Advertisement

Benefits and Potential Risks of Nanotechnology Applications in Crop Protection

  • Josef Jampílek
  • Katarína Kráľová
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

Nanoagrochemicals have played a more and more important role in agriculture and food industry, which is connected to the fact that nanotechnology is a rapidly expanding field that affords the development of materials in nanoscale dimensions that have unique properties and a wide spectrum of applications. Thus, many nanoscale materials have found their application in crop protection, i.e. protection of field, vegetable crops and fruits against plant diseases, weeds and various pests. Agents with crop protection effects have become more and more important due to the necessity to ensure enough food for the world’s population. This contribution reviews the potential of applications of different nanoscale inorganic, organic or combined materials as pesticides (herbicides, fungicides, bactericides and insecticides), i.e. as agents used for crop protections. The attention is also devoted to the impact of these nanomaterials on the environment and human health.

Keywords

Herbicides Fungicides Insecticides Natural agents Synthetic agents Metalloids Nanoparticles Nanoformulations Nano(eco)toxicology Health risks 

Notes

Acknowledgements

This study was supported by sanofi-aventis Pharma Slovakia, s.r.o.

References

  1. Abigail MEA, Samuel SM, Chidambaram R (2016) Application of rice husk nanosorbents containing 2,4-dichlorophenoxyacetic acid herbicide to control weeds and reduce leaching from soil. J Taiwan Inst Chem Eng 63:318–326. https://doi.org/10.1016/j.jtice.2016.03.024 CrossRefGoogle Scholar
  2. Adak T, Shakil NA, Walia S (2012) Development of controlled release formulations of imidacloprid employing novel nano-ranged amphiphilic polymers. Environ Sci Health B 47:217–225. https://doi.org/10.1080/03601234.2012.634365 CrossRefGoogle Scholar
  3. Afrasiabi Z, Popham HJR, Stanley D, Suresh D, Finley K, Campbell J, Kannan R, Upendran A (2016) Dietary silver nanoparticles reduce fitness in a beneficial, but not pest, insect species. Arch Insect Biochem Physiol 93:190–201. https://doi.org/10.1002/arch.21351 CrossRefPubMedGoogle Scholar
  4. Agrios GN (2005) Plant pathology, 5th edn. Elsevier Academic Press, San Diego.Google Scholar
  5. Ahamed M, Posgai R, Gorey TJ, Nielsen M, Hussain SM, Rowe JJ (2010) Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Tox App Pharm 242:263–269. https://doi.org/10.1016/j.taap.2009.10.016 CrossRefGoogle Scholar
  6. Ali M, Kim B, Elfield KDB, Norman D, Brennan M, Ali GS (2015) Inhibition of Phytophthora parasitica and P-capsici by silver nanoparticles synthesized using aqueous extract of Artemisia absinthium. Phytopathology 105:1183–1190. https://doi.org/10.1094/PHYTO-01-15-0006-R CrossRefPubMedGoogle Scholar
  7. Alromeed AA, Scrano L, Bufo SA, Undabeytia T (2015) Slow-release formulations of the herbicide MCPA by using clay-protein composites. Pest Manag Sci 71:1303–1310. https://doi.org/10.1002/ps.3929 CrossRefPubMedGoogle Scholar
  8. Andronescu E, Brown JM, Oktar FN, Agathopoulos S, Chou J, Obata A (2016) Nanomaterials for medical applications: benefits and risks. J Nanomaterial 2016:8284319. https://doi.org/10.1155/2016/8284319 CrossRefGoogle Scholar
  9. Anjum NA, Adam V, Kizek R, Duarte AC, Pereira E, Iqbal M, Lukatkin AN, Ahmad I (2015) Nanoscale copper in the soil–plant system–toxicity and underlying potential mechanisms. Environ Res 138:306–325. https://doi.org/10.1016/j.envres.2015.02.019 CrossRefPubMedGoogle Scholar
  10. Anusuya S, Sathiyabama M (2014) Preparation of beta-D-glucan nanoparticles and its antifungal activity. Int J Biol Macromol 70:440–443. https://doi.org/10.1016/j.ijbiomac.2014.07.011 CrossRefPubMedGoogle Scholar
  11. APVMA (2014) A draft report from the australian pesticides and veterinary medicines authority. Regulatory considerations for nanopesticides and veterinary nanomedicines. Available online at: http://apvma.gov.au/sites/default/files/docs/report-draft-regulatory-considerations-nanopesticides-veterinary-nanomedicines.pdf
  12. Arasimowicz M, Floryszak-Wieczorek J (2007) Nitric oxide as a bioactive signaling molecule in plant stress responses. Plant Sci 172:876–887. https://doi.org/10.1016/j.plantsci.2007.02.005 CrossRefGoogle Scholar
  13. Armstrong N, Ramamoorthy M, Lyon D, Jones K, Duttaroy A (2013) Mechanism of silver nanoparticles action on insect pigmentation reveals intervention of copper homeostasis. PLoS One 8:e53186. https://doi.org/10.1371/journal.pone.0053186 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Aschberger K, Gottardo S, Amenta V, Arena M, Moniz FB, Bouwmeester H, Brandhoff P, Mech A, Quiros Pesudo L, Rauscher H, Schoonjans R, Vittoria Vettori M, Peters R (2015) Nanomaterials in food – current and future applications and regulatory aspects. J Phys Conf Ser 617:1–6.CrossRefGoogle Scholar
  15. Athanassiou CG, Kavallieratos NG, Peteinatos GG, Petrou SE, Boukouvala MC, Tomanovic Z (2007) Influence of temperature and humidity on insecticidal effect of three diatomaceous earth formulations against larger grain borer (Coleoptera: Bostrychidae). J Econ Entomol 100:599–603.CrossRefPubMedGoogle Scholar
  16. Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4:634–641. https://doi.org/10.1038/nnano.2009.242 CrossRefPubMedGoogle Scholar
  17. Balashanmugam P, Balakumaran MD, Murugan R, Dhanapal K, Kalaichelvan PT (2016) Phytogenic synthesis of silver nanoparticles, optimization and evaluation of in vitro antifungal activity against human and plant pathogens. Microbiol Res 192:52–64. https://doi.org/10.1016/j.micres.2016.06.004 CrossRefPubMedGoogle Scholar
  18. Balaure PC, Gudovan D, Gudovan I (2017) Nanopesticides – a new paradigm in crop protection. In: Grumezescu AM (ed) Nanotechnology in food industry, New pesticides and soil sensors, vol 10. Academic Press & Elsevier, London, pp 129–192. https://doi.org/10.1016/B978-0-12-804299-1.00005-9 CrossRefGoogle Scholar
  19. Bang SH, Hwang IC, Yu YM, Kwon HR, Kim DH, Park HJ (2011) Influence of chitosan coating on the liposomal surface on physicochemical properties and the release profile of nanocarrier systems. J Microencapsul 28:595–604. https://doi.org/10.3109/02652048.2011.557748 CrossRefPubMedGoogle Scholar
  20. Berkner S, Schwirn K, Voelker D (2016) Nanopharmaceuticals: tiny challenges for the environmental risk assessment of pharmaceuticals. Environ Toxicol Chem 35:780–787. https://doi.org/10.1002/etc.3039 CrossRefPubMedGoogle Scholar
