Advertisement

Cytokinin and Ethylene Signaling

  • Blanka Pekarova
  • Agnieszka Szmitkowska
  • Josef Houser
  • Michaela Wimmerova
  • Jan Hejátko
Chapter

Abstract

Cytokinins and ethylene belong to the group of “classical” plant growth regulators controlling a broad spectrum of developmental responses. Models for cytokinin and ethylene signal transduction have been established mainly in Arabidopsis, but the signaling pathways of both phytohormones are believed to be conserved throughout the plant kingdom. Nonetheless, in spite of several decades of intense research, our knowledge on basic principles driving signal recognition and transduction of both phytohormones is still delimited. Cytokinins and ethylene are recognized by proteins from the same family of sensor histidine kinases. However, the mechanism of signal transduction through the (plasma) membrane as well as the downstream members of both signaling cascades differ for cytokinins and ethylene. While cytokinins activate multistep phosphorelay signaling of bacterial origin, ethylene signal is perceived by a series of negative regulations mediated by redundant ethylene sensors and downstream Raf-like kinase.

Here, we provide an up-to-date overview of known structures and function–structure relationships of main components of cytokinin and ethylene signaling in Arabidopsis. We demonstrate how the knowledge deepens our understanding of molecular principles underlying signal recognition and transduction via both hormonal pathways while raising new questions that remain to be answered. Finally, we summarize the recently published evidence, providing mechanistic insights into the long suspected cytokinin/ethylene signaling crosstalk.

Notes

Acknowledgments

This work was supported by the Czech Science Foundation, grant 13-25280S, and by the Ministry of Education, Youth and Sports of the Czech Republic under the project CEITEC 2020 (LQ1601) and CZ.02.1.01/0.0/0.0/16_026/0008446.

References

  1. Abeles FB, Morgan PW, Saltveit ME (1992) Ethylene in plant biology, 2nd edn. Academic Press, San DiegoGoogle Scholar
  2. Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284(5423):2148–2152PubMedCrossRefGoogle Scholar
  3. Alonso JM, Stepanova AN, Solano R, Wisman E, Ferrari S, Ausubel FM, Ecker JR (2003) Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis. Proc Natl Acad Sci U S A 100(5):2992–2997PubMedPubMedCentralCrossRefGoogle Scholar
  4. An F, Zhao Q, Ji Y, Li W, Jiang Z, Yu X, Zhang C, Han Y, He W, Liu Y, Zhang S, Ecker JR, Guo H (2010) Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-box 1 and 2 that requires EIN2 in Arabidopsis. Plant Cell 22(7):2384–2401PubMedPubMedCentralCrossRefGoogle Scholar
  5. Anantharaman V, Aravind L (2001) The CHASE domain: a predicted ligand-binding module in plant cytokinin receptors and other eukaryotic and bacterial receptors. Trends Biochem Sci 26(10):579–582PubMedCrossRefGoogle Scholar
  6. Arabidopsis Genome I (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408(6814):796–815CrossRefGoogle Scholar
  7. Bae E, Bitto E, Bingman CA, Allard ST, Wesenberg GE, Wrobel RL, Fox BG, Phillips GN (2010) Crystal structure of a putative histidine-containing phosphotransfer protein from Oryza saliva. J Korean Soc Appl Biol Chem 53(6):852–856CrossRefGoogle Scholar
  8. Bauer J, Reiss K, Veerabagu M, Heunemann M, Harter K, Stehle T (2013) Structure-function analysis of Arabidopsis thaliana histidine kinase AHK5 bound to its cognate phosphotransfer protein AHP1. Mol Plant 6(3):959–970PubMedCrossRefGoogle Scholar
  9. Bell CH, Porter SL, Strawson A, Stuart DI, Armitage JP (2010) Using structural information to change the phosphotransfer specificity of a two-component chemotaxis signalling complex. PLoS Biol 8(2):e1000306PubMedPubMedCentralCrossRefGoogle Scholar
  10. Binder BM, O'Malley RC, Wang W, Moore JM, Parks BM, Spalding EP, Bleecker AB (2004) Arabidopsis seedling growth response and recovery to ethylene. A kinetic analysis. Plant Physiol 136(2):2913–2920PubMedPubMedCentralCrossRefGoogle Scholar
  11. Binder BM, Walker JM, Gagne JM, Emborg TJ, Hemmann G, Bleecker AB, Vierstra RD (2007) The Arabidopsis EIN3 binding F-box proteins EBF1 and EBF2 have distinct but overlapping roles in ethylene signaling. Plant Cell 19(2):509–523PubMedPubMedCentralCrossRefGoogle Scholar
  12. Binder BM, Chang C, Schaller GE (2012) Perceptione of ethylene by plants: ethylene receptors. In: McManus MT (ed) Annual plant reviews, the plant hormone ethylene, vol 44. Wiley-Blackwell, Oxford, pp 117–145CrossRefGoogle Scholar
