Advertisement

Immunology in Lung Transplantation

  • Idoia Gimferrer
  • Karen A. Nelson
Chapter

Abstract

Immunology plays an expanded role in lung transplantation compared to transplantation of other vascularized allografts, specifically the contribution of innate immunity. The lung is in constant contact with the external environment, contending with exposure to pathogens and irritants. Specialized tissues in addition to innate and adaptive immune responses have evolved to protect the lung from these external threats; these systems must continue to function in the lung allograft. After lung transplantation, mismatched HLA antigens are the most common target of the adaptive immune system. In addition, other proteins normally not available to the immune system but exposed after tissue damage can stimulate antibody responses and contribute to allograft destruction. Immunosuppressive therapy does not discriminate between allogenic responses and those required to fight external pathogens. Precision medicine including laboratory testing to identify the targets of the alloimmune response is needed to tailor therapy for each recipient.

Keywords

Adaptive immunity Innate immunity Alloantibody Autoantibody Complement Inflammation Primary graft nonfunction Chronic rejection 

References

  1. 1.
    Whitsett JA, Alenghat T. Respiratory epithelial cells orchestrate pulmonary innate immunity. Nat Immunol. 2015;16(1):27–35.PubMedCrossRefGoogle Scholar
  2. 2.
    Kopf M, Schneider C, Nobs SP. The development and function of lung-resident macrophages and dendritic cells. Nat Immunol. 2015;16(1):36–44.PubMedCrossRefGoogle Scholar
  3. 3.
    Hussell T, Bell TJ. Alveolar macrophages: plasticity in a tissue-specific context. Nat Rev Immunol. 2014;14(2):81–93.PubMedCrossRefGoogle Scholar
  4. 4.
    Cauley LS, Lefrancois L. Guarding the perimeter: protection of the mucosa by tissue-resident memory T cells. Mucosal Immunol. 2013;6(1):14–23.PubMedCrossRefGoogle Scholar
  5. 5.
    Chiu C, Openshaw PJ. Antiviral B cell and T cell immunity in the lungs. Nat Immunol. 2015;16(1):18–26.PubMedCrossRefGoogle Scholar
  6. 6.
    Rangel-Moreno J, Hartson L, Navarro C, Gaxiola M, Selman M, Randall TD. Inducible bronchus-associated lymphoid tissue (iBALT) in patients with pulmonary complications of rheumatoid arthritis. J Clin Invest. 2006;116(12):3183–94.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Moyron-Quiroz JE, Rangel-Moreno J, Kusser K, Hartson L, Sprague F, Goodrich S, et al. Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity. Nat Med. 2004;10(9):927–34.PubMedCrossRefGoogle Scholar
  8. 8.
    Foo SY, Phipps S. Regulation of inducible BALT formation and contribution to immunity and pathology. Mucosal Immunol. 2010;3(6):537–44.PubMedCrossRefGoogle Scholar
  9. 9.
    Aurora P, Boucek MM, Christie J, Dobbels F, Edwards LB, Keck BM, et al. Registry of the International Society for Heart and Lung Transplantation: tenth official pediatric lung and heart/lung transplantation report--2007. J Heart Lung Transplant. 2007;26(12):1223–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Kim IK, Bedi DS, Denecke C, Ge X, Tullius SG. Impact of innate and adaptive immunity on rejection and tolerance. Transplantation. 2008;86(7):889–94.PubMedCrossRefGoogle Scholar
  11. 11.
    Wood KJ, Goto R. Mechanisms of rejection: current perspectives. Transplantation. 2012;93(1):1–10.PubMedCrossRefGoogle Scholar
  12. 12.
    Neefjes J, Jongsma ML, Paul P, Bakke O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol. 2011;11(12):823–36.PubMedCrossRefGoogle Scholar
  13. 13.
    Afzali B, Lombardi G, Lechler RI. Pathways of major histocompatibility complex allorecognition. Curr Opin Organ Transplant. 2008;13(4):438–44.PubMedCrossRefGoogle Scholar
  14. 14.
    Palmer MT, Weaver CT. Autoimmunity: increasing suspects in the CD4+ T cell lineup. Nat Immunol. 2010;11(1):36–40.PubMedCrossRefGoogle Scholar
  15. 15.
    Vukmanovic-Stejic M, Vyas B, Gorak-Stolinska P, Noble A, Kemeny DM. Human Tc1 and Tc2/Tc0 CD8 T-cell clones display distinct cell surface and functional phenotypes. Blood. 2000;95(1):231–40.PubMedGoogle Scholar
  16. 16.