  21. Beyki M, Zhaveh S, Khalili ST, Rahmani-Cherati T, Abollahi A, Bayat M, Tabatabaei M, Mohsenifar A (2014) Encapsulation of Mentha piperita essential oils in chitosan-cinnamic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. Ind Crop Prod 54:310–319. https://doi.org/10.1016/j.indcrop.2014.01.033 CrossRefGoogle Scholar
  22. Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer International Publishing, Cham, pp 307–319.CrossRefGoogle Scholar
  23. Bheemaraya, Gogoi R, Aggarwal R, Kumar A, Rajesh Kumar, Rai SN, Hossain F, Bisht IS (2014) Effect of nano-hexaconazole on the phenotype and pathogenicity of Rhizoctonia solani f. Sp sasakii causing banded leaf and sheath blight in maize. J Pure Appl Microbiol 8:4579–4592.Google Scholar
  24. Bleeker EAJ, Evertz S, Geertsma RE, Peijnenburg WJGM, Westra J, Wijnhoven SWP (2015) Assessing health and environmental risks of nanoparticles. National Institute for Public Health and the Environment, Bilthoven Available online at: http://www.rivm.nl/dsresource?objectid=9adbf65a-25dc-4f45-a580-dcf98bb3b5ac&type=org&disposition=inline Google Scholar
  25. Borm PJA, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins R, Stone V, Kreyling W, Lademann J, Krutmann J, Warheit D, Oberdoster E (2006) The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol 3:11. https://doi.org/10.1186/1743-8977-3-11 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Boxi SS, Mukherjee K, Paria S (2016) Ag doped hollow TiO2 nanoparticles as an effective green fungicide against Fusarium solani and Venturia inaequalis phytopathogens. Nanotechnology 27:085103. https://doi.org/10.1088/0957-4484/27/8/085103
  27. Bramhanwade K, Shende S, Bonde S, Gade A, Rai M (2016) Fungicidal activity of Cu nanoparticles against Fusarium causing crop diseases. Environ Chem Lett 14:229–235. https://doi.org/10.1007/s10311-015-0543-1 CrossRefGoogle Scholar
  28. Brayner R, Fiévet F, Coradin T (2013) Nanomaterials: a danger or a promise? A chemical and biological perspective. Springer, London.CrossRefGoogle Scholar
  29. Brunel F, El Gueddari NE, Moerschbacher BM (2013) Complexation of copper(II) with chitosan nanogels: toward control of microbial growth. Carbohydr Polym 92:1348–1356. https://doi.org/10.1016/j.carbpol.2012.10.025 CrossRefPubMedGoogle Scholar
  30. Buteler M, Sofie SW, Weaver DK, Driscoll D, Muretta J, Stadler T (2015) Development of nanoalumina dust as insecticide against Sitophilus oryzae and Rhyzopertha dominica. Int J Pest Manag 61:80–89. https://doi.org/10.1080/09670874.2014.1001008 CrossRefGoogle Scholar
  31. Buzea C, Pacheco I, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:MR17–MR71. https://doi.org/10.1116/1.2815690 CrossRefPubMedGoogle Scholar
  32. Cabrera A, Celis R, Hermosin MC (2016) Imazamox-clay complexes with chitosan- and iron(III)-modified smectites and their use in nanoformulations. Pest Manag Sci 72:1285–1294. https://doi.org/10.1002/ps.4106 CrossRefPubMedGoogle Scholar
  33. Cao VD, Nguyen PP, Khuong VQ, Nguyen CK, Nguyen XC, Dang CH, Tran NQ (2014) Ultrafine copper nanoparticles exhibiting a powerful antifungal/killing activity against Corticium salmonicolor. Bull Kor Chem Soc 35:2645–2648. https://doi.org/10.5012/bkcs.2014.35.9.2645 CrossRefGoogle Scholar
  34. Carris LM, Little CR, Stiles CM (2012) Introduction to fungi. The Plant Health Instructor. American Phytopathological Society. Available online at: http://www.apsnet.org/edcenter/intropp/pathogengroups/pages/introfungi.aspx
  35. Cea M, Cartes P, Palma G, Mora ML (2010) Atrazine efficiency in an andisol as affected by clays and nanoclays in ethylcellulose controlled release formulations. J Soil Sci Plant Nutr 10:62–77. https://doi.org/10.4067/S0718-27912010000100007 CrossRefGoogle Scholar
  36. Chaudhry Q, Castle L (2011) Food applications of nanotechnologies: an overview of opportunities and challenges for developing countries. Trends Food Sci Technol 22:595–603. https://doi.org/10.1016/j.tifs.2011.01.001 CrossRefGoogle Scholar
  37. Chauhan N, Dilbaghi N, Gopal M, Kumar R, Kim KH, Kumar S (2017) Development of chitosan nanocapsules for the controlled release of hexaconazole. Int J Biol Macromol 97:616–624. https://doi.org/10.1016/j.ijbiomac.2016.12.059 CrossRefPubMedGoogle Scholar
  38. Chen H, Seiber JN, Hotze M (2014a) ACS select on nanotechnology in food and agriculture: a perspective on implications and applications. J Agric Food Chem 62:1209–1212. https://doi.org/10.1021/jf5002588 CrossRefPubMedGoogle Scholar
  39. Chen JN, Peng H, Wang XP, Shao F, Yuan ZD, Han HY (2014b) Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale 6:1879–1889. https://doi.org/10.1039/C3NR04941H CrossRefPubMedGoogle Scholar
  40. Chen JN, Li SL, Luo JX, Wang RS, Ding W (2016) Enhancement of the antibacterial activity of silver nanoparticles against phytopathogenic bacterium Ralstonia solanacearum by stabilization. J Nanomater 2016:7135852. https://doi.org/10.1155/2016/7135852 CrossRefGoogle Scholar
  41. Cho JS, Seo YC, Yim TB, Lee HY (2013) Growth and spore germination of Fusarium oxysporum f. Sp raphani. Int J Mol Sci 14:4283–4297. https://doi.org/10.3390/ijms14024283 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Choudhury SR, Ghosh M, Mandal A, Chakravorty D, Pal M, Pradhan S, Goswami A (2011) Surface-modified sulfur nanoparticles: an effective antifungal agent against Aspergillus niger and Fusarium oxysporum. Appl Microbiol Biotechnol 90:733–743. https://doi.org/10.1007/s00253-011-3142-5 CrossRefPubMedGoogle Scholar
  43. Choudhury SR, Ghosh M, Goswami A (2012) Inhibitory effects of sulfur nanoparticles on membrane lipids of Aspergillus niger: a novel route of fungistasis. Curr Microbiol 65:91–97. https://doi.org/10.1007/s00284-012-0130-7 CrossRefGoogle Scholar
  44. Cindi MD, Shittu T, Sivakumar D, Bautista-Banos S (2015) Chitosan boehmite-alumina nanocomposite films and thyme oil vapour control brown rot in peaches (Prunus persica L.) during postharvest storage. Crop Protect 72:127–131. https://doi.org/10.1016/j.cropro.2015.03.011 CrossRefGoogle Scholar
  45. Clemente Z, Grillo R, Jonsson M, Santos NZ, Feitosa LO, de Lima R, Fraceto LF (2013) Ecotoxicological evaluation of poly(epsilon-caprolactone) nanocapsules containing triazine herbicides. J Nanosci Nanotechnol 14:4911–4917.CrossRefGoogle Scholar
  46. Coles D, Frewer LJ (2013) Nanotechnology applied to European food production: a review of ethical and regulatory issues. Trends Food Sci Technol 34:32–43. https://doi.org/10.1016/j.tifs.2013.08.006 CrossRefGoogle Scholar