  13. Bisson MM, Groth G (2010) New insight in ethylene signaling: autokinase activity of ETR1 modulates the interaction of receptors and EIN2. Mol Plant 3(5):882–889PubMedCrossRefGoogle Scholar
  14. Bisson MM, Groth G (2011) New paradigm in ethylene signaling: EIN2, the central regulator of the signaling pathway, interacts directly with the upstream receptors. Plant Signal Behav 6(1):164–166PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bisson MM, Bleckmann A, Allekotte S, Groth G (2009) EIN2, the central regulator of ethylene signalling, is localized at the ER membrane where it interacts with the ethylene receptor ETR1. Biochem J 424(1):1–6PubMedCrossRefGoogle Scholar
  16. Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–18PubMedCrossRefGoogle Scholar
  17. Bleecker AB, Estelle MA, Somerville C, Kende H (1988) Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241(4869):1086–1089PubMedCrossRefGoogle Scholar
  18. Bourret RB (2010) Receiver domain structure and function in response regulator proteins. Curr Opin Microbiol 13(2):142–149PubMedPubMedCentralCrossRefGoogle Scholar
  19. Caesar K, Thamm AM, Witthoft J, Elgass K, Huppenberger P, Grefen C, Horak J, Harter K (2011) Evidence for the localization of the Arabidopsis cytokinin receptors AHK3 and AHK4 in the endoplasmic reticulum. J Exp Bot 62(15):5571–5580PubMedPubMedCentralCrossRefGoogle Scholar
  20. Capra EJ, Perchuk BS, Lubin EA, Ashenberg O, Skerker JM, Laub MT (2010) Systematic dissection and trajectory-scanning mutagenesis of the molecular Interface that ensures specificity of two-component signaling pathways. PLoS Genet 6(11):e1001220PubMedPubMedCentralCrossRefGoogle Scholar
  21. Casino P, Rubio V, Marina A (2009) Structural insight into partner specificity and phosphoryl transfer in two-component signal transduction. Cell 139(2):325–336PubMedCrossRefGoogle Scholar
  22. Casino P, Miguel-Romero L, Marina A (2014) Visualizing autophosphorylation in histidine kinases. Nat Commun 5:3258PubMedCrossRefGoogle Scholar
  23. Chang C, Kwok SF, Bleecker AB, Meyerowitz EM (1993) Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262(5133):539–544PubMedCrossRefGoogle Scholar
  24. Chang KN, Zhong S, Weirauch MT, Hon G, Pelizzola M, Li H, Huang SS, Schmitz RJ, Urich MA, Kuo D, Nery JR, Qiao H, Yang A, Jamali A, Chen H, Ideker T, Ren B, Bar-Joseph Z, Hughes TR, Ecker JR (2013) Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis. elife 2:e00675PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chao QM, Rothenberg M, Solano R, Roman G, Terzaghi W, Ecker JR (1997) Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell 89(7):1133–1144PubMedCrossRefGoogle Scholar
  26. Chen YF, Randlett MD, Findell JL, Schaller GE (2002) Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of Arabidopsis. J Biol Chem 277(22):19861–19866PubMedCrossRefGoogle Scholar
  27. Chen YF, Gao Z, Kerris RJ 3rd, Wang W, Binder BM, Schaller GE (2010) Ethylene receptors function as components of high-molecular-mass protein complexes in Arabidopsis. PLoS One 5(1):e8640PubMedPubMedCentralCrossRefGoogle Scholar
  28. Cho YH, Yoo SD (2015) Novel connections and gaps in ethylene signaling from the ER membrane to the nucleus. Front Plant Sci 5:733PubMedPubMedCentralCrossRefGoogle Scholar
  29. Clark KL, Larsen PB, Wang X, Chang C (1998) Association of the Arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS ethylene receptors. Proc Natl Acad Sci U S A 95(9):5401–5406PubMedPubMedCentralCrossRefGoogle Scholar
  30. Cutcliffe JW, Hellmann E, Heyl A, Rashotte AM (2011) CRFs form protein-protein interactions with each other and with members of the cytokinin signalling pathway in Arabidopsis via the CRF domain. J Exp Bot 62(14):4995–5002PubMedPubMedCentralCrossRefGoogle Scholar
  31. D'Agostino IB, Deruere J, Kieber JJ (2000) Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. Plant Physiol 124(4):1706–1717PubMedPubMedCentralCrossRefGoogle Scholar
  32. Degtjarik O, Dopitova R, Puehringer S, Nejedla E, Kuty M, Weiss MS, Hejatko J, Janda L, Kuta Smatanova I (2013) Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of AHP2, a signal transmitter protein from Arabidopsis thaliana. Acta Crystallogr Sect F Struct Biol Cryst Commun 69(Pt 2):158–161Google Scholar
  33. Degtjarik O, Dopitova R, Reha D, Puehringer S, Otrusinova O, Pekarova B, Szmitkowska A, Hrdinova V, Valkova M, Kuty M, Jayasree A, Weiss MS, Janda L, Kuta-Smatanova I, Zidek L, Hejatko J. Structural insights into the specificity of sensory histidine kinase signaling in Eukaryotes (unpublished)Google Scholar
  34. Dortay H, Mehnert N, Burkle L, Schmulling T, Heyl A (2006) Analysis of protein interactions within the cytokinin-signaling pathway of Arabidopsis thaliana. FEBS J 273(20):4631–4644PubMedCrossRefGoogle Scholar