    Strom TB, Koulmanda M. Recently discovered T cell subsets cannot keep their commitments. J Am Soc Nephrol. 2009;20(8):1677–80.PubMedCrossRefGoogle Scholar
  17. 17.
    Hanidziar D, Koulmanda M. Inflammation and the balance of Treg and Th17 cells in transplant rejection and tolerance. Curr Opin Organ Transplant. 2010;15(4):411–5.PubMedCrossRefGoogle Scholar
  18. 18.
    Hall DJ, Baz M, Daniels MJ, Staples ED, Klodell CT, Moldawer LL, et al. Immediate postoperative inflammatory response predicts long-term outcome in lung-transplant recipients. Interact Cardiovasc Thorac Surg. 2012;15(4):603–7.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Vanaudenaerde BM, Wuyts WA, Geudens N, Nawrot TS, Vos R, Dupont LJ, et al. Broncho-alveolar lavage fluid recovery correlates with airway neutrophilia in lung transplant patients. Respir Med. 2008;102(3):339–47.PubMedCrossRefGoogle Scholar
  20. 20.
    Wu Q, Gupta PK, Suzuki H, Wagner SR, Zhang C, Cummings OW, et al. CD4 T Cells but Not Th17 Cells Are Required for Mouse Lung Transplant Obliterative Bronchiolitis. Am J Transplant. 2015;15(7):1793–804.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    O’Boyle G, Ali S, Kirby JA. Chemokines in transplantation: what can atypical receptors teach us about anti-inflammatory therapy? Transplant Rev. 2011;25(4):136–44.CrossRefGoogle Scholar
  22. 22.
    Husain S, Resende MR, Rajwans N, Zamel R, Pilewski JM, Crespo MM, et al. Elevated CXCL10 (IP-10) in bronchoalveolar lavage fluid is associated with acute cellular rejection after human lung transplantation. Transplantation. 2014;97(1):90–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Neujahr DC, Perez SD, Mohammed A, Ulukpo O, Lawrence EC, Fernandez F, et al. Cumulative exposure to gamma interferon-dependent chemokines CXCL9 and CXCL10 correlates with worse outcome after lung transplant. Am J Transplant. 2012;12(2):438–46.PubMedCrossRefGoogle Scholar
  24. 24.
    Verleden SE, Ruttens D, Vos R, Vandermeulen E, Moelants E, Mortier A, et al. Differential cytokine, chemokine and growth factor expression in phenotypes of chronic lung allograft dysfunction. Transplantation. 2015;99(1):86–93.CrossRefPubMedGoogle Scholar
  25. 25.
    Bach F, Hirschhorn K. Lymphocyte interaction: a potential histocompatibility test in vitro. Science. 1964;143(3608):813–4.PubMedCrossRefGoogle Scholar
  26. 26.
    Tinckam K. Histocompatibility methods. Transplant Rev. 2009;23(2):80–93.CrossRefGoogle Scholar
  27. 27.
    Holl V, Schmidt S, Aubertin AM, Moog C. The major population of PHA-stimulated PBMC infected by R5 or X4 HIV variants after a single cycle of infection is predominantly composed of CD45RO+CD4+ T lymphocytes. Arch Virol. 2007;152(3):507–18.PubMedCrossRefGoogle Scholar
  28. 28.
    Rodrigo E, Lopez-Hoyos M, Corral M, Fabrega E, Fernandez-Fresnedo G, San Segundo D, et al. ImmuKnow as a diagnostic tool for predicting infection and acute rejection in adult liver transplant recipients: a systematic review and meta-analysis. Liver Transpl. 2012;18(10):1245–53.PubMedCrossRefGoogle Scholar
  29. 29.
    Torio A, Fernandez EJ, Montes-Ares O, Guerra RM, Perez MA, Checa MD. Lack of association of immune cell function test with rejection in kidney transplantation. Transplant Proc. 2011;43(6):2168–70.PubMedCrossRefGoogle Scholar
  30. 30.
    Ling X, Xiong J, Liang W, Schroder PM, Wu L, Ju W, et al. Can immune cell function assay identify patients at risk of infection or rejection? A meta-analysis. Transplantation. 2012;93(7):737–43.PubMedCrossRefGoogle Scholar
  31. 31.
