQ, Egami K, Agard DA, Cheng Y (2013a) Influence of electron dose rate on electron counting images recorded with the K2 camera. J Struct Biol 184:251–260CrossRefPubMedGoogle Scholar
  37. Li X, Mooney P, Zheng S, Booth CR, Braunfeld MB, Gubbens S, Agard DA, Cheng Y (2013b) Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat Methods 10:584–590CrossRefPubMedPubMedCentralGoogle Scholar
  38. Liao M, Cao E, Julius D, Cheng Y (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504:107–112CrossRefPubMedPubMedCentralGoogle Scholar
  39. Linck M, Hartel P, Uhlemann S, Kahl F, Muller H, Zach J, Haider M, Niestadt M, Bischoff M, Biskupek J, Lee Z, Lehnert T, Borrnert F, Rose H, Kaiser U (2016) Chromatic aberration correction for atomic resolution TEM imaging from 20 to 80 kV. Phys Rev Lett 117:076101CrossRefPubMedGoogle Scholar
  40. Ludtke SJ, Baldwin PR, Chiu W (1999) EMAN: semiautomated software for high-resolution single-particle reconstructions. J Struct Biol 128:82–97CrossRefPubMedGoogle Scholar
  41. Marabini R, Masegosa IM, San Martin MC, Marco S, Fernandez JJ, de la Fraga LG, Vaquerizo C, Carazo JM (1996) Xmipp: an image processing package for electron microscopy. J Struct Biol 116:237–240CrossRefPubMedGoogle Scholar
  42. Maruyama Y, Ebihara T, Nishiyama H, Suga M, Sato C (2012a) Immuno EM-OM correlative microscopy in solution by atmospheric scanning electron microscopy (ASEM). J Struct Biol 180:259–270CrossRefPubMedGoogle Scholar
  43. Maruyama Y, Ebihara T, Nishiyama H, Konyuba Y, Senda M, Numaga-Tomita T, Senda T, Suga M, Sato C (2012b) Direct observation of protein microcrystals in crystallization buffer by atmospheric scanning electron microscopy. Int J Mol Sci 13:10553–10567CrossRefPubMedPubMedCentralGoogle Scholar
  44. Memtily N, Okada T, Ebihara T, Sato M, Kurabayashi A, Furihata M, Suga M, Nishiyama H, Mio K, Sato C (2015) Observation of tissues in open aqueous solution by atmospheric scanning electron microscopy: applicability to intraoperative cancer diagnosis. Int J Oncol 46:1872–1882CrossRefPubMedPubMedCentralGoogle Scholar
  45. Milazzo AC, Moldovan G, Lanman J, Jin L, Bouwer JC, Klienfelder S, Peltier ST, Ellisman MH, Kirkland AI, Xuong NH (2010) Characterization of a direct detection device imaging camera for transmission electron microscopy. Ultramicroscopy 110:744–747CrossRefPubMedPubMedCentralGoogle Scholar
  46. Morikawa M, Yajima H, Nitta R, Inoue S, Ogura T, Sato C, Hirokawa N (2015) X-ray and Cryo-EM structures reveal mutual conformational changes of kinesin and GTP-state microtubules upon binding. EMBO J 34:1270–1286CrossRefPubMedPubMedCentralGoogle Scholar
  47. Murata K, Zhang Q, Gerardo Galaz-Montoya J, Fu C, Coleman ML, Osburne MS, Schmid MF, Sullivan MB, Chisholm SW, Chiu W (2017) Visualizing adsorption of Cyanophage P-SSP7 onto marine Prochlorococcus. Sci Rep 7:44176CrossRefPubMedPubMedCentralGoogle Scholar
  48. Nishiyama H, Suga M, Ogura T, Maruyama Y, Koizumi M, Mio K, Kitamura S, Sato C (2010) Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film. J Struct Biol 169:438–449CrossRefPubMedGoogle Scholar
  49. Ogura T, Sato C (2004a) Automatic particle pickup method using a neural network has high accuracy by applying an initial weight derived from eigenimages: a new reference free method for single-particle analysis. J Struct Biol 145:63–75CrossRefPubMedGoogle Scholar
  50. Ogura T, Sato C (2004b) Auto-accumulation method using simulated annealing enables fully automatic particle pickup completely free from a matching template or learning data. J Struct Biol 146:344–358CrossRefPubMedGoogle Scholar
  51. Ogura T, Sato C (2006) A fully automatic 3D reconstruction method using simulated annealing enables accurate posterioric angular assignment of protein projections. J Struct Biol 156:371–386CrossRefPubMedGoogle Scholar