  47. Costa ES, Perlatti B, Silva EM, Matos AP, Silva MFGF, Fernandes JB, Zuin VG, da Silva CMP, Forim MR (2017) Use of lignins from sugarcane bagasse for assembling microparticles loaded with Azadirachta indica extracts for use as neem-based organic insecticides. J Braz Chem Soc 28:126–135. https://doi.org/10.5935/0103-5053.20160155 CrossRefGoogle Scholar
  48. Crop Protection Definitions (2017) STANDS4 LLC. Available online at: http://www.definitions.net/definition/crop%20protection
  49. da Costa JT, Forim MR, Costa ES, de Souza JR, Mondego JM, Boica AL (2014) Effects of different formulations of neem oil-based products on control Zabrotes subfasciatus (Boheman, 1833) (Coleoptera: Bruchidae) on beans. J Stored Prod Res 56:49–53. https://doi.org/10.1016/j.jspr.2013.10.004 CrossRefGoogle Scholar
  50. De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3:133–149. https://doi.org/10.2147/ijn.s596 CrossRefPubMedPubMedCentralGoogle Scholar
  51. De Lucca AJ (2007) Harmful fungi in both agriculture and medicine. Rev Iberoam Micol 24:3–13.CrossRefPubMedGoogle Scholar
  52. de Oliveira JL, Campos EVR, da Silva CMG, Pasquoto T, de Lima R, Fraceto LF (2015) Solid lipid nanoparticles co-loaded with simazine and atrazine: preparation, characterization, and evaluation of herbicidal activity. J Agric Food Chem 63:422–432. https://doi.org/10.1021/jf5059045 CrossRefPubMedGoogle Scholar
  53. Debnath N, Das S, Brahmachary RL, Chandra R, Sudan S, Goswami A (2010) Entomotoxicity assay of silica, zinc oxide, titanium dioxide, aluminium oxide nanoparticles on Lipaphis pseudobrassicae. AIP Conf Proc 1276:307–310. https://doi.org/10.1063/1.3504316 CrossRefGoogle Scholar
  54. Debnath N, Das S, Seth D, Chandra R, Bhattacharya SC, Goswami A (2011) Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). J Pestic Sci 84:99–105. https://doi.org/10.1007/s10340-010-0332-3 CrossRefGoogle Scholar
  55. Debnath N, Mitra S, Das S, Goswami A (2012) Synthesis of surface functionalized silica nanoparticles and their use as entomotoxic nanocides. Powder Technol 221:252–256. https://doi.org/10.1016/j.powtec.2012.01.009 CrossRefGoogle Scholar
  56. Derbalah AS, Khidr AA, Moustafa HZ, Taman A (2014) Laboratory evaluation of some non-conventional pest control agents against the pink bollworm Pectinophora gossypiella (Saunders). Egypt J Biol Pest Control 24:363–368.Google Scholar
  57. Dharni S, Sanchita, Unni SM, Kurungot S, Samad A, Sharma A, Patra DD (2016) In vitro and in silico antifungal efficacy of nitrogen- doped carbon nanohorn (NCNH) against Rhizoctonia solani. J Biomol Struct Dyn 34:152–162. https://doi.org/10.1080/07391102.2015.1018841 CrossRefPubMedGoogle Scholar
  58. Dolez PI (2015) Nanoengineering: global approaches to health and safety issues. Elsevier, Amsterdam.Google Scholar
  59. Du WC, Tan WJ, Peralta-Videa JR, Gardea-Torresdey JL, Ji R, Yin Y, Guo HG (2017) Interaction of metal oxide nanoparticles with higher terrestrial plants: physiological and biochemical aspects. Plant Physiol Biochem 110:210–225. https://doi.org/10.1016/j.plaphy.2016.04.024 CrossRefPubMedGoogle Scholar
  60. EC (2014) JRC nanomaterials repository. Available online at: https://ec.europa.eu/jrc/en/scientific-tool/jrc-nanomaterials-repository
  61. Elango G, Roopan SM, Dhamodaran KI, Elumalai K, Al-Dhabi NA, Arasu MV (2016) Spectroscopic investigation of biosynthesized nickel nanoparticles and its larvicidal, pesticidal activities. J Photochem Photobiol B 162:162–167. https://doi.org/10.1016/j.jphotobiol.2016.06.045 CrossRefPubMedGoogle Scholar
  62. Elek N, Hoffman R, Raviv U, Resh R, Ishaaya I, Magdassi S (2010) Novaluron nanoparticles: formation and potential use in controlling agricultural insect pests. Colloids Surf A Physicochem Eng Asp 372:66–72. https://doi.org/10.1016/j.colsurfa.2010.09.034 CrossRefGoogle Scholar
  63. Elgorban AM, El-Samawaty AEM, Yassin MA, Sayed SR, Adil SF, Elhindi KM, Bakri M, Khan M (2016a) Antifungal silver nanoparticles: synthesis, characterization and biological evaluation. Biotechnol Biotechnol Equip 30:56–62. https://doi.org/10.1080/13102818.2015.1106339 CrossRefGoogle Scholar
  64. Elgorban AM, Aref SM, Seham SM, Elhindi KM, Bahkali AH, Sayed SR, Manal MA (2016b) Extracellular synthesis of silver nanoparticles using Aspergillus versicolor and evaluation of their activity on plant pathogenic fungi. Mycosphere 7:844–852. https://doi.org/10.5943/mycosphere/7/6/15 CrossRefGoogle Scholar
  65. Essential Chemical Industry (2017) Crop protection chemicals. Centre for Industry Education Collaboration, Department of Chemistry, University of York, UK. Available online at: http://www.essentialchemicalindustry.org/materials-and-applications/crop-protection-chemicals.html
  66. European Commission (2009) Regulation EC 1107/2009 concerning the placing of plant protection products on the market. Guidance on section 5 – fate and behaviour in the environment. Available online at: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32009R1107
  67. European Commission (2011) Definition of a nanomaterial. Available online at: http://ec.europa.eu/environment/chemicals/nanotech/faq/definition_en.htm
  68. FAO (2009) Global agriculture towards 2050. .High level expert forum – how to feed the world in 2050. Available online at: http://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Global_Agriculture.pdf
  69. FAO (2010) Food and Agriculture Organization of the United Nations and World Health Organization expert meeting on the application of nanotechnologies in the food and agriculture sectors. Potential food safety implications, in Meeting Report (Rome). Available online at: http://whqlibdoc.who.int/publications/2010/9789241563932_eng.pdf
  70. FAO (2013) Food and Agriculture Organization of the United Nations and World Health Organization. State of the art on the initiatives and activities relevant to risk assessment and risk management of nanotechnologies in the food and agriculture sectors, in FAO/WHO Technical Paper. Available online at: http://www.fao.org/docrep/018/i3281e/i3281e.pdf
  71. Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194. https://doi.org/10.1038/nature10947 CrossRefPubMedGoogle Scholar
  72. Forim MR, Costa ES, da Silva GFMF, Fernandes JB, Mondego JM, Boica AL (2013) Development of a new method to prepare nano−/microparticles loaded with extracts of Azadirachta indica, their characterization and use in controlling Plutella xylostella. J Agric Food Chem 61:9131–9139. https://doi.org/10.1021/jf403187y CrossRefPubMedGoogle Scholar
