Advertisement

Fundamentals of Complex Network Analysis

  • Miloš Savić
  • Mirjana Ivanović
  • Lakhmi C. Jain
Chapter
Part of the Intelligent Systems Reference Library book series (ISRL, volume 148)

Abstract

Complex network analysis is a collection of quantitative methods for studying the structure and dynamics of complex networked systems. This chapter presents the fundamentals of complex network analysis. We start out by presenting the basic concepts of complex networks and graph theory. Then, we focus on fundamental network analysis measures and algorithms related to node connectivity, distance, centrality, similarity and clustering. Finally, we discuss fundamental complex network models and their characteristics.

References

  1. 1.
    Abbe, E.: Community detection and stochastic block models: recent developments (2017). arXiv:1703.10146
  2. 2.
    Adamic, L.A., Adar, E.: Friends and neighbors on the web. Soc. Netw. 25(3), 211–230 (2003).  https://doi.org/10.1016/S0378-8733(03)00009-1CrossRefGoogle Scholar
  3. 3.
    Alba, R.D.: A graph theoretic definition of a sociometric clique. J Math Sociol. 3(1), 113–126 (1973).  https://doi.org/10.1080/0022250X.1973.9989826MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–97 (2002).  https://doi.org/10.1103/RevModPhys.74.47MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Alvarez-Hamelin, J.I., Dall’Asta, L., Barrat, A., Vespignani, A.: K-core decomposition of internet graphs: hierarchies, self-similarity and measurement biases. Netw. Heterog. Media 3(2), 371–393 (2008).  https://doi.org/10.3934/nhm.2008.3.371MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Amaral, L.A.N., Scala, A., Barthlmy, M., Stanley, H.E.: Classes of small-world networks. Proc. Natl. Acad. Sci. 97(21), 11149–11152 (2000).  https://doi.org/10.1073/pnas.200327197CrossRefGoogle Scholar
  7. 7.
    Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999).  https://doi.org/10.1126/science.286.5439.509MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Batagelj, V., Zaveršnik, M.: Fast algorithms for determining (generalized) core groups in social networks. Adv. Data Anal. Classif. 5(2), 129–145 (2011).  https://doi.org/10.1007/s11634-010-0079-yMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bavelas, A.: Communication patterns in task-oriented groups. J. Acoust. Soc. Am. 22(6), 725–730 (1950).  https://doi.org/10.1121/1.1906679CrossRefGoogle Scholar
  10. 10.
    Beauchamp, M.A.: An improved index of centrality. Behav. Sci. 10(2), 161–163 (1965).  https://doi.org/10.1002/bs.3830100205CrossRefGoogle Scholar
  11. 11.
    Bender, E.A., Canfield, E.: The asymptotic number of labeled graphs with given degree sequences. J Comb. Theory Ser. A 24(3), 296–307 (1978).  https://doi.org/10.1016/0097-3165(78)90059-6MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech Theory Exp. 2008(10), P10008 (2008)CrossRefGoogle Scholar
  13. 13.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.: Complex networks: structure and dynamics. Phys. Rep. 424(45), 175–308 (2006).  https://doi.org/10.1016/j.physrep.2005.10.009MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Boldi, P., Vigna, S.: Axioms for centrality. Internet Math. 10(3–4), 222–262 (2014).  https://doi.org/10.1080/15427951.2013.865686MathSciNetCrossRefGoogle Scholar
  15. 15.
    Boldi, P., Rosa, M., Vigna, S.: Robustness of social and web graphs to node removal. Soc. Netw. Anal. Min. 3(4), 829–842 (2013).  https://doi.org/10.1007/s13278-013-0096-xCrossRefGoogle Scholar
  16. 16.
    Bollobás, B., Borgs, C., Chayes, J., Riordan, O.: Directed scale-free graphs. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’03, Society for Industrial and Applied Mathematics. pp. 132–139, Philadelphia, PA, USA (2003).  https://doi.org/10.1145/644108.644133
  17. 17.
    Bollobás, B., Riordan, O.M.: Mathematical results on scale-free random graphs, pp. 1–34. Wiley-VCH Verlag GmbH & Co. KGaA (2005).  https://doi.org/10.1002/3527602755.ch1
  18. 18.