    Reynaud-Gaubert M, Thomas P, Gregoire R, Badier M, Cau P, Sampol J, et al. Clinical utility of bronchoalveolar lavage cell phenotype analyses in the postoperative monitoring of lung transplant recipients. Eur J Cardiothorac Surg. 2002;21(1):60–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Neurohr C, Huppmann P, Samweber B, Leuschner S, Zimmermann G, Leuchte H, et al. Prognostic value of bronchoalveolar lavage neutrophilia in stable lung transplant recipients. J Heart Lung Transplant. 2009;28(5):468–74.CrossRefPubMedGoogle Scholar
  33. 33.
    Clatworthy MR. Targeting B cells and antibody in transplantation. Am J Transplant. 2011;11(7):1359–67.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Martinu T, Howell DN, Palmer SM. Acute cellular rejection and humoral sensitization in lung transplant recipients. Semin Respir Crit Care Med. 2010;31(2):179–88.PubMedCrossRefGoogle Scholar
  35. 35.
    Diebolder CA, Beurskens FJ, de Jong RN, Koning RI, Strumane K, Lindorfer MA, et al. Complement is activated by IgG hexamers assembled at the cell surface. Science. 2014;343(6176):1260–3.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Colvin RB, Smith RN. Antibody-mediated organ-allograft rejection. Nat Rev Immunol. 2005;5(10):807–17.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol. 2014;5:520.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Albrecht EA, Chinnaiyan AM, Varambally S, Kumar-Sinha C, Barrette TR, Sarma JV, et al. C5a-induced gene expression in human umbilical vein endothelial cells. Am J Pathol. 2004;164(3):849–59.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Al-Daccak R, Mooney N, Charron D. MHC class II signaling in antigen-presenting cells. Curr Opin Immunol. 2004;16(1):108–13.PubMedCrossRefGoogle Scholar
  40. 40.
    Li F, Atz ME, Reed EF. Human leukocyte antigen antibodies in chronic transplant vasculopathy-mechanisms and pathways. Curr Opin Immunol. 2009;21(5):557–62.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Zhang X, Reed EF. HLA class I: an unexpected role in integrin beta4 signaling in endothelial cells. Hum Immunol. 2012;73(12):1239–44.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Jaramillo A, Smith CR, Maruyama T, Zhang L, Patterson GA, Mohanakumar T. Anti-HLA class I antibody binding to airway epithelial cells induces production of fibrogenic growth factors and apoptotic cell death: a possible mechanism for bronchiolitis obliterans syndrome. Hum Immunol. 2003;64(5):521–9.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Jindra PT, Zhang X, Mulder A, Claas F, Veale J, Jin YP, et al. Anti-HLA antibodies can induce endothelial cell survival or proliferation depending on their concentration. Transplantation. 2006;82(1 Suppl):S33–5.PubMedCrossRefGoogle Scholar
  44. 44.
    Jindra PT, Jin YP, Rozengurt E, Reed EFHLA, class I. antibody-mediated endothelial cell proliferation via the mTOR pathway. J Immunol. 2008;180(4):2357–66.PubMedCrossRefGoogle Scholar
  45. 45.
    Zhang X, Reed EF. Effect of antibodies on endothelium. Am J Transplant. 2009;9(11):2459–65.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Valenzuela NM, Reed EF. Antibodies in transplantation: the effects of HLA and non-HLA antibody binding and mechanisms of injury. Methods Mol Biol. 2013;1034:41–70.PubMedCrossRefGoogle Scholar
  47. 47.
    Snyder LD, Wang Z, Chen DF, Reinsmoen NL, Finlen-Copeland CA, Davis WA, et al. Implications for human leukocyte antigen antibodies after lung transplantation: a 10-year experience in 441 patients. Chest. 2013;144(1):226–33.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Morrell MR, Pilewski JM, Gries CJ, Pipeling MR, Crespo MM, Ensor CR, et al. De novo donor-specific HLA antibodies are associated with early and high-grade bronchiolitis obliterans syndrome and death after lung transplantation. J Heart Lung Transplant. 2014;33(12):1288–94.PubMedCrossRefGoogle Scholar
  49. 49.
    Safavi S, Robinson DR, Soresi S, Carby M, Smith JD. De novo donor HLA-specific antibodies predict development of bronchiolitis obliterans syndrome after lung transplantation. J Heart Lung Transplant. 2014;33(12):1273–81.PubMedCrossRefGoogle Scholar
  50. 50.