  73. Fraceto LF, Grillo R, de Medeiros GA, Scognamiglio V, Rea G, Bartolucci C (2016) Nanotechnology in agriculture: which innovation potential does it have? Front Environ Sci 4:20. https://doi.org/10.3389/fenvs.2016.00020 CrossRefGoogle Scholar
  74. Fröhlich E (2013) Cellular targets and mechanisms in the cytotoxic action of non-biodegradable engineered nanoparticles. Curr Drug Metab 14:976–988. https://doi.org/10.2174/1389200211314090004 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine Nanotechnol Biol Med 5:382–386. https://doi.org/10.1016/j.nano.2009.06.005 CrossRefGoogle Scholar
  76. Garcia M, Forbe T, Gonzalez E (2010) Potential applications of nanotechnology in the agro-food sector. Food Sci Technol 30:573–581. https://doi.org/10.1590/S0101-20612010000300002 CrossRefGoogle Scholar
  77. Garrido-Herrera FJ, Gonzlez-Pradas E, Fernndez-Prez M (2006) Controlled release of isoproturon, imidacloprid, and cyromazine from alginate-bentonite-activated carbon formulations. J Agric Food Chem 54:10053–10060. https://doi.org/10.1021/jf062084m CrossRefPubMedGoogle Scholar
  78. Gauthier GM, Keller NP (2013) Crossover fungal pathogens: the biology and pathogenesis of fungi capable of crossing kingdoms to infect plants and humans. Fungal Genet Biol 61:146–157. https://doi.org/10.1016/j.fgb.2013.08.016 CrossRefPubMedGoogle Scholar
  79. Gewin W (2015) Everything you need to know about nanopesticides. Modern Farmer Article. Available online at: http://modernfarmer.com/2015/01/everything-need-know-nanopesticides
  80. Ghasemian E, Naghoni A, Tabaraie B, Tabaraie T (2012) In vitro susceptibility of filamentous fungi to copper nanoparticles assessed by rapid XTT colorimetry and agar dilution method. J Mycol Med 22:322–328. https://doi.org/10.1016/j.mycmed.2012.09.006 CrossRefPubMedGoogle Scholar
  81. Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803. https://doi.org/10.1016/j.biotechadv.2011.06.0 CrossRefPubMedGoogle Scholar
  82. Giannousi K, Avramidis I, Dendrinou-Samara C (2013) Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Adv 3:21743–21752. https://doi.org/10.1039/c3ra42118j CrossRefGoogle Scholar
  83. Giongo AMM, Vendramim JD, Forim MR (2016) Evaluation of neem-based nanoformulations as alternative to control fall armyworm. Cienc Agrotec 40:26–36. https://doi.org/10.1590/S1413-70542016000100002 CrossRefGoogle Scholar
  84. Gondal MA, Alzahrani AJ, Randhawa MA, Siddiqui MN (2012) Morphology and antifungal effect of nano-ZnO and nano-Pd-doped nano-ZnO against Aspergillus and Candida. J Environ Sci Health A Tox Hazard Subst Environ Eng 47:1413–1418. https://doi.org/10.1080/10934529.2012.672384 CrossRefPubMedGoogle Scholar
  85. Gonzalez JOW, Gutierrez MM, Ferrero AA, Band BF (2014) Essential oils nanoformulations for stored-product pest control – characterization and biological properties. Chemosphere 100:130–138. https://doi.org/10.1016/j.chemosphere.2013.11.056 CrossRefGoogle Scholar
  86. Gopinath V, Velusamy P (2013) Extracellular biosynthesis of silver nanoparticles using Bacillus sp GP-23 and evaluation of their antifungal activity towards Fusarium oxysporum. Spectrochim Acta A Mol Biomol Spectrosc 106:170–174. https://doi.org/10.1016/j.saa.2012.12.087 CrossRefPubMedGoogle Scholar
  87. Gorczyca A, Pociecha E, Kasprowicz M, Niemiec M (2015) Effect of nanosilver in wheat seedlings and Fusarium culmorum culture systems. Eur J Plant Pathol 142:251–261. https://doi.org/10.1007/s10658-015-0608-9 CrossRefGoogle Scholar
  88. Goswami A, Roy I, Sengupta S, Debnath N (2010) Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519:1252–1257. https://doi.org/10.1016/j.tsf.2010.08.079 CrossRefGoogle Scholar
  89. Grillo R, dos Santos NZP, Maruyama CR, Rosa AH, de Lima R, Fraceto LF (2012) Poly(epsilon-caprolactone) nanocapsules as carrier systems for herbicides: physico-chemical characterization and genotoxicity evaluation. J Hazard Mater 231:1–9. https://doi.org/10.1016/j.jhazmat.2012.06.019 CrossRefPubMedGoogle Scholar
  90. Grillo R, Pereira AE, Nishisaka CS, de Lima R, Oehlke K, Greiner R, Fraceto LF (2014) Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: an environmentally safer alternative for weed control. J Hazard Mater 278:163–171. https://doi.org/10.1016/j.jhazmat.2014.05.079 CrossRefPubMedGoogle Scholar
  91. Grillo R, Abhilash PC, Fraceto LF (2016) Nanotechnology applied to bio-encapsulation of pesticides. J Nanosci Nanotechnol 16:1231–1234. https://doi.org/10.1166/jnn.2016.12332 CrossRefPubMedGoogle Scholar
  92. Guan HN, Chi DF, Yu JM, Li XC (2008) A novel photodegradable insecticide: preparation, characterization and properties evaluation of nano-imidacloprid. Pestic Biochem Physiol 92:83–91. https://doi.org/10.1016/j.pestbp.2008.06.008 CrossRefGoogle Scholar
  93. Guo YZ, Yang Q, Yan W, Li B, Qian K, Li T, Xiao W, He L (2014) Controlled release of acetochlor from poly (butyl methacrylate-diacetone acrylamide) based formulation prepared by nanoemulsion polymerisation method and evaluation of the efficacy. Int J Environ Anal Chem 94:1001–1012. https://doi.org/10.1080/03067319.2014.930844 CrossRefGoogle Scholar
  94. Guo MC, Zhang WB, Ding GL, Guo D, Zhu JL, Wang BT, Punyapitak D, Cao YS (2015) Preparation and characterization of enzyme-responsive emamectin benzoate microcapsules based on a copolymer matrix of silica-epichlorohydrin-carboxymethylcellulose. RSC Adv 5:93170–93179CrossRefGoogle Scholar
  95. Hagens WI, Oomen AG, de Jong WH, Cassee FR, Sips AJAM (2007) What do we (need to) know about the kinetic properties of nanoparticles in the body? Regul Toxicol Pharmacol 49:217–229. https://doi.org/10.1016/j.yrtph.2007.07.006 CrossRefPubMedGoogle Scholar
  96. Hala HA, Elsamahy MFM (2016) Relative toxicity of silica nanoparticles to two tetranychids and three associated predators. Egypt J Biol Pest Control 26:283–286.Google Scholar
  97. Hamza AM (2012) Efficacy and safety of non-traditional methods as alternatives for control of Sitophilus oryzae (L.) (Coleoptera: Curculionidae) in rice grains. Egypt J Biol Pest Control 22:103–108.Google Scholar
  98. Handy RD, Owen R, Valsami-Jones E (2008) The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17:315–325. https://doi.org/10.1007/s10646-008-0206-0 CrossRefPubMedGoogle Scholar
  99. He LL, Liu Y, Mustapha A, Lin MS (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166:207–215. https://doi.org/10.1016/j.micres.2010.03.003 CrossRefPubMedGoogle Scholar
  100. Hiraga S, Sasaki K, Ito H, Ohashi Y, Matsui H (2001) A large family of class III plant peroxidases. Plant Cell Physiol 42:462–468. https://doi.org/10.1093/pcp/pce061 CrossRefPubMedGoogle Scholar