  52. Ogura T, Iwasaki K, Sato C (2003) Topology representing network enables highly accurate classification of protein images taken by cryo electron-microscope without masking. J Struct Biol 143:185–200CrossRefPubMedGoogle Scholar
  53. Ogura T, Tong KI, Mio K, Maruyama Y, Kurokawa H, Sato C, Yamamoto M (2010) Keap1 is a forked-stem dimer structure with two large spheres enclosing the intervening, double glycine repeat, and C-terminal domains. Proc Natl Acad Sci U S A 107:2842–2847CrossRefPubMedPubMedCentralGoogle Scholar
  54. Ogura T, Yajima H, Nitta R, Hirokawa N, Sato C (2014) New simulated annealing approach considering helix bending applied to determine the 8.8A structure of 15-protofilament microtubules. J Struct Biol 188:165–176CrossRefPubMedGoogle Scholar
  55. Padmanabhan B, Tong KI, Ohta T, Nakamura Y, Scharlock M, Ohtsuji M, Kang MI, Kobayashi A, Yokoyama S, Yamamoto M (2006) Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer. Mol Cell 21:689–700CrossRefPubMedGoogle Scholar
  56. Pascual A, Barcena M, Merelo JJ, Carazo JM (2000) Mapping and fuzzy classification of macromolecular images using self-organizing neural networks. Ultramicroscopy 84:85–99CrossRefPubMedGoogle Scholar
  57. Penczek P, Radermacher M, Frank J (1992) Three-dimensional reconstruction of single particles embedded in ice. Ultramicroscopy 40:33–53CrossRefPubMedGoogle Scholar
  58. Radermacher M, Wagenknecht T, Verschoor A, Frank J (1986) A new 3-D reconstruction scheme applied to the 50S ribosomal subunit of E. coli. J Microsc 141:RP1–RP2CrossRefPubMedGoogle Scholar
  59. Rosenthal PB, Henderson R (2003) Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J Mol Biol 333:721–745CrossRefPubMedGoogle Scholar
  60. Sasaki T, Sawada H, Hosokawa F, Kohno Y, Tomita T, Kaneyama T, Kondo Y, Kimoto K, Sato Y, Suenaga K (2010) Performance of low-voltage STEM/TEM with delta corrector and cold field emission gun. J Electron Microsc 59(Suppl 1):S7–13Google Scholar
  61. Sato C, Ueno Y, Asai K, Takahashi K, Sato M, Engel A, Fujiyoshi Y (2001) The voltage-sensitive sodium channel is a bell-shaped molecule with several cavities. Nature 409:1047–1051CrossRefPubMedGoogle Scholar
  62. Scheres SH (2012) RELION: implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 180:519–530CrossRefPubMedPubMedCentralGoogle Scholar
  63. Scheres SH, Nunez-Ramirez R, Sorzano CO, Carazo JM, Marabini R (2008) Image processing for electron microscopy single-particle analysis using XMIPP. Nat Protoc 3:977–990CrossRefPubMedPubMedCentralGoogle Scholar
  64. Scheres SH, Valle M, Grob P, Nogales E, Carazo JM (2009) Maximum likelihood refinement of electron microscopy data with normalization errors. J Struct Biol 166:234–240CrossRefPubMedPubMedCentralGoogle Scholar
  65. Schroder RR (2015) Advances in electron microscopy: a qualitative view of instrumentation development for macromolecular imaging and tomography. Arch Biochem Biophys 581:25–38CrossRefPubMedGoogle Scholar
  66. Shaikh TR, Gao H, Baxter WT, Asturias FJ, Boisset N, Leith A, Frank J (2008) SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs. Nat Protoc 3:1941–1974CrossRefPubMedPubMedCentralGoogle Scholar
  67. Shen H, Zhou Q, Pan X, Li Z, Wu J, Yan N (2017) Structure of a eukaryotic voltage-gated sodium channel at near-atomic resolution. Science 355(6328):eaal4326Google Scholar
  68. Sorzano CO, Marabini R, Velazquez-Muriel J, Bilbao-Castro JR, Scheres SH, Carazo JM, Pascual-Montano A (2004) XMIPP: a new generation of an open-source image processing package for electron microscopy. J Struct Biol 148:194–204CrossRefPubMedGoogle Scholar