    Brugiere O, Suberbielle C, Thabut G, Lhuillier E, Dauriat G, Metivier AC, et al. Lung transplantation in patients with pretransplantation donor-specific antibodies detected by Luminex assay. Transplantation. 2013;95(5):761–5.PubMedCrossRefGoogle Scholar
  51. 51.
    Smith JD, Ibrahim MW, Newell H, Danskine AJ, Soresi S, Burke MM, et al. Pre-transplant donor HLA-specific antibodies: characteristics causing detrimental effects on survival after lung transplantation. J Heart Lung Transplant. 2014;33(10):1074–82.PubMedCrossRefGoogle Scholar
  52. 52.
    Witt CA, Gaut JP, Yusen RD, Byers DE, Iuppa JA, Bennett Bain K, et al. Acute antibody-mediated rejection after lung transplantation. J Heart Lung Transplant. 2013;32(10):1034–40.PubMedCrossRefGoogle Scholar
  53. 53.
    Palmer SM, Davis RD, Hadjiliadis D, Hertz MI, Howell DN, Ward FE, et al. Development of an antibody specific to major histocompatibility antigens detectable by flow cytometry after lung transplant is associated with bronchiolitis obliterans syndrome. Transplantation. 2002;74(6):799–804.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Girnita AL, Duquesnoy R, Yousem SA, Iacono AT, Corcoran TE, Buzoianu M, et al. HLA-specific antibodies are risk factors for lymphocytic bronchiolitis and chronic lung allograft dysfunction. Am J Transplant. 2005;5(1):131–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Ius F, Sommer W, Tudorache I, Kuhn C, Avsar M, Siemeni T, et al. Early donor-specific antibodies in lung transplantation: risk factors and impact on survival. J Heart Lung Transplant. 2014;33(12):1255–63.PubMedCrossRefGoogle Scholar
  56. 56.
    Tikkanen JM, Singer LG, Kim SJ, Li Y, Binnie M, Chaparro C, et al. De Novo DQ donor-specific antibodies are associated with chronic lung allograft dysfunction after lung transplantation. Am J Respir Crit Care Med. 2016;194(5):596–606.PubMedCrossRefGoogle Scholar
  57. 57.
    Roux A, Bendib Le Lan I, Holifanjaniaina S, Thomas KA, Hamid AM, Picard C, et al. Antibody-mediated rejection in lung transplantation: clinical outcomes and donor-specific antibody characteristics. Am J Transplant. 2016;16(4):1216–28.PubMedCrossRefGoogle Scholar
  58. 58.
    Ferry BL, Welsh KI, Dunn MJ, Law D, Proctor J, Chapel H, et al. Anti-cell surface endothelial antibodies in sera from cardiac and kidney transplant recipients: association with chronic rejection. Transpl Immunol. 1997;5(1):17–24.PubMedCrossRefGoogle Scholar
  59. 59.
    Sun Q, Liu Z, Chen J, Chen H, Wen J, Cheng D, et al. Circulating anti-endothelial cell antibodies are associated with poor outcome in renal allograft recipients with acute rejection. Clin J Am Soc Nephrol. 2008;3(5):1479–86.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Sun Q, Cheng Z, Cheng D, Chen J, Ji S, Wen J, et al. De novo development of circulating anti-endothelial cell antibodies rather than pre-existing antibodies is associated with post-transplant allograft rejection. Kidney Int. 2011;79(6):655–62.PubMedCrossRefGoogle Scholar
  61. 61.
    Angaswamy N, Saini D, Ramachandran S, Nath DS, Phelan D, Hachem R, et al. Development of antibodies to human leukocyte antigen precedes development of antibodies to major histocompatibility class I-related chain A and are significantly associated with development of chronic rejection after human lung transplantation. Hum Immunol. 2010;71(6):560–5.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Zhang Q, Cecka JM, Gjertson DW, Ge P, Rose ML, Patel JK, et al. HLA and MICA: targets of antibody-mediated rejection in heart transplantation. Transplantation. 2011;91(10):1153–8.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Luo L, Li Z, Wu W, Luo G, Mei H, Sun Z, et al. The effect of MICA antigens on kidney transplantation outcomes. Immunol Lett. 2013;156(1-2):54–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Dragun D, Muller DN, Brasen JH, Fritsche L, Nieminen-Kelha M, Dechend R, et al. Angiotensin II type 1-receptor activating antibodies in renal-allograft rejection. N Engl J Med. 2005;352(6):558–69.PubMedCrossRefGoogle Scholar
  65. 65.