  35. Ecker JR (2004) Reentry of the ethylene MPK6 module. Plant Cell 16(12):3169–3173PubMedCentralCrossRefPubMedGoogle Scholar
  36. Feher VA, Zapf JW, Hoch JA, Whiteley JM, McIntosh LP, Rance M, Skelton NJ, Dahlquist FW, Cavanagh J (1997) High-resolution NMR structure and backbone dynamics of the Bacillus subtilis response regulator, Spo0F: implications for phosphorylation and molecular recognition. Biochemistry 36(33):10015–10025PubMedCrossRefGoogle Scholar
  37. Gagne JM, Smalle J, Gingerich DJ, Walker JM, Yoo SD, Yanagisawa S, Vierstra RD (2004) Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proc Natl Acad Sci U S A 101(17):6803–6808PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gajdosova S, Spichal L, Kaminek M, Hoyerova K, Novak O, Dobrev PI, Galuszka P, Klima P, Gaudinova A, Zizkova E, Hanus J, Dancak M, Travnicek B, Pesek B, Krupicka M, Vankova R, Strnad M, Motyka V (2011) Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J Exp Bot 62(8):2827–2840PubMedCrossRefGoogle Scholar
  39. Gao R, Stock AM (2009) Biological insights from structures of two-component proteins. Annu Rev Microbiol 63:133–154PubMedPubMedCentralCrossRefGoogle Scholar
  40. Gao Z, Chen YF, Randlett MD, Zhao XC, Findell JL, Kieber JJ, Schaller GE (2003) Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signaling complexes. J Biol Chem 278(36):34725–34732PubMedCrossRefGoogle Scholar
  41. Gao Z, Wen CK, Binder BM, Chen YF, Chang J, Chiang YH, Kerris RJ 3rd, Chang C, Schaller GE (2008) Heteromeric interactions among ethylene receptors mediate signaling in Arabidopsis. J Biol Chem 283(35):23801–23810PubMedPubMedCentralCrossRefGoogle Scholar
  42. Gattolin S, Alandete-Saez M, Elliott K, Gonzalez-Carranza Z, Naomab E, Powell C, Roberts JA (2006) Spatial and temporal expression of the response regulators ARR22 and ARR24 in Arabidopsis thaliana. J Exp Bot 57(15):4225–4233PubMedCrossRefGoogle Scholar
  43. Grefen C, Stadele K, Ruzicka K, Obrdlik P, Harter K, Horak J (2008) Subcellular localization and in vivo interactions of the Arabidopsis thaliana ethylene receptor family members. Mol Plant 1(2):308–320PubMedCrossRefGoogle Scholar
  44. Gruhn N, Heyl A (2013) Updates on the model and the evolution of cytokinin signaling. Curr Opin Plant Biol 16(5):569–574PubMedCrossRefGoogle Scholar
  45. Guo H, Ecker JR (2003) Plant responses to ethylene gas are mediated by SCF(EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor. Cell 115(6):667–677PubMedCrossRefGoogle Scholar
  46. Guo H, Ecker JR (2004) The ethylene signaling pathway: new insights. Curr Opin Plant Biol 7(1):40–49PubMedCrossRefGoogle Scholar
  47. Hall AE, Bleecker AB (2003) Analysis of combinatorial loss-of-function mutants in the Arabidopsis ethylene receptors reveals that the ers1 etr1 double mutant has severe developmental defects that are EIN2 dependent. Plant Cell 15(9):2032–2041PubMedPubMedCentralCrossRefGoogle Scholar
  48. Hall AE, Chen QG, Findell JL, Schaller GE, Bleecker AB (1999) The relationship between ethylene binding and dominant insensitivity conferred by mutant forms of the ETR1 ethylene receptor. Plant Physiol 121(1):291–300PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hall BP, Shakeel SN, Amir M, Ul Haq N, Qu X, Schaller GE (2012) Histidine kinase activity of the ethylene receptor ETR1 facilitates the ethylene response in Arabidopsis. Plant Physiol 159(2):682–695PubMedPubMedCentralCrossRefGoogle Scholar
  50. Hass C, Lohrmann J, Albrecht V, Sweere U, Hummel F, Yoo SD, Hwang I, Zhu T, Schafer E, Kudla J, Harter K (2004) The response regulator 2 mediates ethylene signalling and hormone signal integration in Arabidopsis. EMBO J 23(16):3290–3302PubMedPubMedCentralCrossRefGoogle Scholar
  51. Heyl A, Wulfetange K, Pils B, Nielsen N, Romanov GA, Schmulling T (2007) Evolutionary proteomics identifies amino acids essential for ligand-binding of the cytokinin receptor CHASE domain. BMC Evol Biol 7:62PubMedPubMedCentralCrossRefGoogle Scholar
  52. Heyl A, Riefler M, Romanov GA, Schmulling T (2012) Properties, functions and evolution of cytokinin receptors. Eur J Cell Biol 91(4):246–256PubMedCrossRefGoogle Scholar
  53. Higuchi M, Pischke MS, Mahonen AP, Miyawaki K, Hashimoto Y, Seki M, Kobayashi M, Shinozaki K, Kato T, Tabata S, Helariutta Y, Sussman MR, Kakimoto T (2004) In planta functions of the Arabidopsis cytokinin receptor family. Proc Natl Acad Sci U S A 101(23):8821–8826PubMedPubMedCentralCrossRefGoogle Scholar
  54. Hirayama T, Kieber JJ, Hirayama N, Kogan M, Guzman P, Nourizadeh S, Alonso JM, Dailey WP, Dancis A, Ecker JR (1999) RESPONSIVE-TO-ANTAGONIST1, a Menkes/Wilson disease-related copper transporter, is required for ethylene signaling in Arabidopsis. Cell 97(3):383–393PubMedCrossRefGoogle Scholar