  101. Ho VA, Le PT, Nguyen TP, Nguyen CK, Nguyen VT, Tran NQ (2015) Silver core-shell nanoclusters exhibiting strong growth inhibition of plant-pathogenic fungi. J Nanomater 2015:241614. https://doi.org/10.1155/2015/241614 CrossRefGoogle Scholar
  102. Huang QZ, Jiao ZJ, Li M, Qiu DF, Liu KC, Shi HZ (2013a) Preparation, characterization, antifungal activity, and mechanism of chitosan/TiO2 hybrid film against Bipolaris maydis. J Appl Polym Sci 128:2623–2629. https://doi.org/10.1002/APP.38322
  103. Huang NY, Yan Y, Xu Y, Jin Y, Lei J, Zou X, Ran D, Zhang H, Luan S, Gu H (2013b) Alumina nanoparticles alter rhythmic activities of local interneurons in the antennal lobe of Drosophila. Nanotoxicology 7:212–220. https://doi.org/10.3109/17435390.2011.648668 CrossRefPubMedGoogle Scholar
  104. Hussein MZ, Yahaya AH, Zainal Z, Kian LH (2005) Nanocomposite-based controlled release formulation of an herbicide, 2,4-dichlorophenoxyacetate encapsulated in zinc-aluminium-layered double hydroxide. Sci Technol Adv Mater 6:956–962.CrossRefGoogle Scholar
  105. Iatrou SA, Kavallieratos NG, Palyvos NE, Buchelos CT, Tomanovic S (2010) Acaricidal effect of different diatomaceous earth formulations against Tyrophagus putrescentiae (Astigmata: Acaridae) on stored wheat. J Econ Entomol 103:190–196.CrossRefPubMedGoogle Scholar
  106. Il KS, Kim I (2012) Synthesis of Pyto-patch as silver nanoparticle product and antimicrobial activity. Protect Hort Plant Fac 21:140–146.Google Scholar
  107. Ileke KD, Ogungbite OC (2014) Entomocidal activity of powders and extracts of four medicinal plants against Sitophilus oryzae (L), Oryzaephilus mercator (Faur) and Rhyzopertha dominica (Fabr.). Jordan J Biol Sci 7:57–62.CrossRefGoogle Scholar
  108. Ing LY, Zin NM, Sarwar A, Katas H (2012) Antifungal activity of chitosan nanoparticles and correlation with their physical properties. Int J Biomater 2012:632698. https://doi.org/10.1155/2012/632698 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Ismail M, Prasad R, Ibrahim AIM, Ahmed ISA (2017) Modern prospects of nanotechnology in plant pathology. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd, Singapore, pp 305–317.CrossRefGoogle Scholar
  110. Jamal M, Moharramipour S, Zandi M, Negahban M (2013) Efficacy of nanoencapsulated formulation of essential oil from Carum copticum seeds on feeding behavior of Plutella xylostella (Lep.: Plutellidae). J Entomol Soc Iran 33:23–31.Google Scholar
  111. Jampílek J (2016) Potential of agricultural fungicides for antifungal drug discovery. Expert Opin Drug Dis 11:1–9. https://doi.org/10.1517/17460441.2016.1110142 CrossRefGoogle Scholar
  112. Jampílek J, Kráľová K (2015) Application of nanotechnology in agriculture and food industry, its prospects and risks. Ecol Chem Eng S 22:321–361. https://doi.org/10.1515/eces-2015-0018 CrossRefGoogle Scholar
  113. Jampílek J, Kráľová K (2017a) Nano-antimicrobials: activity, benefits and weaknesses. In: Ficai A, Grumezescu AM (eds) Nanostructures in therapeutic medicine, Nanostructures for antimicrobial therapy, vol 2. Elsevier, Amsterdam., Chapter 2, pp 23–54. https://doi.org/10.1016/B978-0-323-46152-8.00002-0 CrossRefGoogle Scholar
  114. Jampílek J, Kráľová K (2017b) Nanopesticides: preparation, targeting and controlled release. In: Grumezescu AM (ed) Nanotechnology in food industry, New pesticides and soil sensors, vol 10. Academic Press & Elsevier, London, pp 81–127. https://doi.org/10.1016/B978-0-12-804299-1.00004-7 CrossRefGoogle Scholar
  115. Jampílek J, Kráľová K (2017c) Nanomaterials for delivery of nutrients and growth-promoting compounds to plants. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology: an agricultural paradigm. Springer, Berlin/Heidelberg., Chapter 9, pp 177–226. https://doi.org/10.1007/978-981-10-4573-8_9 CrossRefGoogle Scholar
  116. Jampílek J, Kráľová K (2018a) Application of nanobioformulations for controlled release and targeted biodistribution of drugs. In: Sharma AK, Keservani RK, Kesharwani RK (eds) Nanobiomaterials: applications in drug delivery. Apple Academic Press & CRC Press, Oakville Part II, Chapter 5, 131–208.Google Scholar
  117. Jampílek J, Kráľová K (2018b) Nanomaterials applicable in food protection. In: Rai RV, Bai JA (eds) Nanotechnology applications in food industry. CRC Press/Taylor & Francis Group, Boca Raton, Chapter 5, 75–96.Google Scholar
  118. Jampílek J, Kráľová K (2018c) Impact of nanoparticles on living organisms and human health. In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology. American Scientific Publishers, Valencia. ISBN 1-58883-212-0Google Scholar
  119. Jampílek J, Opatřilová R, Coufalová L, Černíková A, Dohnal J (2013) Utilization of alaptide as transdermal penetration modifier in pharmaceutical compositions for human and veterinary applications containing anti-inflammatory drugs and/or antimicrobial chemotherapeutics. WO2013020527 A1Google Scholar
  120. Jampílek J, Opatřilová R, Řezáčová A, Oktábec Z, Dohnal J (2014) Alaptide: methods of effecting its solubility, membrane permeation and pharmaceutical compositions for human and/or veterinary applications. WO2014019556 A1Google Scholar
  121. Jampílek J, Záruba K, Oravec M, Kuneš M, Babula P, Ulbrich P, Brezaniová I, Opatřilová R, Tříska J, Suchý P (2015) Preparation of silica nanoparticles loaded with nootropics and their in vivo permeation through blood–brain barrier. Biomed Res Int 2015:812673. https://doi.org/10.1155/2015/812673 CrossRefPubMedPubMedCentralGoogle Scholar
  122. Janrao K, Gadhave MV, Banerjee SK, Gaikwad DD (2014) Asian J Biomed Pharm Sci 4:1–7.CrossRefGoogle Scholar
  123. Jayaseelan C, Rahuman AA, Kirthi AV, Marimuthu S, Santhoshkumar T, Bagavan A, Gaurav K, Karthik L, Rao KV (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta A Mol Biomol Spectrosc 90:78–84. https://doi.org/10.1016/j.saa.2012.01.006 CrossRefPubMedGoogle Scholar
  124. Jayaseelan C, Ramkumar R, Rahuman AA, Perumal P (2013) Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind Crop Prod 45:423–429. https://doi.org/10.1016/j.indcrop.2012.12.019 CrossRefGoogle Scholar
  125. Jia RX, Jiang HJ, Jin MY, Wang XY, Huang JY (2015) Silver/chitosan-based Janus particles: synthesis, characterization, and assessment of antimicrobial activity in vivo and vitro. Food Res Int 78:433–441. https://doi.org/10.1016/j.foodres.2015.08.035 CrossRefPubMedGoogle Scholar
