Advertisement

A Useful Robotic-Mechanical System for Measuring a Surgical Area Without Obstructing Surgical Operations by Some Surgeon

  • Masahiro Nonaka
  • Yuya Chikayama
  • Masatoshi Kayaki
  • Masanao Koeda
  • Katsunori Tachibana
  • Hiroshi Noborio
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10902)

Abstract

In this study, we constructed and tested the usability of a surgical area-measuring robot-mechanical system, which does not obstruct the movements of doctors, assistants, or nurses during surgery, under two operating lights in an operating room. This study revealed that using the robotic slider to move the camera up and down did not result in excessive vibration or inconsistent depth measurements before, during, and after the movement. For example, if a doctor moves the camera out of the way to move a microscope to the upper part of the surgical area for microsurgery and then brings it back, the system could accurately retain the depth image alignment.

Keywords

Surgical area sensing Robotic-mechanical system Microsurgery Surgical operation navigation 

Notes

Acknowledgment

This research has been partially supported by the Collaborative Research Fund for Graduate Schools (A) of the Osaka Electro-Communication University, and a Grant-in-Aid for Scientific Research of the Ministry of Education, Culture, Sports, Science and Technology (Research Project Number: JP26289069).

References

  1. 1.
    Matsumoto, N., et al.: A minimally invasive registration method using surface template-assisted marker positioning (STAMP) for image-guided otologic surgery. Otolaryngol. Head Neck Surg. 140(1), 96–102 (2009)CrossRefGoogle Scholar
  2. 2.
    Hong, J., Hashizume, M.: An effective point-based registration tool for surgical navigation. Surg. Endosc. 24(4), 944–948 (2010)CrossRefGoogle Scholar
  3. 3.
    Ieiri, S., et al.: Augmented reality navigation system for laparoscopic splenectomy in children based on preoperative CT image using optical tracking device. Pediatr. Surg. Int. 28(4), 341–346 (2012)CrossRefGoogle Scholar
  4. 4.
    Mahmud, N., Cohen, J., Tsourides, K., Berzin, T.M.: Computer vision and augmented reality in gastrointestinal endoscopy. Gastroenterol. Rep. (Oxf.) 3(3), 179–184 (2015).  https://doi.org/10.1093/gastro/gov027. Accessed 1 Jul 2015CrossRefGoogle Scholar
  5. 5.
    Pessaux, P., Diana, M., Soler, L., Piardi, T., Mutter, D., Marescaux, J.: Towards cybernetic surgery: robotic and augmented reality-assisted liver segmentectomy. Langenbecks Arch. Surg. 400(3), 381–385 (2015)CrossRefGoogle Scholar
  6. 6.
    Watanabe, K., et. al.: Brain shift simulation controlled by directly captured surface points. In: Proceedings of 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Sessions: Ignite_Theme 2_Fr2, Poster Session III, Orlando Florida USA (2016)Google Scholar
  7. 7.
    Yano, D., Koeda, M., Onishi, K., Noborio, H.: Development of a surgical knife attachment with proximity indicators. In: Marcus, A., Wang, W. (eds.) DUXU 2017. LNCS, vol. 10289, pp. 608–618. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-58637-3_48CrossRefGoogle Scholar
  8. 8.
    Watanabe, K., Yoshida, S., Yano, D., Koeda, M., Noborio, H.: A new organ-following algorithm based on depth-depth matching and simulated annealing, and its experimental evaluation. In: Marcus, A., Wang, W. (eds.) DUXU 2017. LNCS, vol. 10289, pp. 594–607. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-58637-3_47CrossRefGoogle Scholar
  9. 9.
    Sengiku, A., et al.: Augmented reality navigation system for robot-assisted laparoscopic partial nephrectomy. In: Marcus, A., Wang, W. (eds.) DUXU 2017. LNCS, vol. 10289, pp. 575–584. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-58637-3_45CrossRefGoogle Scholar
  10. 10.
    Onishi, K., Miki, Y., Okuda, K., Koeda, M., Noborio, H.: A study of guidance method for AR laparoscopic surgery navigation system. In: Marcus, A., Wang, W. (eds.) DUXU 2017. LNCS, vol. 10289, pp. 556–564. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-58637-3_43CrossRefGoogle Scholar
  11. 11.
    Noborio, H., et. al.: Fast surgical algorithm for cutting with liver standard triangulation language format using Z-buffers in graphics processing unit. In: Fujie, M. (ed.) Computer Aided Surgery, pp. 127–140. Springer, Tokyo (2016).  https://doi.org/10.1007/978-4-431-55810-1_11CrossRefGoogle Scholar
  12. 12.
    Noborio, H., Aoki, K., Kunii, T., Mizushino, K.: A potential function-based scalpel navigation method that avoids blood vessel groups during excision of cancerous tissue. In: Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2016), pp. 6106–6112 (2016)Google Scholar
  13. 13.
    Noborio, H., Kunii, T., Mizushino, K.: Comparison of GPU-based and CPU-based algorithms for determining the minimum distance between a CUSA scalper and blood vessels. In: BIOSTEC 2016, pp. 128–136. The SCITEPRESS Digital Library (2016)Google Scholar
  14. 14.
    Watanabe, K., et. al.: A mechanical system directly attaching beside a surgical bed for measuring surgical area precisely by depth camera. In: Proceedings of the 10th MedViz Conference and the 6th Eurographics Workshop on Visual Computing for Biology and Medicine (EG VCBM), pp. 105–108 (2016)Google Scholar
  15. 15.
    Watanabe, K., et. al.: Capturing a brain shift directly by the depth camera kinect v2. In: Proceedings of 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Sessions: Ignite_Theme 4_Fr1, Poster Session II, Orlando Florida USA (2016)Google Scholar
  16. 16.
    Nonaka, M., Watanabe, K., Noborio, H., Kayaki, M., Mizushino, K.: Capturing a surgical area using multiple depth cameras mounted on a robotic mechanical system. In: Marcus, A., Wang, W. (eds.) DUXU 2017. LNCS, vol. 10289, pp. 540–555. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-58637-3_42CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Masahiro Nonaka
    • 1
  • Yuya Chikayama
    • 2
  • Masatoshi Kayaki
    • 2
  • Masanao Koeda
    • 2
  • Katsunori Tachibana
    • 2
  • Hiroshi Noborio
    • 2
  1. 1.Kansai Medical UniversityHirakataJapan
  2. 2.Osaka Electro-Communication UniversityShijo-NawateJapan

Personalised recommendations