  55. Horak J, Janda L, Pekarova B, Hejatko J (2011) Molecular mechanisms of Signalling specificity via Phosphorelay pathways in Arabidopsis. Curr Protein Pept Sci 12(2):126–136PubMedCrossRefGoogle Scholar
  56. Hosoda K, Imamura A, Katoh E, Hatta T, Tachiki M, Yamada H, Mizuno T, Yamazaki T (2002) Molecular structure of the GARP family of plant Myb-related DNA binding motifs of the Arabidopsis response regulators. Plant Cell 14(9):2015–2029PubMedPubMedCentralCrossRefGoogle Scholar
  57. Hothorn M, Dabi T, Chory J (2011) Structural basis for cytokinin recognition by Arabidopsis thaliana histidine kinase 4. Nat Chem Biol 7(11):766–768PubMedPubMedCentralCrossRefGoogle Scholar
  58. Hua J, Meyerowitz EM (1998) Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94(2):261–271PubMedCrossRefGoogle Scholar
  59. Hua J, Chang C, Sun Q, Meyerowitz EM (1995) Ethylene insensitivity conferred by Arabidopsis ERS gene. Science 269(5231):1712–1714PubMedCrossRefGoogle Scholar
  60. Hua J, Sakai H, Nourizadeh S, Chen QG, Bleecker AB, Ecker JR, Meyerowitz EM (1998) EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell 10(8):1321–1332PubMedPubMedCentralCrossRefGoogle Scholar
  61. Huang Y, Li H, Hutchison CE, Laskey J, Kieber JJ (2003) Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant J 33(2):221–233PubMedCrossRefGoogle Scholar
  62. Hung YL, Jiang I, Lee YZ, Wen CK, Sue SC (2016) NMR study reveals the receiver domain of Arabidopsis ETHYLENE RESPONSE1 Ethylene receptor as an atypical type RESPONSE regulator. PLoS One 11(8):e0160598PubMedPubMedCentralCrossRefGoogle Scholar
  63. Hutchison CE, Kieber JJ (2007) Signaling via histidine-containing phosphotransfer proteins in Arabidopsis. Plant Signal Behav 2(4):287–289PubMedPubMedCentralCrossRefGoogle Scholar
  64. Hutchison CE, Li J, Argueso C, Gonzalez M, Lee E, Lewis MW, Maxwell BB, Perdue TD, Schaller GE, Alonso JM, Ecker JR, Kieber JJ (2006) The Arabidopsis histidine phosphotransfer proteins are redundant positive regulators of cytokinin signaling. Plant Cell 18(11):3073–3087PubMedPubMedCentralCrossRefGoogle Scholar
  65. Hwang I, Sheen J (2001) Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413(6854):383–389PubMedCrossRefGoogle Scholar
  66. Imamura A, Hanaki N, Nakamura A, Suzuki T, Taniguchi M, Kiba T, Ueguchi C, Sugiyama T, Mizuno T (1999) Compilation and characterization of Arabidopsis thaliana response regulators implicated in His-Asp phosphorelay signal transduction. Plant Cell Physiol 40(7):733–742PubMedCrossRefGoogle Scholar
  67. Inoue T, Higuchi M, Hashimoto Y, Seki M, Kobayashi M, Kato T, Tabata S, Shinozaki K, Kakimoto T (2001) Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 409(6823):1060–1063PubMedCrossRefGoogle Scholar
  68. Janiak-Spens F, West AH (2000) Functional roles of conserved amino acid residues surrounding the phosphorylatable histidine of the yeast phosphorelay protein YPD1. Mol Microbiol 37(1):136–144PubMedCrossRefGoogle Scholar
  69. Ju C, Chang C (2015) Mechanistic insights in ethylene perception and signal transduction. Plant Physiol 169(1):85–95PubMedPubMedCentralCrossRefGoogle Scholar
  70. Ju C, Yoon GM, Shemansky JM, Lin DY, Ying ZI, Chang J, Garrett WM, Kessenbrock M, Groth G, Tucker ML, Cooper B, Kieber JJ, Chang C (2012) CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proc Natl Acad Sci U S A 109(47):19486–19491PubMedPubMedCentralCrossRefGoogle Scholar
  71. Kato M, Mizuno T, Shimizu T, Hakoshima T (1997) Insights into multistep phosphorelay from the crystal structure of the C-terminal HPt domain of ArcB. Cell 88(5):717–723PubMedCrossRefGoogle Scholar
  72. Kato M, Shimizu T, Mizuno T, Hakoshima T (1999) Structure of the histidine-containing phosphotransfer (HPt) domain of the anaerobic sensor protein ArcB complexed with the chemotaxis response regulator CheY. Acta Crystallogr D Biol Crystallogr 55:1257–1263PubMedCrossRefGoogle Scholar
  73. Kiba T, Aoki K, Sakakibara H, Mizuno T (2004) Arabidopsis response regulator, ARR22, ectopic expression of which results in phenotypes similar to the wol cytokinin-receptor mutant. Plant Cell Physiol 45(8):1063–1077PubMedCrossRefGoogle Scholar
  74. Kieber JJ, Schaller GE (2014) Cytokinins. The Arabidopsis Book 12:e0168PubMedPubMedCentralCrossRefGoogle Scholar
  75. Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell 72(3):427–441PubMedCrossRefGoogle Scholar
  76. Kim HJ, Ryu H, Hong SH, Woo HR, Lim PO, Lee IC, Sheen J, Nam HG, Hwang I (2006) Cytokinin-mediated control of leaf longevity by AHK3 through phosphorylation of ARR2 in Arabidopsis. Proc Natl Acad Sci U S A 103(3):814–819PubMedPubMedCentralCrossRefGoogle Scholar