  126. Jiang LC, Basri M, Omar D, Rahman MBA, Salleh AB, Rahman RNZRA, Selamat A (2012) Green nano-emulsion intervention for water-soluble glyphosate isopropylamine (IPA) formulations in controlling Eleusine indica (E. indica). Pest Biochem Physiol 102:19–29. https://doi.org/10.1016/j.pestbp.2011.10.004 CrossRefGoogle Scholar
  127. Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043. https://doi.org/10.1094/PDIS-93-10-1037 CrossRefGoogle Scholar
  128. JRC-IPTS (2014) Nanotechnology for the agricultural sector: from research to the field. In: Parsi C, Vigani M, Rodriguez-Cerezo E (eds) Proceedings of a workshop organized by Joint Research Centre – Institute for Prospective Technological. Available online at: https://ec.europa.eu/jrc/sites/default/files/ipts_jrc_89736_(online)__final.pdf
  129. Kah M (2015) Nanopesticides and nanofertilizers: emerging contaminants or opportunities for risk mitigation? Front Chem 3:64. https://doi.org/10.3389/fchem.2015.00064 CrossRefPubMedPubMedCentralGoogle Scholar
  130. Kah M, Hofmann T (2014) Nanopesticides research: current trends and future priorities. Environ Int 63:224–235. https://doi.org/10.1016/j.envint.2013.11.015 CrossRefPubMedGoogle Scholar
  131. Kah M, Beulke S, Tiede K, Hofmann T (2013) Nanopesticides: state of knowledge, environmental fate and exposure modelling. Crit Rev Environ Sci Technol 43:1823–1867. https://doi.org/10.1080/10643389.2012.671750 CrossRefGoogle Scholar
  132. Kah M, Machinski P, Koerner P, Tiede K, Grillo R, Fraceto LF, Hofmann T (2014) Analysing the fate of nanopesticides in soil and the applicability of regulatory protocols using a polymer-based nanoformulation of atrazine. Environ Sci Pollut Res 21:11699–11707. https://doi.org/10.1007/s11356-014-2523-6 CrossRefGoogle Scholar
  133. Kairyte K, Kadys A, Luksiene Z (2013) Antibacterial and antifungal activity of photoactivated ZnO nanoparticles in suspension. J Photochem Photobiol B 128:78–84. https://doi.org/10.1016/j.jphotobiol.2013.07.017 CrossRefPubMedGoogle Scholar
  134. Kala A, Soosairaj S, Mathiyazhagan S, Raja P (2016) Green synthesis of copper bionanoparticles to control the bacterial leaf blight disease of rice. Curr Sci 110:2011–2014. https://doi.org/10.18520/cs/v110/i10/2005-2011 CrossRefGoogle Scholar
  135. Kalboush ZA, Hassan AA, Gabr WE (2016) Control of rice blast and brown spot diseases by synthesized zinc oxide nanoparticles. Egypt J Biol Pest Control 26:713–720.Google Scholar
  136. Kang MA, Seo MJ, Hwang IC, Jang C, Park HJ, Yu YM, Youn YN (2012) Insecticidal activity and feeding behavior of the green peach aphid, Myzus persicae, after treatment with nano types of pyrifluquinazon. J Asia Pac Entomol 15:533–541. https://doi.org/10.1016/j.aspen.2012.05.015 CrossRefGoogle Scholar
  137. Kanhed P, Birla S, Gaikwad S, Gade A, Seabra AB, Rubilar O, Duran N, Rai M (2014) In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater Lett 115:13–17. https://doi.org/10.1016/j.matlet.2013.10.011 CrossRefGoogle Scholar
  138. Kanimozhi V, Chinnamuthu CR (2012) Engineering core/hallow shell nanomaterials to load herbicide active ingredient for controlled release. Res J Nanosci Nanotechnol 2:58–69. https://doi.org/10.3923/rjnn.2012.58.69 CrossRefGoogle Scholar
  139. Karimi N, Minaei S, Almassi M, Shahverdi AR (2012) Application of silver nano-particles for protection of seeds in different soils. Afr J Agric Res 7:1863–1869. https://doi.org/10.5897/AJAR11.1150 CrossRefGoogle Scholar
  140. Kasprowicz MJ, Koziol M, Gorczyca A (2010) The effect of silver nanoparticles on phytopathogenic spores of Fusarium culmorum. Can J Microbiol 56:247–253. https://doi.org/10.1139/w10-012 CrossRefPubMedGoogle Scholar
  141. Keck CM, Müller RH (2013) Nanotoxicological classification system (NCS) – a guide for the risk-benefit assessment of nanoparticulate drug delivery systems. Eur J Pharm Biopharm 84:445–448. https://doi.org/10.1016/j.ejpb.2013.01.001 CrossRefPubMedGoogle Scholar
  142. Khalili ST, Mohsenifar A, Beyki M, Zhaveh S, Rahmani-Cherati T, Abdollahi A, Bayat M, Tabatabaei M (2015) Encapsulation of thyme essential oils in chitosan-benzoic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. LWT Food Sci Technol 60:502–508. https://doi.org/10.1016/j.lwt.2014.07.054 CrossRefGoogle Scholar
  143. Khan FH (2013) Chemical hazards of nanoparticles to human and environment (a review). Orient J Chem 29:4. https://doi.org/10.13005/ojc/290415 CrossRefGoogle Scholar
  144. Khandelwal N, Doke DS, Khandare JJ, Jawale PV, Biradar AV, Giri AP (2015) Bio-physical evaluation and in vivo delivery of plant proteinase inhibitor immobilized on silica nanospheres. Colloids Surf B Biointerfaces 130:84–92. https://doi.org/10.1016/j.colsurfb.2015.03.060 CrossRefPubMedGoogle Scholar
  145. Khatami M, Mehnipor R, Poor MHS, Jouzani GS (2016a) Facile biosynthesis of silver nanoparticles using Descurainia sophia and evaluation of their antibacterial and antifungal properties. J Clust Sci 27:1601–1612. https://doi.org/10.1007/s10876-016-1028-5 CrossRefGoogle Scholar
  146. Khatami M, Nejad MS, Salari S, Almani PGN (2016b) Plant-mediated green synthesis of silver nanoparticles using Trifolium resupinatum seed exudate and their antifungal efficacy on Neofusicoccum parvum and Rhizoctonia solani. IET Nanobiotechnol 10:237–243. https://doi.org/10.1049/iet-nbt.2015.0078 CrossRefPubMedGoogle Scholar
  147. Kheiri A, Jorf SAM, Malihipour A, Saremi H, Nikkhah M (2016) Application of chitosan and chitosan nanoparticles for the control of Fusarium head blight of wheat (Fusarium graminearum) in vitro and greenhouse. Int J Biol Macromol 93:1261–1272. https://doi.org/10.1016/j.ijbiomac.2016.09.072 CrossRefPubMedGoogle Scholar
  148. Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70. https://doi.org/10.1016/j.cropro.2012.01.007 CrossRefGoogle Scholar
  149. Kim HS, Kang HS, Chu GJ, Byun HS (2008) Antifungal effectiveness of nanosilver colloid against rose powdery mildew in greenhouses. Solid State Phenom 135:15–18. https://doi.org/10.4028/www.scientific.net/SSP.135.15 CrossRefGoogle Scholar
  150. Kim SW, Kim KS, Lamsal K, Kim YJ, Kim SB, Jung M, Sim SJ, Kim HS, Chang SJ, Kim JK, Lee YS (2009) An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J Microbiol Biotechnol 19:760–764. https://doi.org/10.4014/jmb.0812.649 CrossRefPubMedGoogle Scholar
  151. Kim HJ, Park HJ, Choi SH (2011) Antimicrobial action effect and stability of nanosized silica hybrid Ag complex. J Nanosci Nanotechnol 11:5781–5787. https://doi.org/10.1166/jnn.2011.4492 CrossRefPubMedGoogle Scholar
  152. Kim SW, Jung JH, Lamasal K, Kim YS, Min JS, Lee YS (2012) Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 40:53–58. https://doi.org/10.5941/MYCO.2012.40.1.053 CrossRefPubMedPubMedCentralGoogle Scholar