    Giral M, Foucher Y, Dufay A, Van Huyen JP, Renaudin K, Moreau A, et al. Pretransplant sensitization against angiotensin II type 1 receptor is a risk factor for acute rejection and graft loss. Am J Transplant. 2013;13(10):2567–76.PubMedCrossRefGoogle Scholar
  66. 66.
    Reinsmoen NL, Lai CH, Mirocha J, Cao K, Ong G, Naim M, et al. Increased negative impact of donor HLA-specific together with non-HLA-specific antibodies on graft outcome. Transplantation. 2014;97(5):595–601.PubMedCrossRefGoogle Scholar
  67. 67.
    Arnaoutakis GJ, Eng HS, George TJ, Beaty CA, Merlo CA, Shah AS, et al. The impact of angiotensin II type 1 receptor auto-antibodies and early lung transplant outcomes. Am J Transplant. 2012;12(S3):170.Google Scholar
  68. 68.
    Reinsmoen NL, Mirocha J, Ensor C, Marrari M, Chaux GE, Lai C, Levine D, Zeevi A. A three center study reveals new insights into the impact of non-HLA antibodies on the acute rejection process in lung transplantation. J Heart Lung Transplant. 2015;34(4):S119–S20.CrossRefGoogle Scholar
  69. 69.
    Kalache S, Dinavahi R, Pinney S, Mehrotra A, Cunningham MW, Heeger PS. Anticardiac myosin immunity and chronic allograft vasculopathy in heart transplant recipients. J Immunol. 2011;187(2):1023–30.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Nath DS, Illias Basha H, Saini D, Ramachandran S, Ewald GA, Moazami N, Mohanakumar T. The important role of immune responses to self-antigen in pathogenesis of coronary artery vasculopathy following human cardiac transplantation. J Heart Lung Transplant. 2010;29(2):S84–S5.CrossRefGoogle Scholar
  71. 71.
    Angaswamy N, Klein C, Tiriveedhi V, Gaut J, Anwar S, Rossi A, et al. Immune responses to collagen-IV and fibronectin in renal transplant recipients with transplant glomerulopathy. Am J Transplant. 2014;14(3):685–93.PubMedCrossRefGoogle Scholar
  72. 72.
    Joosten SA, Sijpkens YW, van Ham V, Trouw LA, van der Vlag J, van den Heuvel B, et al. Antibody response against the glomerular basement membrane protein agrin in patients with transplant glomerulopathy. Am J Transplant. 2005;5(2):383–93.PubMedCrossRefGoogle Scholar
  73. 73.
    Tiriveedhi V, Gautam B, Sarma NJ, Askar M, Budev M, Aloush A, et al. Pre-transplant antibodies to Kalpha1 tubulin and collagen-V in lung transplantation: clinical correlations. J Heart Lung Transplant. 2013;32(8):807–14.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Hachem RR, Tiriveedhi V, Patterson GA, Aloush A, Trulock EP, Mohanakumar T. Antibodies to K-alpha 1 tubulin and collagen V are associated with chronic rejection after lung transplantation. Am J Transplant. 2012;12(8):2164–71.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Nath DS, Tiriveedhi V, Basha HI, Phelan D, Moazami N, Ewald GA, et al. A role for antibodies to human leukocyte antigens, collagen-V, and K-alpha1-Tubulin in antibody-mediated rejection and cardiac allograft vasculopathy. Transplantation. 2011;91(9):1036–43.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Jaramillo A, Naziruddin B, Zhang L, Reznik SI, Smith MA, Aloush AA, et al. Activation of human airway epithelial cells by non-HLA antibodies developed after lung transplantation: a potential etiological factor for bronchiolitis obliterans syndrome. Transplantation. 2001;71(7):966–76.PubMedCrossRefGoogle Scholar
  77. 77.