  77. Knaggs MH, Salsbury FR Jr, Edgell MH, Fetrow JS (2007) Insights into correlated motions and long-range interactions in CheY derived from molecular dynamics simulations. Biophys J 92(6):2062–2079PubMedCrossRefGoogle Scholar
  78. Konishi M, Yanagisawa S (2008) Ethylene signaling in Arabidopsis involves feedback regulation via the elaborate control of EBF2 expression by EIN3. Plant J 55(5):821–831PubMedCrossRefGoogle Scholar
  79. Kosugi S, Ohashi Y (2000) Cloning and DNA-binding properties of a tobacco Ethylene-Insensitive3 (EIN3) homolog. Nucleic Acids Res 28(4):960–967PubMedPubMedCentralCrossRefGoogle Scholar
  80. Kuderova A, Gallova L, Kuricova K, Nejedla E, Curdova A, Micenkova L, Plihal O, Smajs D, Spichal L, Hejatko J (2015) Identification of AHK2- and AHK3-like cytokinin receptors in Brassica napus reveals two subfamilies of AHK2 orthologues. J Exp Bot 66(1):339–353PubMedCrossRefGoogle Scholar
  81. Larsen PB, Chang C (2001) The Arabidopsis eer1 mutant has enhanced ethylene responses in the hypocotyl and stem. Plant Physiol 125(2):1061–1073PubMedPubMedCentralCrossRefGoogle Scholar
  82. Li J, Li Z, Tang L, Yang Y, Zouine M, Bouzayen M (2012) A conserved phosphorylation site regulates the transcriptional function of ETHYLENE-INSENSITIVE3-like1 in tomato. J Exp Bot 63(1):427–439PubMedCrossRefGoogle Scholar
  83. Li W, Ma M, Feng Y, Li H, Wang Y, Ma Y, Li M, An F, Guo H (2015) EIN2-directed translational regulation of ethylene signaling in Arabidopsis. Cell 163(3):670–683PubMedCrossRefGoogle Scholar
  84. Light KM, Wisniewski JA, Vinyard WA, Kieber-Emmons MT (2016) Perception of the plant hormone ethylene: known-knowns and known-unknowns. J Biol Inorg Chem 21(5–6):715–728PubMedCrossRefGoogle Scholar
  85. Lomin SN, Yonekura-Sakakibara K, Romanov GA, Sakakibara H (2011) Ligand-binding properties and subcellular localization of maize cytokinin receptors. J Exp Bot 62(14):5149–5159PubMedPubMedCentralCrossRefGoogle Scholar
  86. Lomin SN, Krivosheev DM, Steklov MY, Arkhipov DV, Osolodkin DI, Schmulling T, Romanov GA (2015) Plant membrane assays with cytokinin receptors underpin the unique role of free cytokinin bases as biologically active ligands. J Exp Bot 66(7):1851–1863PubMedPubMedCentralCrossRefGoogle Scholar
  87. Mahonen AP, Bonke M, Kauppinen L, Riikonen M, Benfey PN, Helariutta Y (2000) A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes Dev 14(23):2938–2943PubMedPubMedCentralCrossRefGoogle Scholar
  88. Mahonen AP, Bishopp A, Higuchi M, Nieminen KM, Kinoshita K, Tormakangas K, Ikeda Y, Oka A, Kakimoto T, Helariutta Y (2006a) Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development. Science 311(5757):94–98PubMedCrossRefGoogle Scholar
  89. Mahonen AP, Higuchi M, Tormakangas K, Miyawaki K, Pischke MS, Sussman MR, Helariutta Y, Kakimoto T (2006b) Cytokinins regulate a bidirectional phosphorelay network in Arabidopsis. Curr Biol 16(11):1116–1122PubMedCrossRefGoogle Scholar
  90. Marina A, Mott C, Auyzenberg A, Hendrickson WA, Waldburger CD (2001) Structural and mutational analysis of the PhoQ histidine kinase catalytic domain: INSIGHT INTO THE REACTION MECHANISM. J Biol Chem 276(44):41182–41190PubMedCrossRefGoogle Scholar
  91. Matsushika A, Mizuno T (1998) The structure and function of the histidine-containing phosphotransfer (HPt) signaling domain of the Escherichia coli ArcB sensor. J Biochem 124(2):440–445PubMedCrossRefGoogle Scholar
  92. Mayerhofer H, Panneerselvam S, Mueller-Dieckmann J (2012) Protein kinase domain of CTR1 from Arabidopsis thaliana promotes ethylene receptor cross talk. J Mol Biol 415(4):768–779PubMedCrossRefGoogle Scholar
  93. Mayerhofer H, Panneerselvam S, Kaljunen H, Tuukkanen A, Mertens HD, Mueller-Dieckmann J (2015) Structural model of the cytosolic domain of the plant ethylene receptor 1 (ETR1). J Biol Chem 290(5):2644–2658PubMedCrossRefGoogle Scholar
  94. Merchante C, Brumos J, Yun J, Hu Q, Spencer KR, Enriquez P, Binder BM, Heber S, Stepanova AN, Alonso JM (2015) Gene-specific translation regulation mediated by the hormone-signaling molecule EIN2. Cell 163(3):684–697PubMedCrossRefGoogle Scholar
  95. Mieczkowski C, Iavarone AT, Alber T (2008) Auto-activation mechanism of the Mycobacterium tuberculosis PknB receptor Ser/Thr kinase. EMBO J 27(23):3186–3197PubMedPubMedCentralCrossRefGoogle Scholar
  96. Miller CO, Skoog F, Vonsaltza MH, Strong FM (1955) Kinetin, a cell division factor from deoxyribonucleic acid. J Am Chem Soc 77(5):1392–1392CrossRefGoogle Scholar