  153. Koli P, Singh BB, Shakil NA, Kumar J, Kamil D (2015) Development of controlled release nanoformulations of carbendazim employing amphiphilic polymers and their bioefficacy evaluation against Rhizoctonia solani. J Environ Sci Health B 50:674–681. https://doi.org/10.1080/03601234.2015.1038961 CrossRefPubMedGoogle Scholar
  154. Kookana RS, Boxall ABA, Reeves PT, Ashauer R, Beulke S, Chaudhry Q, Cornelis G, Fernandes TF, Gan J, Kah M, Lynch I, Ranville J, Sinclair C, Spurgeon D, Tiede K, Van den Brink PJ (2014) Nanopesticides: guiding principles for regulatory evaluation of environmental risks. J Agric Food Chem 62:4227–4240. https://doi.org/10.1021/jf500232f CrossRefPubMedGoogle Scholar
  155. Krishnaraj C, Ramachandran R, Mohan K, Kalaichelvan PT (2012) Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim Acta Part A Mol Biomol Spectrosc 93:95–99. https://doi.org/10.1016/j.saa.2012.03.002 CrossRefGoogle Scholar
  156. Kumar V, Kumari A, Guleria P, Yadav SK (2012) Evaluating the toxicity of selected types of nanochemicals. Rev Environ Contam Toxicol 215:39–121. https://doi.org/10.1007/978-1-4614-1463-6_2 CrossRefPubMedGoogle Scholar
  157. Kumar S, Bhanjana G, Sharma A, Sidhu MC, Dilbaghi N (2014) Synthesis, characterization and on field evaluation of pesticide loaded sodium alginate nanoparticles. Carbohydr Polym 101:1061–1067. https://doi.org/10.1016/j.carbpol.2013.10.025 CrossRefPubMedGoogle Scholar
  158. Kumar R, Nair KK, Alam MI, Gogoi R, Singh PK, Srivastava C, Gopal M, Goswami A (2015a) Development and quality control of nanohexaconazole as an effective fungicide and its biosafety studies on soil nitifiers. J Nanosci Nanotechnol 15:1350–1356. https://doi.org/10.1166/jnn.2015.9088 CrossRefPubMedGoogle Scholar
  159. Kumar S, Chauhan N, Gopal M, Kumar R, Dilbaghi N (2015b) Development and evaluation of alginate-chitosan nanocapsules for controlled release of acetamiprid. Int J Biol Macromol 81:631–637. https://doi.org/10.1016/j.ijbiomac.2015.08.062 CrossRefPubMedGoogle Scholar
  160. Kumar N, Kumar R, Shakil NA, Das TK (2016) Nanoformulations of pretilachlor herbicide: preparation, characterization and activity. J Sci Ind Res 75:676–680Google Scholar
  161. Kumar S, Bhanjama G, Sharma A, Dilbaghi N, Sidhu MC, Kim KH (2017) Development of nanoformulation approaches for the control of weeds. Sci Total Environ 586:1272–1278. https://doi.org/10.1016/j.scitotenv.2017.02.138 CrossRefPubMedGoogle Scholar
  162. Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011a) Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiology 39:194–199. https://doi.org/10.5941/MYCO.2011.39.3.194 CrossRefPubMedPubMedCentralGoogle Scholar
  163. Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011b) Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology 39:26–32. https://doi.org/10.4489/MYCO.2011.39.1.026 CrossRefPubMedPubMedCentralGoogle Scholar
  164. Lee KJ, Park SH, Govarthanan M, Hwang PH, Seo YS, Cho M, Lee WH, Lee JY, Kamala-Kannan S, Oh BT (2013) Synthesis of silver nanoparticles using cow milk and their antifungal activity against phytopathogens. Mater Lett 105:128–131. https://doi.org/10.1016/j.matlet.2013.04.076 CrossRefGoogle Scholar
  165. Li J, Jiang M, Wu H, Li Y (2009) Addition of modified bentonites in polymer gel formulation of 2,4-D for its controlled release in water and soil. J Agric Food Chem 57:2868–2874. https://doi.org/10.1021/jf803744w CrossRefPubMedGoogle Scholar
  166. Li B, Zhang Y, Yang YZ, Qiu W, Wang XX, Liu BP, Wang Y, Sun G (2016) Synthesis, characterization, and antibacterial activity of chitosan/TiO2 nanocomposite against Xanthomonas oryzae pv. oryzae. Carbohydr Polym 152:825–831. https://doi.org/10.1016/j.carbpol.2016.07.070
  167. Lim CJ, Basri M, Omar D, Rahman MBA, Salleh AB, Rahman RNZRA (2012) Physicochemical characterization and formation of glyphosate-laden nano-emulsion for herbicide formulation. Ind Crop Prod 36:607–613. https://doi.org/10.1016/j.indcrop.2011.11.005 CrossRefGoogle Scholar
  168. Lim CJ, Basri M, Omar D, Rahman MBA, Salleh AB, Rahman RNZRA (2013) Green nanoemulsion-laden glyphosate isopropylamine formulation in suppressing creeping foxglove (A. gangetica), slender button weed (D. ocimifolia) and buffalo grass (P. conjugatum). Pest Manag Sci 69:104–111. https://doi.org/10.1002/ps.3371 CrossRefPubMedGoogle Scholar
  169. Liu Y, Tong Z, Prud’homme RK (2008) Stabilized polymeric nanoparticles for controlled and efficient release of bifenthrin. Pest Manag Sci 64:808–812. https://doi.org/10.1002/ps.1566 CrossRefPubMedGoogle Scholar
  170. Liu TC, Wang HC, Hua KH, Hsu JC (2014) The efficiency of calcium carbonate particles with different grain sizes for controlling peach aphid (Myzus persicae). Formos Entomol 34:49–54.Google Scholar
  171. Liu JX, Ren JH, Zhao Q, Shi TJ, Liu ZF, Luo Z, Zhang XG (2016) Preparation and characterization of chlorpyrifos/cyclodextrin complex intercalation into ZnAl-layered double hydroxide. Acta Phys -Chim Sin 32:558–564. https://doi.org/10.3866/PKU.WHXB201511271 CrossRefGoogle Scholar
  172. Loha KM, Shakil NA, Kumar J, Singh M, Srivastava C (2012) Bio-efficacy evaluation of nanoformulations of β-cyfluthrin against Callosobruchus maculatus (Coleoptera: Bruchidae). J Environ Sci Health B 47:687−691. https://doi.org/10.1080/03601234.2012.669254
  173. Ma CX, White JC, Dhankher OP, Xing BS (2015) Metal-based nanotoxicity and detoxification pathways in higher plants. Environ Sci Technol 49:7109–7122. https://doi.org/10.1021/acs.est.5b00685 CrossRefPubMedGoogle Scholar
  174. Mageshwari K, Sathyamoorthy R (2013) Flower-shaped CuO nanostructures: synthesis, characterization and antimicrobial activity. J Mater Sci Technol 29:909–914. https://doi.org/10.1016/j.jmst.2013.04.020 CrossRefGoogle Scholar
  175. Manikandan A, Sathiyabama M (2016) Preparation of chitosan nanoparticles and its effect on detached rice leaves infected with Pyricularia grisea. Int J Biol Macromol 84:58–61. https://doi.org/10.1016/j.ijbiomac.2015.11.083 CrossRefPubMedGoogle Scholar
  176. Maqueda C, Villaverde J, Sopena F, Undabeytia T, Morillo E (2009) Effects of soil characteristics on metribuzin dissipation using clay−gel-based formulations. J Agric Food Chem 57:3273–3278. https://doi.org/10.1021/jf803819q CrossRefPubMedGoogle Scholar
  177. Maruyama CR, Guilger M, Pascoli M, Bileshy-Jose N, Abhilash PC, Fraceto LF, de Lima R (2016) Nanoparticles based on chitosan as carriers for the combined herbicides imazapic and imazapyr. Sci Rep 6:19768. https://doi.org/10.1038/srep19768 CrossRefPubMedPubMedCentralGoogle Scholar