  69. Stark H, Mueller F, Orlova EV, Schatz M, Dube P, Erdemir T, Zemlin F, Brimacombe R, van Heel M (1995) The 70S Escherichia coli ribosome at 23 a resolution: fitting the ribosomal RNA. Structure 3:815–821CrossRefPubMedGoogle Scholar
  70. Stogios PJ, Chen L, Prive GG (2007) Crystal structure of the BTB domain from the LRF/ZBTB7 transcriptional regulator. Protein Sci 16:336–342CrossRefPubMedPubMedCentralGoogle Scholar
  71. Tang G, Peng L, Baldwin PR, Mann DS, Jiang W, Rees I, Ludtke SJ (2007) EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol 157:38–46CrossRefPubMedGoogle Scholar
  72. Taylor KA, Glaeser RM (1976) Electron microscopy of frozen hydrated biological specimens. J Ultrastruct Res 55:448–456CrossRefPubMedGoogle Scholar
  73. Trabuco LG, Villa E, Mitra K, Frank J, Schulten K (2008) Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure 16:673–683CrossRefPubMedPubMedCentralGoogle Scholar
  74. van Heel M (1987) Angular reconstitution - a posteriori assignment of projection directions for 3-D reconstruction. Ultramicroscopy 21:111–123CrossRefPubMedGoogle Scholar
  75. van Heel M (1989) Classification of very large electron microscopical image data sets. Optik 82:114–126Google Scholar
  76. van Heel M, Harauz G, Orlova EV, Schmidt R, Schatz M (1996) A new generation of the IMAGIC image processing system. J Struct Biol 116:17–24CrossRefPubMedGoogle Scholar
  77. van Heel M, Gowen B, Matadeen R, Orlova EV, Finn R, Pape T, Cohen D, Stark H, Schmidt R, Schatz M, Patwardhan A (2000) Single-particle electron cryo-microscopy: towards atomic resolution. Q Rev Biophys 33:307–369CrossRefPubMedGoogle Scholar
  78. van Heel M, Portugal R, Rohou A, Linnemayr C, Bebeacua C, Schmidt R, Grant T, Schatz M (2011) Four-dimensional cryo electron microscopy at quasi atomic resolution: ‘IMAGIC 4D’. In: Arnold E, Himmel DM, Rossmann MG (eds) Crystallography of biological macromolecules. Wiley, New York, pp 624–628Google Scholar
  79. Wriggers W (2010) Using situs for the integration of multi-resolution structures. Biophys Rev 2:21–27CrossRefPubMedPubMedCentralGoogle Scholar
  80. Yajima H, Ogura T, Nitta R, Okada Y, Sato C, Hirokawa N (2012) Conformational changes in tubulin in GMPCPP and GDP-taxol microtubules observed by cryoelectron microscopy. J Cell Biol 198:315–322CrossRefPubMedPubMedCentralGoogle Scholar
  81. Yasunaga T, Wakabayashi T (1996) Extensible and object-oriented system Eos supplies a new environment for image analysis of electron micrographs of macromolecules. J Struct Biol 116:155–160CrossRefPubMedGoogle Scholar
  82. Yazawa M, Ferrante C, Feng J, Mio K, Ogura T, Zhang M, Lin PH, Pan Z, Komazaki S, Kato K, Nishi M, Zhao X, Weisleder N, Sato C, Ma J, Takeshima H (2007) TRIC channels are essential for Ca2+ handling in intracellular stores. Nature 448:78–82CrossRefPubMedGoogle Scholar
  83. Zhou ZH (2011) Atomic resolution cryo electron microscopy of macromolecular complexes. Adv Protein Chem Struct Biol 82:1–35CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Chikara Sato
    • 1
    • 2
  • Takao Shinkawa
    • 3
  • Mari Sato
    • 1
  • Masataka Ohashi
    • 1
    • 2
    • 3
  • Mitsuru Ikeda
    • 1
    • 2
    • 3
    • 4
  • Masaaki Kawata
    • 5
  • Kazuhiro Mio
    • 6
  • Masanori Koshino
    • 7
  1. 1.Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  2. 2.Graduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
  3. 3.BioNet Laboratory Inc.TokyoJapan
  4. 4.Terabase Inc.OkazakiJapan
  5. 5.Research Center for Computational Design of Advanced Functional Materials, National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  6. 6.Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL) and Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST)TokyoJapan
  7. 7.Nano Materials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan

Personalised recommendations