  97. Miwa K, Ishikawa K, Terada K, Yamada H, Suzuki T, Yamashino T, Mizuno T (2007) Identification of amino acid substitutions that render the Arabidopsis cytokinin receptor histidine kinase AHK4 constitutively active. Plant Cell Physiol 48(12):1809–1814PubMedCrossRefGoogle Scholar
  98. Mok DWS, Mok MC (2001) Cytokinin metabolism and action. Annu Rev Plant Physiol Plant Mol Biol 52:89–118PubMedCrossRefGoogle Scholar
  99. Mougel C, Zhulin IB (2001) CHASE: an extracellular sensing domain common to transmembrane receptors from prokaryotes, lower eukaryotes and plants. Trends Biochem Sci 26(10):582–584PubMedCrossRefGoogle Scholar
  100. Moussatche P, Klee HJ (2004) Autophosphorylation activity of the Arabidopsis ethylene receptor multigene family. J Biol Chem 279(47):48734–48741PubMedCrossRefGoogle Scholar
  101. Muller-Dieckmann HJ, Grantz AA, Kim SH (1999) The structure of the signal receiver domain of the Arabidopsis thaliana ethylene receptor ETR1. Structure 7(12):1547–1556PubMedCrossRefGoogle Scholar
  102. Nishimura C, Ohashi Y, Sato S, Kato T, Tabata S, Ueguchi C (2004) Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in Arabidopsis. Plant Cell 16(6):1365–1377PubMedPubMedCentralCrossRefGoogle Scholar
  103. Nolen B, Taylor S, Ghosh G (2004) Regulation of protein kinases; controlling activity through activation segment conformation. Mol Cell 15(5):661–675PubMedCrossRefGoogle Scholar
  104. Ocasio VJ, Correa F, Gardner KH (2015) Ligand-induced folding of a two-component signaling receiver domain. Biochemistry 54(6):1353–1363PubMedPubMedCentralCrossRefGoogle Scholar
  105. Otrusinova O, Demo G, Padrta P, Jasenakova Z, Pekarova B, Gelova Z, Szmitkowska A, Kaderavek P, Jansen S, Zachrdla M, Klumpler T, Marek J, Hritz J, Janda L, Iwai H, Wimmerova M, Hejatko J, Zidek L (2017) Conformational dynamics as a key factor of signaling mediated by the receiver domain of sensor histidine kinase from Arabidopsis thaliana. J Biol Chem.  https://doi.org/10.1074/jbc.M117.790212
  106. Pekarova B, Klumpler T, Triskova O, Horak J, Jansen S, Dopitova R, Borkovcova P, Papouskova V, Nejedla E, Sklenar V, Marek J, Zidek L, Hejatko J, Janda L (2011) Structure and binding specificity of the receiver domain of sensor histidine kinase CKI1 from Arabidopsis thaliana. Plant J 67(5):827–839PubMedCrossRefGoogle Scholar
  107. Potuschak T, Lechner E, Parmentier Y, Yanagisawa S, Grava S, Koncz C, Genschik P (2003) EIN3-dependent regulation of plant ethylene hormone signaling by two arabidopsis F box proteins: EBF1 and EBF2. Cell 115(6):679–689PubMedCrossRefGoogle Scholar
  108. Punwani JA, Hutchison CE, Eric Schaller G, Kieber JJ (2010) The subcellular distribution of the Arabidopsis histidine phosphotransfer proteins is independent of cytokinin signaling. Plant J 62:473–482PubMedCrossRefGoogle Scholar
  109. Qiao H, Chang KN, Yazaki J, Ecker JR (2009) Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis. Genes Dev 23(4):512–521PubMedPubMedCentralCrossRefGoogle Scholar
  110. Qiao H, Shen Z, Huang SS, Schmitz RJ, Urich MA, Briggs SP, Ecker JR (2012) Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas. Science 338(6105):390–393PubMedPubMedCentralCrossRefGoogle Scholar
  111. Qu X, Hall BP, Gao Z, Schaller GE (2007) A strong constitutive ethylene-response phenotype conferred on Arabidopsis plants containing null mutations in the ethylene receptors ETR1 and ERS1. BMC Plant Biol 7:3PubMedPubMedCentralCrossRefGoogle Scholar
  112. Rajakulendran T, Sahmi M, Lefrancois M, Sicheri F, Therrien M (2009) A dimerization-dependent mechanism drives RAF catalytic activation. Nature 461(7263):542–545PubMedCrossRefGoogle Scholar
  113. Rashotte AM, Mason MG, Hutchison CE, Ferreira FJ, Schaller GE, Kieber JJ (2006) A subset of Arabidopsis AP2 transcription factors mediates cytokinin responses in concert with a two-component pathway. Proc Natl Acad Sci U S A 103(29):11081–11085PubMedPubMedCentralCrossRefGoogle Scholar
  114. Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290(5499):2105–2110PubMedCrossRefGoogle Scholar
  115. Rodriguez FI, Esch JJ, Hall AE, Binder BM, Schaller GE, Bleecker AB (1999) A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science 283(5404):996–998PubMedCrossRefGoogle Scholar
  116. Romanov GA, Spichal L, Lomin SN, Strnad M, Schmulling T (2005) A live cell hormone-binding assay on transgenic bacteria expressing a eukaryotic receptor protein. Anal Biochem 347(1):129–134PubMedCrossRefGoogle Scholar
  117. Romanov GA, Lomin SN, Schmulling T (2006) Biochemical characteristics and ligand-binding properties of Arabidopsis cytokinin receptor AHK3 compared to CRE1/AHK4 as revealed by a direct binding assay. J Exp Bot 57(15):4051–4058PubMedCrossRefGoogle Scholar