    Burlingham WJ, Love RB, Jankowska-Gan E, Haynes LD, Xu Q, Bobadilla JL, et al. IL-17-dependent cellular immunity to collagen type V predisposes to obliterative bronchiolitis in human lung transplants. J Clin Invest. 2007;117(11):3498–506.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Goers TA, Ramachandran S, Aloush A, Trulock E, Patterson GA, Mohanakumar T. De novo production of K-alpha1 tubulin-specific antibodies: role in chronic lung allograft rejection. J Immunol. 2008;180(7):4487–94.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Iwata T, Philipovskiy A, Fisher AJ, Presson RG Jr, Chiyo M, Lee J, et al. Anti-type V collagen humoral immunity in lung transplant primary graft dysfunction. J Immunol. 2008;181(8):5738–47.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Hagedorn PH, Burton CM, Carlsen J, Steinbruchel D, Andersen CB, Sahar E, et al. Chronic rejection of a lung transplant is characterized by a profile of specific autoantibodies. Immunology. 2010;130(3):427–35.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Bharat A, Saini D, Steward N, Hachem R, Trulock EP, Patterson GA, et al. Antibodies to self-antigens predispose to primary lung allograft dysfunction and chronic rejection. Ann Thorac Surg. 2010;90(4):1094–101.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Paantjens AW, van de Graaf EA, Kwakkel-van Erp JM, Hoefnagel T, van Ginkel WG, Fakhry F, et al. The induction of IgM and IgG antibodies against HLA or MICA after lung transplantation. Pulm Med. 2011;2011:432169.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Levine DJ, Glanville AR, Aboyoun C, Belperio J, Benden C, Berry GJ, et al. Antibody-mediated rejection of the lung: a consensus report of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant. 2016;35(4):397–406.CrossRefPubMedGoogle Scholar
  84. 84.
    Book BK, Agarwal A, Milgrom AB, Bearden CM, Sidner RA, Higgins NG, et al. New crossmatch technique eliminates interference by humanized and chimeric monoclonal antibodies. Transplant Proc. 2005;37(2):640–2.PubMedCrossRefGoogle Scholar
  85. 85.
    Patel R, Terasaki PI. Significance of the positive crossmatch test in kidney transplantation. N Engl J Med. 1969;280(14):735–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Grenzi PC, de Marco R, Silva RZ, Campos EF, Gerbase-DeLima M. Antibodies against denatured HLA class II molecules detected in luminex-single antigen assay. Hum Immunol. 2013;74(10):1300–3.PubMedCrossRefGoogle Scholar
  87. 87.
    Kao KJ, Scornik JC, Small SJ. Enzyme-linked immunoassay for anti-HLA antibodies--an alternative to panel studies by lymphocytotoxicity. Transplantation. 1993;55(1):192–6.PubMedCrossRefGoogle Scholar
  88. 88.
    Weinstock C, Schnaidt M. The complement-mediated prozone effect in the Luminex single-antigen bead assay and its impact on HLA antibody determination in patient sera. Int J Immunogenet. 2013;40(3):171–7.PubMedCrossRefGoogle Scholar
  89. 89.
    Poli F, Benazzi E, Innocente A, Nocco A, Cagni N, Gianatti A, et al. Heart transplantation with donor-specific antibodies directed toward denatured HLA-A*02:01: a case report. Hum Immunol. 2011;72(11):1045–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Yabu JM, Higgins JP, Chen G, Sequeira F, Busque S, Tyan DB. C1q-fixing human leukocyte antigen antibodies are specific for predicting transplant glomerulopathy and late graft failure after kidney transplantation. Transplantation. 2011;91(3):342–7.PubMedCrossRefGoogle Scholar
  91. 91.
    Zeevi A, Lunz J, Feingold B, Shullo M, Bermudez C, Teuteberg J, et al. Persistent strong anti-HLA antibody at high titer is complement binding and associated with increased risk of antibody-mediated rejection in heart transplant recipients. J Heart Lung Transplant. 2013;32(1):98–105.PubMedCrossRefGoogle Scholar
  92. 92.
    Gebel HM, Bray RA, Nickerson P. Pre-transplant assessment of donor-reactive, HLA-specific antibodies in renal transplantation: contraindication vs. risk. Am J Transplant. 2003;3(12):1488–500.PubMedCrossRefGoogle Scholar
  93. 93.
    Aubert V, Venetz JP, Pantaleo G, Pascual M. Low levels of human leukocyte antigen donor-specific antibodies detected by solid phase assay before transplantation are frequently clinically irrelevant. Hum Immunol. 2009;70(8):580–3.PubMedCrossRefGoogle Scholar
  94. 94.
    Susal C, Dohler B, Sadeghi M, Ovens J, Opelz G. HLA antibodies and the occurrence of early adverse events in the modern era of transplantation: a collaborative transplant study report. Transplantation. 2009;87(9):1367–71.PubMedCrossRefGoogle Scholar
  95. 95.