    Bollobás, B.: Random Graphs. Cambridge University Press (2001)Google Scholar
  19. 19.
    Bonacich, P.: Factoring and weighting approaches to status scores and clique identification. J. Math. Sociol. 2(1), 113–120 (1972).  https://doi.org/10.1080/0022250X.1972.9989806CrossRefGoogle Scholar
  20. 20.
    Bonacich, P.: Power and centrality: a family of measures. Am. J. Sociol. 92(5), 1170–1182 (1987).  https://doi.org/10.2307/2780000CrossRefGoogle Scholar
  21. 21.
    Borgatti, S.P., Everett, M.G.: Models of core/periphery structures. Soc. Netw. 21(4), 375–395 (2000).  https://doi.org/10.1016/S0378-8733(99)00019-2CrossRefGoogle Scholar
  22. 22.
    Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25(2), 163–177 (2001).  https://doi.org/10.1080/0022250X.2001.9990249CrossRefzbMATHGoogle Scholar
  23. 23.
    Brandes, U.: On variants of shortest-path betweenness centrality and their generic computation. Soc. Netw. 30(2), 136–145 (2008).  https://doi.org/10.1016/j.socnet.2007.11.001CrossRefGoogle Scholar
  24. 24.
    Brandes, U., Delling, D., Gaertler, M., Gorke, R., Hoefer, M., Nikoloski, Z., Wagner, D.: On modularity clustering. IEEE Trans. Knowl. Data Eng 20(2), 172–188 (2008).  https://doi.org/10.1109/TKDE.2007.190689CrossRefzbMATHGoogle Scholar
  25. 25.
    Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Comput. Netw. ISDN Syst 30(1–7), 107–117 (1998)CrossRefGoogle Scholar
  26. 26.
    Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph. Commun. ACM 16(9), 575–577 (1973).  https://doi.org/10.1145/362342.362367CrossRefzbMATHGoogle Scholar
  27. 27.
    Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70, 066111 (2004).  https://doi.org/10.1103/PhysRevE.70.066111
  28. 28.
    Clauset, A., Shalizi, C., Newman, M.: Power-law distributions in empirical data. SIAM Rev. 51(4), 661–703 (2009).  https://doi.org/10.1137/070710111MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Costa,.LdF, Oliveira, O., Travieso, G., Rodrigues, F.A., Villas Boas, P., Antiqueira, L., Viana, M.P., Correa Rocha, L.: Analyzing and modeling real-world phenomena with complex networks: a survey of applications. Adv. Phys. 60(3), 329–412 (2011).  https://doi.org/10.1080/00018732.2011.572452CrossRefGoogle Scholar
  30. 30.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1(1), 269–271 (1959).  https://doi.org/10.1007/BF01386390MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Dongen, S.V.: Graph clustering via a discrete uncoupling process. SIAM J. Matrix Anal. Appl. 30(1), 121–141 (2008).  https://doi.org/10.1137/040608635MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Dorogovtsev, S.N., Mendes, J.F.F., Samukhin, A.N.: Structure of growing networks with preferential linking. Phys. Rev. Lett. 85, 4633–4636 (2000).  https://doi.org/10.1103/PhysRevLett.85.4633CrossRefGoogle Scholar
  33. 33.
    Eppstein, D., Strash, D.: Listing all maximal cliques in large sparse real-world graphs, pp. 364–375. Springer, Berlin (2011).  https://doi.org/10.1007/978-3-642-20662-7_31CrossRefGoogle Scholar
  34. 34.
    Erdős, P., Rényi, A.: On random graphs. I. Publ. Math. Debr. 6, 290–297 (1959)zbMATHGoogle Scholar
  35. 35.
    Erdős, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–61 (1960)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Flake, G.W., Lawrence, S., Giles, C.L., Coetzee, F.M.: Self-organization and identification of web communities. Computer 35(3), 66–71 (2002).  https://doi.org/10.1109/2.989932CrossRefGoogle Scholar
  37. 37.
    Fortunato, S., Latora, V., Marchiori, M.: Method to find community structures based on information centrality. Phys. Rev. E 70, 056104 (2004).  https://doi.org/10.1103/PhysRevE.70.056104
  38. 38.