  118. Ruszkowski M, Brzezinski K, Jedrzejczak R, Dauter M, Dauter Z, Sikorski M, Jaskolski M (2013) Medicago truncatula histidine-containing phosphotransfer protein: structural and biochemical insights into the cytokinin transduction pathway in plants. FEBS J 280(15):3709–3720PubMedPubMedCentralCrossRefGoogle Scholar
  119. Sakai H, Hua J, Chen QG, Chang C, Medrano LJ, Bleecker AB, Meyerowitz EM (1998) ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. Proc Natl Acad Sci U S A 95(10):5812–5817PubMedPubMedCentralCrossRefGoogle Scholar
  120. Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57:431–449PubMedCrossRefGoogle Scholar
  121. Salome PA, To JP, Kieber JJ, McClung CR (2006) Arabidopsis response regulators ARR3 and ARR4 play cytokinin-independent roles in the control of circadian period. Plant Cell 18(1):55–69PubMedPubMedCentralCrossRefGoogle Scholar
  122. Schaller GE, Ladd AN, Lanahan MB, Spanbauer JM, Bleecker AB (1995) The ethylene response mediator ETR1 from Arabidopsis forms a disulfide-linked dimer. J Biol Chem 270(21):12526–12530PubMedCrossRefGoogle Scholar
  123. Schaller GE, Shiu SH, Armitage JP (2011) Two-component systems and their co-option for eukaryotic signal transduction. Curr Biol 21(9):R320–R330PubMedCrossRefGoogle Scholar
  124. Scharein B, Groth G (2011) Phosphorylation alters the interaction of the Arabidopsis phosphotransfer protein AHP1 with its sensor kinase ETR1. PLoS One 6(9):e24173PubMedPubMedCentralCrossRefGoogle Scholar
  125. Scharein B, Voet-van-Vormizeele J, Harter K, Groth G (2008) Ethylene signaling: identification of a putative ETR1-AHP1 phosphorelay complex by fluorescence spectroscopy. Anal Biochem 377(1):72–76PubMedCrossRefGoogle Scholar
  126. Shakeel SN, Wang X, Binder BM, Schaller GE (2012) Mechanisms of signal transduction by ethylene: overlapping and non-overlapping signalling roles in a receptor family. AoB Plants 5:plt010Google Scholar
  127. Skerker JM, Perchuk BS, Siryaporn A, Lubin EA, Ashenberg O, Goulian M, Laub MT (2008) Rewiring the specificity of two-component signal transduction systems. Cell 133(6):1043–1054PubMedPubMedCentralCrossRefGoogle Scholar
  128. Solano R, Stepanova A, Chao Q, Ecker JR (1998) Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev 12(23):3703–3714PubMedPubMedCentralCrossRefGoogle Scholar
  129. Spichal L (2012) Cytokinins - recent news and views of evolutionally old molecules. Funct Plant Biol 39(4):267–284CrossRefGoogle Scholar
  130. Spichal L, Rakova NY, Riefler M, Mizuno T, Romanov GA, Strnad M, Schmulling T (2004) Two cytokinin receptors of Arabidopsis thaliana, CRE1/AHK4 and AHK3, differ in their ligand specificity in a bacterial assay. Plant Cell Physiol 45(9):1299–1305PubMedCrossRefGoogle Scholar
  131. Steklov MY, Lomin SN, Osolodkin DI, Romanov GA (2013) Structural basis for cytokinin receptor signaling: an evolutionary approach. Plant Cell Rep 32(6):781–793PubMedCrossRefGoogle Scholar
  132. Stolz A, Riefler M, Lomin SN, Achazi K, Romanov GA, Schmulling T (2011) The specificity of cytokinin signalling in Arabidopsis thaliana is mediated by differing ligand affinities and expression profiles of the receptors. Plant J 67(1):157–168PubMedCrossRefGoogle Scholar
  133. Street IH, Aman S, Zubo Y, Ramzan A, Wang X, Shakeel SN, Kieber JJ, Schaller GE (2015) Ethylene inhibits cell proliferation of the Arabidopsis root meristem. Plant Physiol 169(1):338–350PubMedPubMedCentralCrossRefGoogle Scholar
  134. Sugawara H, Kawano Y, Hatakeyama T, Yamaya T, Kamiya N, Sakakibara H (2005) Crystal structure of the histidine-containing phosphotransfer protein ZmHP2 from maize. Protein Sci 14(1):202–208PubMedPubMedCentralCrossRefGoogle Scholar
  135. Suzuki T, Miwa K, Ishikawa K, Yamada H, Aiba H, Mizuno T (2001a) The Arabidopsis sensor His-kinase, AHK4, can respond to cytokinins. Plant Cell Physiol 42(2):107–113PubMedCrossRefGoogle Scholar
  136. Suzuki T, Sakurai K, Ueguchi C, Mizuno T (2001b) Two types of putative nuclear factors that physically interact with histidine-containing phosphotransfer (Hpt) domains, signaling mediators in His-to-Asp phosphorelay, in Arabidopsis thaliana. Plant Cell Physiol 42(1):37–45PubMedCrossRefGoogle Scholar
  137. To JP, Kieber JJ (2008) Cytokinin signaling: two-components and more. Trends Plant Sci 13(2):85–92PubMedCrossRefGoogle Scholar
  138. To JP, Haberer G, Ferreira FJ, Deruere J, Mason MG, Schaller GE, Alonso JM, Ecker JR, Kieber JJ (2004) Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell 16(3):658–671PubMedPubMedCentralCrossRefGoogle Scholar
  139. Ueguchi C, Koizumi H, Suzuki T, Mizuno T (2001) Novel family of sensor histidine kinase genes in Arabidopsis thaliana. Plant Cell Physiol 42(2):231–235PubMedCrossRefGoogle Scholar