    Singh N, Djamali A, Lorentzen D, Pirsch JD, Leverson G, Neidlinger N, et al. Pretransplant donor-specific antibodies detected by single-antigen bead flow cytometry are associated with inferior kidney transplant outcomes. Transplantation. 2010;90(10):1079–84.PubMedCrossRefGoogle Scholar
  96. 96.
    Everly MJ. Summarizing the use of donor specific anti-HLA antibody monitoring in transplant patients. Clin Transpl. 2011:333–6.Google Scholar
  97. 97.
    Sicard A, Amrouche L, Suberbielle C, Carmagnat M, Candon S, Thervet E, et al. Outcome of kidney transplantations performed with preformed donor-specific antibodies of unknown etiology. Am J Transplant. 2014;14(1):193–201.PubMedCrossRefGoogle Scholar
  98. 98.
    Morath C, Opelz G, Zeier M, Susal C. Clinical relevance of HLA antibody monitoring after kidney transplantation. J Immunol Res. 2014;2014:845040.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol. 2010;11(9):785–97.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Iwasaki K, Miwa Y, Ogawa H, Yazaki S, Iwamoto M, Furusawa T, et al. Comparative study on signal transduction in endothelial cells after anti-a/b and human leukocyte antigen antibody reaction: implication of accommodation. Transplantation. 2012;93(4):390–7.PubMedCrossRefGoogle Scholar
  101. 101.
    Zipfel PF, Skerka C. Complement regulators and inhibitory proteins. Nat Rev Immunol. 2009;9(10):729–40.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Sorman A, Zhang L, Ding Z, Heyman B. How antibodies use complement to regulate antibody responses. Mol Immunol. 2014;61(2):79–88.PubMedCrossRefGoogle Scholar
  103. 103.
    Dunkelberger JR, Song WC. Role and mechanism of action of complement in regulating T cell immunity. Mol Immunol. 2010;47(13):2176–86.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Abe M, Shibata K, Akatsu H, Shimizu N, Sakata N, Katsuragi T, et al. Contribution of anaphylatoxin C5a to late airway responses after repeated exposure of antigen to allergic rats. J Immunol. 2001;167(8):4651–60.PubMedCrossRefGoogle Scholar
  105. 105.
    Baelder R, Fuchs B, Bautsch W, Zwirner J, Kohl J, Hoymann HG, et al. Pharmacological targeting of anaphylatoxin receptors during the effector phase of allergic asthma suppresses airway hyperresponsiveness and airway inflammation. J Immunol. 2005;174(2):783–9.PubMedCrossRefGoogle Scholar
  106. 106.
    Agrawal A, Sinha A, Ahmad T, Aich J, Singh P, Sharma A, et al. Maladaptation of critical cellular functions in asthma: bioinformatic analysis. Physiol Genomics. 2009;40(1):1–7.PubMedCrossRefGoogle Scholar
  107. 107.
    Drouin SM, Corry DB, Hollman TJ, Kildsgaard J, Wetsel RA. Absence of the complement anaphylatoxin C3a receptor suppresses Th2 effector functions in a murine model of pulmonary allergy. J Immunol. 2002;169(10):5926–33.PubMedCrossRefGoogle Scholar
  108. 108.
    Wills-Karp M. Complement activation pathways: a bridge between innate and adaptive immune responses in asthma. Proc Am Thorac Soc. 2007;4(3):247–51.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Suzuki H, Lasbury ME, Fan L, Vittal R, Mickler EA, Benson HL, et al. Role of complement activation in obliterative bronchiolitis post-lung transplantation. J Immunol. 2013;191(8):4431–9.PubMedCrossRefGoogle Scholar
  110. 110.
    Pratt JR, Basheer SA, Sacks SH. Local synthesis of complement component C3 regulates acute renal transplant rejection. Nat Med. 2002;8(6):582–7.PubMedCrossRefGoogle Scholar
  111. 111.
    Pavlov V, Raedler H, Yuan S, Leisman S, Kwan WH, Lalli PN, et al. Donor deficiency of decay-accelerating factor accelerates murine T cell-mediated cardiac allograft rejection. J Immunol. 2008;181(7):4580–9.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Ratajczak MZ, Reca R, Wysoczynski M, Kucia M, Baran JT, Allendorf DJ, et al. Transplantation studies in C3-deficient animals reveal a novel role of the third complement component (C3) in engraftment of bone marrow cells. Leukemia. 2004;18(9):1482–90.PubMedCrossRefGoogle Scholar
  113. 113.