    Fortunato, S.: Community detection in graphs. Phys. Rep. 486(35), 75–174 (2010).  https://doi.org/10.1016/j.physrep.2009.11.002MathSciNetCrossRefGoogle Scholar
  39. 39.
    Fortunato, S., Barthlemy, M.: Resolution limit in community detection. Proc. Natl. Acad. Sci. 104(1), 36–41 (2007).  https://doi.org/10.1073/pnas.0605965104CrossRefGoogle Scholar
  40. 40.
    Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 40, 35–41 (1977)CrossRefGoogle Scholar
  41. 41.
    Freeman, L.C., Borgatti, S.P., White, D.R.: Centrality in valued graphs: a measure of betweenness based on network flow. Soc. Netw. 13(2), 141–154 (1991).  https://doi.org/10.1016/0378-8733(91)90017-NMathSciNetCrossRefGoogle Scholar
  42. 42.
    Garlaschelli, D., Loffredo, M.: Patterns of link reciprocity in directed networks. Phys. Rev. Lett. 93, 268701 (2004).  https://doi.org/10.1103/PhysRevLett.93.268701
  43. 43.
    Gilbert, E.N.: Random graphs. Ann. Math. Stat. 30(4), 1141–1144 (1959)CrossRefGoogle Scholar
  44. 44.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002).  https://doi.org/10.1073/pnas.122653799MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Goldstein, M.L., Morris, S.A., Yen, G.G.: Problems with fitting to the power-law distribution. Eur. Phys. J. B - Condens. Matter Complex Syst. 41(2), 255–258 (2004).  https://doi.org/10.1140/epjb/e2004-00316-5CrossRefGoogle Scholar
  46. 46.
    Good, B.H., de Montjoye, Y.A., Clauset, A.: Performance of modularity maximization in practical contexts. Phys. Rev. E 81, 046106 (2010).  https://doi.org/10.1103/PhysRevE.81.046106
  47. 47.
    Guo, Q., Zhou, T., Liu, J.G., Bai, W.J., Wang, B.H., Zhao, M.: Growing scale-free small-world networks with tunable assortative coefficient. Phys. A Stat. Mech. Appl. 371(2), 814–822 (2006).  https://doi.org/10.1016/j.physa.2006.03.055CrossRefGoogle Scholar
  48. 48.
    Hasan, M.A., Zaki, M.J.: A survey of link prediction in social networks, pp. 243–275. Springer, Boston (2011).  https://doi.org/10.1007/978-1-4419-8462-3_9CrossRefGoogle Scholar
  49. 49.
    Holland, P.W., Laskey, K.B., Leinhardt, S.: Stochastic blockmodels: first steps. Soc. Netw. 5(2), 109–137 (1983).  https://doi.org/10.1016/0378-8733(83)90021-7MathSciNetCrossRefGoogle Scholar
  50. 50.
    Holme, P., Kim, B.J., Yoon, C.N., Han, S.K.: Attack vulnerability of complex networks. Phys. Rev. E 65, 056109 (2002).  https://doi.org/10.1103/PhysRevE.65.056109
  51. 51.
    Holme, P., Kim, B.J.: Growing scale-free networks with tunable clustering. Phys. Rev. E 65, 026107 (2002).  https://doi.org/10.1103/PhysRevE.65.026107
  52. 52.
    Jeh, G., Widom, J.: Simrank: A measure of structural-context similarity. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’02. pp. 538–543, ACM, New York, USA (2002).  https://doi.org/10.1145/775047.775126
  53. 53.
    Khaouid, W., Barsky, M., Srinivasan, V., Thomo, A.: K-core decomposition of large networks on a single PC. Proc. VLDB Endow. 9(1), 13–23 (2015).  https://doi.org/10.14778/2850469.2850471CrossRefGoogle Scholar
  54. 54.
    Kleinberg, J.M., Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: The web as a graph: measurements, models, and methods. In: Asano, T., Imai, H., Lee, D., Nakano, S.i., Tokuyama, T. (eds.) Computing and Combinatorics. Lecture Notes in Computer Science, vol. 1627, pp. 1–17Google Scholar
  55. 55.
    Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604–632 (1999).  https://doi.org/10.1145/324133.324140MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Krapivsky, P.L., Redner, S.: Network growth by copying. Phys. Rev. E 71, 036118 (2005).  https://doi.org/10.1103/PhysRevE.71.036118
  57. 57.
    Krapivsky, P.L., Redner, S., Leyvraz, F.: Connectivity of growing random networks. Phys. Rev. Lett. 85, 4629–4632 (2000).  https://doi.org/10.1103/PhysRevLett.85.4629CrossRefGoogle Scholar
  58. 58.
    Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., Upfal, E.: Stochastic models for the Web graph. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science, FOCS ’00, IEEE Computer Society. pp. 57–65, Washington, USA (2000).  https://doi.org/10.1109/SFCS.2000.892065
  59. 59.
    Leicht, E.A., Newman, M.E.J.: Community structure in directed networks. Phys. Rev. Lett. 100, 118703 (2008).  https://doi.org/10.1103/PhysRevLett.100.118703
  60. 60.
    Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: Densification and shrinking diameters. ACM Trans. Knowl. Discov. Data 1(1) (2007).  https://doi.org/10.1145/1217299.1217301CrossRefGoogle Scholar
  61. 61.
    Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters. Internet Math. 6(1), 29–123 (2009).  https://doi.org/10.1080/15427951.2009.10129177MathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    Li, C., Maini, P.K.: An evolving network model with community structure. J. Phys. A Math. Gen. 38(45), 9741 (2005).  https://doi.org/10.1088/0305-4470/38/45/002MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Liben-Nowell, D., Kleinberg, J.: The link prediction problem for social networks. In: Proceedings of the Twelfth International Conference on Information and Knowledge Management, CIKM ’03. pp. 556–559, ACM, New York, USA (2003).  https://doi.org/10.1145/956863.956972
  64. 64.
    Lichtenwalter, R.N., Lussier, J.T., Chawla, N.V.: New perspectives and methods in link prediction. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’10. pp. 243–252, ACM, New York, USA, (2010).  https://doi.org/10.1145/1835804.1835837
  65. 65.
    Lü, L., Zhou, T.: Link prediction in complex networks: a survey. Phys. A Stat. Mech. Appl. 390(6), 1150–1170 (2011).  https://doi.org/10.1016/j.physa.2010.11.027CrossRefGoogle Scholar
  66. 66.
    Martínez, V., Berzal, F., Cubero, J.C.: A survey of link prediction in complex networks. ACM Comput. Surv. 49(4), 69:1–69:33 (2016).  https://doi.org/10.1145/3012704CrossRefGoogle Scholar
  67. 67.
    Mokken, R.J.: Cliques, clubs and clans. Qual. Quant. 13(2), 161–173 (1979).  https://doi.org/10.1007/BF00139635CrossRefGoogle Scholar
  68. 68.
    Nepusz, T., Petróczi, A., Négyessy, L., Bazsó, F.: Fuzzy communities and the concept of bridgeness in complex networks. Phys. Rev. E 77, 016,107 (2008).  https://doi.org/10.1103/PhysRevE.77.016107
  69. 69.
    Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004).  https://doi.org/10.1103/PhysRevE.69.026113
  70. 70.
    Newman, M.E.J.: Analysis of weighted networks. Phys. Rev. E 70, 056131 (2004).  https://doi.org/10.1103/PhysRevE.70.056131
  71. 71.
    Newman, M.E.J.: Assortative mixing in networks. Phys. Rev. Lett. 89, 208701 (2002).  https://doi.org/10.1103/PhysRevLett.89.208701
  72. 72.
    Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69, 066133 (2004).  https://doi.org/10.1103/PhysRevE.69.066133
  73. 73.
    Newman, M.E.J.: Mixing patterns in networks. Phys. Rev. E 67, 026126 (2003).  https://doi.org/10.1103/PhysRevE.67.026126
  74. 74.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003).  https://doi.org/10.1137/S003614450342480MathSciNetCrossRefzbMATHGoogle Scholar
  75. 75.
    Newman, M.E.J.: Power laws, pareto distributions and Zipf’s law. Contemp. Phys. 46(5), 323–351 (2005).  https://doi.org/10.1080/00107510500052444CrossRefGoogle Scholar
  76. 76.