  140. Urao T, Miyata S, Yamaguchi-Shinozaki K, Shinozaki K (2000) Possible His to Asp phosphorelay signaling in an Arabidopsis two-component system. FEBS Lett 478(3):227–232PubMedCrossRefGoogle Scholar
  141. Verma V, Sivaraman J, Srivastava AK, Sadanandom A, Kumar PP (2015) Destabilization of interaction between cytokinin signaling intermediates AHP1 and ARR4 modulates Arabidopsis development. New Phytol 206(2):726–737PubMedCrossRefGoogle Scholar
  142. Volz K (1993) Structural conservation in the CheY superfamily. Biochemistry 32(44):11741–11753PubMedCrossRefGoogle Scholar
  143. Wagner JR, Zhang J, Brunzelle JS, Vierstra RD, Forest KT (2007) High resolution structure of Deinococcus bacteriophytochrome yields new insights into phytochrome architecture and evolution. J Biol Chem 282(16):12298–12309PubMedCrossRefGoogle Scholar
  144. Wang S (2012) Bacterial two-component systems: structures and signaling mechanisms. In: Huang C (ed) Protein phosphorylation in human health. IntechOpen, London, United Kingdom, pp 339–464Google Scholar
  145. Wang W, Hall AE, O'Malley R, Bleecker AB (2003) Canonical histidine kinase activity of the transmitter domain of the ETR1 ethylene receptor from Arabidopsis is not required for signal transmission. Proc Natl Acad Sci U S A 100(1):352–357PubMedCrossRefGoogle Scholar
  146. Wang W, Esch JJ, Shiu SH, Agula H, Binder BM, Chang C, Patterson SE, Bleecker AB (2006) Identification of important regions for ethylene binding and signaling in the transmembrane domain of the ETR1 ethylene receptor of Arabidopsis. Plant Cell 18(12):3429–3442PubMedPubMedCentralCrossRefGoogle Scholar
  147. Wen X, Zhang C, Ji Y, Zhao Q, He W, An F, Jiang L, Guo H (2012) Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus. Cell Res 22(11):1613–1616PubMedPubMedCentralCrossRefGoogle Scholar
  148. Wilson D, Pethica R, Zhou Y, Talbot C, Vogel C, Madera M, Chothia C, Gough J (2009) SUPERFAMILY--sophisticated comparative genomics, data mining, visualization and phylogeny. Nucleic Acids Res 37(Database issue):D380–D386PubMedCrossRefGoogle Scholar
  149. Wulfetange K, Lomin SN, Romanov GA, Stolz A, Heyl A, Schmulling T (2011) The Cytokinin receptors of Arabidopsis thaliana are locating mainly to the endoplasmic reticulum. Plant Physiol 156(4):1808–1818PubMedPubMedCentralCrossRefGoogle Scholar
  150. Xu Q, Porter SW, West AH (2003) The yeast YPD1/SLN1 complex: insights into molecular recognition in two-component signaling systems. Structure 11(12):1569–1581PubMedCrossRefGoogle Scholar
  151. Yamada H, Suzuki T, Terada K, Takei K, Ishikawa K, Miwa K, Yamashino T, Mizuno T (2001) The Arabidopsis AHK4 histidine kinase is a cytokinin-binding receptor that transduces cytokinin signals across the membrane. Plant Cell Physiol 42(9):1017–1023PubMedCrossRefGoogle Scholar
  152. Yamasaki K, Kigawa T, Inoue M, Yamasaki T, Yabuki T, Aoki M, Seki E, Matsuda T, Tomo Y, Terada T, Shirouzu M, Tanaka A, Seki M, Shinozaki K, Yokoyama S (2005) Solution structure of the major DNA-binding domain of Arabidopsis thaliana ethylene-insensitive3-like3. J Mol Biol 348(2):253–264PubMedCrossRefGoogle Scholar
  153. Yoo SD, Cho YH, Tena G, Xiong Y, Sheen J (2008) Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature 451(7180):789–795PubMedPubMedCentralCrossRefGoogle Scholar
  154. Zdarska M, Dobisova T, Gelova Z, Pernisova M, Dabravolski S, Hejatko J (2015) Illuminating light, cytokinin, and ethylene signalling crosstalk in plant development. J Exp Bot 66:4913–4931PubMedCrossRefGoogle Scholar
  155. Zhang W, To JP, Cheng CY, Eric Schaller G, Kieber JJ (2011) Type-A response regulators are required for proper root apical meristem function through the post-transcriptional regulation of PIN auxin efflux carriers. Plant J 68:1–10PubMedCrossRefGoogle Scholar
  156. Zhou YF, Nan B, Nan J, Ma Q, Panjikar S, Liang YH, Wang Y, Su XD (2008) C4-dicarboxylates sensing mechanism revealed by the crystal structures of DctB sensor domain. J Mol Biol 383(1):49–61PubMedCrossRefGoogle Scholar
  157. Zurcher E, Muller B (2016) Cytokinin synthesis, signaling, and function–advances and new insights. Int Rev Cell Mol Biol 324:1–38PubMedCrossRefGoogle Scholar
  158. Zurcher E, Liu J, di Donato M, Geisler M, Muller B (2016) Plant development regulated by cytokinin sinks. Science 353(6303):1027–1030PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Blanka Pekarova
    • 1
  • Agnieszka Szmitkowska
    • 1
  • Josef Houser
    • 1
  • Michaela Wimmerova
    • 1
  • Jan Hejátko
    • 1
  1. 1.Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic

Personalised recommendations