    Rao DA, Pober JS. Endothelial injury, alarmins, and allograft rejection. Crit Rev Immunol. 2008;28(3):229–48.PubMedCrossRefGoogle Scholar
  114. 114.
    Goldstein I, Ben-Horin S, Li J, Bank I, Jiang H, Chess L. Expression of the alpha1beta1 integrin, VLA-1, marks a distinct subset of human CD4+ memory T cells. J Clin Invest. 2003;112(9):1444–54.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Shimamoto A, Pohlman TH, Shomura S, Tarukawa T, Takao M, Shimpo H. Toll-like receptor 4 mediates lung ischemia-reperfusion injury. Ann Thorac Surg. 2006;82(6):2017–23.PubMedCrossRefGoogle Scholar
  116. 116.
    Kaczorowski DJ, Tsung A, Billiar TR. Innate immune mechanisms in ischemia/reperfusion. Front Biosci (Elite Ed). 2009;1:91–8.Google Scholar
  117. 117.
    Tsung A, Sahai R, Tanaka H, Nakao A, Fink MP, Lotze MT, et al. The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J Exp Med. 2005;201(7):1135–43.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Oberbarnscheidt MH, Zecher D, Lakkis FG. The innate immune system in transplantation. Semin Immunol. 2011;23(4):264–72.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Kim JI, Lee MK IV, Moore DJ, Sonawane SB, Duff PE, O’Connor MR, et al. Regulatory T-cell counter-regulation by innate immunity is a barrier to transplantation tolerance. Am J Transplant. 2009;9(12):2736–44.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Kreisel D, Nava RG, Li W, Zinselmeyer BH, Wang B, Lai J, et al. In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasation during pulmonary inflammation. Proc Natl Acad Sci U S A. 2010;107(42):18073–8.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Gelman AE, Okazaki M, Sugimoto S, Li W, Kornfeld CG, Lai J, et al. CCR2 regulates monocyte recruitment as well as CD4 T1 allorecognition after lung transplantation. Am J Transplant. 2010;10(5):1189–99.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Dominguez PM, Ardavin C. Differentiation and function of mouse monocyte-derived dendritic cells in steady state and inflammation. Immunol Rev. 2010;234(1):90–104.PubMedCrossRefGoogle Scholar
  123. 123.
    Heidecke CD, Araujo JL, Kupiec-Weglinski JW, Abbud-Filho M, Araneda D, Stadler J, et al. Lack of evidence for an active role for natural killer cells in acute rejection of organ allografts. Transplantation. 1985;40(4):441–4.PubMedCrossRefGoogle Scholar
  124. 124.
    Maier S, Tertilt C, Chambron N, Gerauer K, Huser N, Heidecke CD, et al. Inhibition of natural killer cells results in acceptance of cardiac allografts in CD28-/- mice. Nat Med. 2001;7(5):557–62.PubMedCrossRefGoogle Scholar
  125. 125.
    Murphy WJ, Kumar V, Bennett M. Acute rejection of murine bone marrow allografts by natural killer cells and T cells. Differences in kinetics and target antigens recognized. J Exp Med. 1987;166(5):1499–509.PubMedCrossRefGoogle Scholar
  126. 126.
    Nicotra ML, Powell AE, Rosengarten RD, Moreno M, Grimwood J, Lakkis FG, et al. A hypervariable invertebrate allodeterminant. Curr Biol. 2009;19(7):583–9.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Rosengarten RD, Nicotra ML. Model systems of invertebrate allorecognition. Curr Biol. 2011;21(2):R82–92.PubMedCrossRefGoogle Scholar
  128. 128.
    Valapour M, Skeans MA, Smith JM, Edwards LB, Cherikh WS, Uccellini K, et al. OPTN/SRTR 2015 Annual Data Report: Lung. Am J Transplant. 2017;17(Suppl 1):357–424.PubMedCrossRefGoogle Scholar
  129. 129.
    Snell GI, Holmes M, Levvey BJ, Shipp A, Robertson C, Westall GP, et al. Lessons and insights from ABO-incompatible lung transplantation. Am J Transplant. 2013;13(5):1350–3.PubMedCrossRefGoogle Scholar
  130. 130.
    Pouliquen E, Koenig A, Chen CC, Sicard A, Rabeyrin M, Morelon E, et al. Recent advances in renal transplantation: antibody-mediated rejection takes center stage. F1000Prime Rep. 2015;7:51.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of Immunogenetics/HLABloodworks NorthwestSeattleUSA

Personalised recommendations