    Newman, M.: Networks: An Introduction. Oxford University Press Inc, New York (2010)CrossRefGoogle Scholar
  77. 77.
    Nicosia, V., Mangioni, G., Carchiolo, V., Malgeri, M.: Extending the definition of modularity to directed graphs with overlapping communities. J. Stat. Mech. Theory Exp. 2009(03), P03024 (2009)CrossRefGoogle Scholar
  78. 78.
    Pastor-Satorras, R., Vázquez, A., Vespignani, A.: Dynamical and correlation properties of the internet. Phys. Rev. Lett. 87, 258701 (2001).  https://doi.org/10.1103/PhysRevLett.87.258701
  79. 79.
    Perra, N., Fortunato, S.: Spectral centrality measures in complex networks. Phys. Rev. E 78, 036107 (2008).  https://doi.org/10.1103/PhysRevE.78.036107
  80. 80.
    Pollner, P., Palla, G., Vicsek, T.: Preferential attachment of communities: the same principle, but a higher level. EPL (Europhys. Lett.) 73(3), 478 (2006).  https://doi.org/10.1209/epl/i2005-10414-6MathSciNetCrossRefGoogle Scholar
  81. 81.
    Pons, P., Latapy, M.: Computing communities in large networks using random walks. J. Graph Algorithms Appl. 10(2), 191–218 (2006).  https://doi.org/10.7155/jgaa.00124MathSciNetCrossRefzbMATHGoogle Scholar
  82. 82.
    Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying communities in networks. Proc. Natl. Acad. Sci. 101(9), 2658–2663 (2004).  https://doi.org/10.1073/pnas.0400054101CrossRefGoogle Scholar
  83. 83.
    Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E 76, 036106 (2007).  https://doi.org/10.1103/PhysRevE.76.036106
  84. 84.
    Rombach, M.P., Porter, M.A., Fowler, J.H., Mucha, P.J.: Core-periphery structure in networks. SIAM J. Appl. Math. 74(1), 167–190 (2014).  https://doi.org/10.1137/120881683MathSciNetCrossRefzbMATHGoogle Scholar
  85. 85.
    Rosvall, M., Bergstrom, C.T.: Maps of information flow reveal community structure in complex networks. Proc. Natl. Acad. Sci. U.S.A. 105, 1118–1123 (2007).  https://doi.org/10.1073/pnas.0706851105CrossRefGoogle Scholar
  86. 86.
    Seidman, S.B.: Network structure and minimum degree. Soc. Netw. 5(3), 269–287 (1983).  https://doi.org/10.1016/0378-8733(83)90028-XMathSciNetCrossRefGoogle Scholar
  87. 87.
    Seidman, S.B., Foster, B.L.: A graphtheoretic generalization of the clique concept. J. Math. Sociol. 6(1), 139–154 (1978).  https://doi.org/10.1080/0022250X.1978.9989883MathSciNetCrossRefzbMATHGoogle Scholar
  88. 88.
    Shen, H., Cheng, X., Cai, K., Hu, M.B.: Detect overlapping and hierarchical community structure in networks. Phys. A Stat. Mech. Appl. 388(8), 1706–1712 (2009).  https://doi.org/10.1016/j.physa.2008.12.021CrossRefGoogle Scholar
  89. 89.
    Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972).  https://doi.org/10.1137/0201010MathSciNetCrossRefzbMATHGoogle Scholar
  90. 90.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of’small-world’networks. Nature 393(6684), 409–10 (1998).  https://doi.org/10.1038/30918CrossRefGoogle Scholar
  91. 91.
    Xie, J., Kelley, S., Szymanski, B.K.: Overlapping community detection in networks: the state-of-the-art and comparative study. ACM Comput. Surv. 45(4), 43:1–43:35 (2013).  https://doi.org/10.1145/2501654.2501657CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Miloš Savić
    • 1
  • Mirjana Ivanović
    • 1
  • Lakhmi C. Jain
    • 2
  1. 1.Faculty of Sciences, Department of Mathematics and InformaticsUniversity of Novi SadNovi SadSerbia
  2. 2.Centre for Artificial Intelligence, Faculty of Engineering and Information TechnologyUniversity of Technology SydneySydneyAustralia

Personalised recommendations