  178. Masarovičová E, Kráľová K (2013) Metal nanoparticles and plants. Ecol Chem Eng S 20:9–22. https://doi.org/10.2478/eces-2013-0001 CrossRefGoogle Scholar
  179. Masarovičová E, Kráľová K, Zinjarde SS (2014) Metal nanoparticles in plants. Formation and action. In: Pessarakli M (ed) Handbook of plant and crop physiology, 3rd edn. CRC Press, Boca Raton, pp 683–731. https://doi.org/10.1201/b16675-39 CrossRefGoogle Scholar
  180. Medina C, Santos-Martinez MJ, Radomski A, Corrigan O, Radomski MW (2007) Nanoparticles: pharmacological and toxicological significance. Br J Pharmacol 150:552–558. https://doi.org/10.1038/sj.bjp.0707130 CrossRefPubMedPubMedCentralGoogle Scholar
  181. Memarizadeh N, Ghadamyari M, Adeli M, Talebi K (2014) Preparation, characterization and efficiency of nanoencapsulated imidacloprid under laboratory conditions. Ecotoxicol Environ Saf 107:77–83. https://doi.org/10.1016/j.ecoenv.2014.05.009 CrossRefPubMedGoogle Scholar
  182. Meyer WL, Gurman P, Stelinski LL, Elman NM (2015) Functional nano-dispensers (FNDs) for delivery of insecticides against phytopathogen vectors. Green Chem 17:4173–4177. https://doi.org/10.1039/C5GC00717H CrossRefGoogle Scholar
  183. Mishra S, Singh HB (2015) Biosynthesized silver nanoparticles as a nanoweapon against phytopathogens: exploring their scope and potential in agriculture. Appl Microbiol Biotechnol 99:1097–1107. https://doi.org/10.1007/s00253-014-6296-0 CrossRefPubMedGoogle Scholar
  184. Mishra S, Singh BR, Singh A, Keswani C, Naqvi AH, Singh HB (2014) Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. PLoS One 9:e97881. https://doi.org/10.1371/journal.pone.0097881 CrossRefPubMedPubMedCentralGoogle Scholar
  185. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410. https://doi.org/10.1016/S1360-1385(02)02312-9 CrossRefPubMedGoogle Scholar
  186. Mohammadi A, Hashemi M, Hosseini SM (2015) Nanoencapsulation of Zataria multiflora essential oil preparation and characterization with enhanced antifungal activity for controlling Botrytis cinerea, the causal agent of gray mould disease. Innov Food Sci Emerg Technol 28:73–80.CrossRefGoogle Scholar
  187. Mondal KK, Mani C (2012) Investigation of the antibacterial properties of nanocopper against Xanthomonas axonopodis pv. punicae, the incitant of pomegranate bacterial blight. Ann Microbiol 62:889–893. https://doi.org/10.1007/s13213-011-0382-7 CrossRefGoogle Scholar
  188. Mondal P, Kumar R, Gogoi R (2017) Azomethine based nano-chemicals: development, in vitro and in vivo fungicidal evaluation against Sclerotium rolfsii, Rhizoctonia bataticola and Rhizoctonia solani. Bioorg Chem 70:153. https://doi.org/10.1016/j.bioorg.2016.12.006 CrossRefPubMedGoogle Scholar
  189. Moorthi PV, Balasubramanian C, Mohan S (2015) An improved insecticidal activity of silver nanoparticle synthesized by using Sargassum muticum. Appl Biochem Biotechnol 175:135–140. https://doi.org/10.1007/s12010-014-1264-9 CrossRefPubMedGoogle Scholar
  190. Mousa KM, El Sharkawy MM, Khodeir IA, El-Dakhakhni TN, Youssef AE (2014) Growth perturbation, abnormalities and mortality of oriental armyworm Mythimna separata (Walker) (Lepidoptera: Noctuidae) caused by silica nanoparticles and Bacillus thuringiensis toxin. Egypt J Biol Pest Control 24:347–351.Google Scholar
  191. Moussa SH, Tayel AA, Alsohim AS, Abdallah RR (2013) Botryticidal activity of nanosized silver-chitosan composite and its application for the control of gray mold in strawberry. J Food Sci 78:M1589–M1594. https://doi.org/10.1111/1750-3841.12247 CrossRefPubMedGoogle Scholar
  192. Mukhopadhyay SS (2014) Nanotechnology in agriculture: prospects and constraints. Nanotechnol Sci Appl 7:63–71. https://doi.org/10.2147/NSA.S39409 CrossRefPubMedPubMedCentralGoogle Scholar
  193. Muthuramalingam TR, Shanmugam C, Gunasekaran D, Duraisamy N, Nagappan R, Krishnan K (2015) Bioactive bile salt-capped silver nanoparticles activity against destructive plant pathogenic fungi through in vitro system. RSC Adv 5:71174–71182. https://doi.org/10.1039/c5ra13306h CrossRefGoogle Scholar
  194. Nadiminti PP, Rookes JE, Dong YD, Sayer C, Boyd BJ, Cahill DM (2016) Nanostructured liquid crystalline particle assisted delivery of 2,4-dichlorophenoxyacetic acid to weeds, crops and model plants. Crop Prot 82:17–29. https://doi.org/10.1016/j.cropro.2015.12.018 CrossRefGoogle Scholar
  195. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Sakthi Kumar D (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163. https://doi.org/10.1016/j.plantsci.2010.04.012 CrossRefGoogle Scholar
  196. Namasivayam SKR, Aruna A, Gokila (2014) Evaluation of silver nanoparticles-chitosan encapsulated synthetic herbicide paraquat (AgNp-CS-PQ) preparation for the controlled release and improved herbicidal activity against Eichhornia crassipes. Res J Biotechnol 9:19–27. https://doi.org/10.1371/journal.pone.0132971 CrossRefGoogle Scholar
  197. Narendhran S, Sivaraj R (2016) Biogenic ZnO nanoparticles synthesized using L. aculeata leaf extract and their antifungal activity against plant fungal pathogens. Bull Mater Sci 39:1–5. https://doi.org/10.1007/s12034-015-1136-0 CrossRefGoogle Scholar
  198. Nasseri M, Golmohammadzadeh S, Arouiee H, Jaafari MR, Neamati H (2016) Antifungal activity of Zataria multiflora essential oil-loaded solid lipid nanoparticles in vitro condition. Iran J Basic Med Sci 19:1231–1237. https://doi.org/10.22038/ijbms.2016.7824 CrossRefPubMedPubMedCentralGoogle Scholar
  199. National Nanotechnology Initiative (2008) Nanotechnology: big things from a tiny world. Arlington. Available online at: https://www.nano.gov/sites/default/files/pub_resource/nanotechnology_bigthingsfromatinyworld-print.pdf
  200. Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386. https://doi.org/10.1007/s10646-008-0214-0 CrossRefPubMedGoogle Scholar
  201. Negahban M, Moharramipour S, Zandi M, Hashemi SA, Ziayee F (2012) Nano-insecticidal activity of essential oil from Cuminum cyminum on Tribolium castaneum. In: Navarro S, Banks HJ, Jayas DS, Bell CH, Noyes RT, Ferizli AG, Emekci M, Isikber AA, Alagusundaram K (eds) Proceedings of 9th international conference on controlled atmosphere and fumigation in stored products, Antalya, pp 63−68. Available online at: http://ftic.co.il/2012AntalyaPDF/SESSION%2001%20PAPER%2009.pdf
  202. Nehoff H, Parayath NN, Domanovitch L, Taurin S, Greish K (2014) Nanomedicine for drug targeting: strategies beyond the enhanced permeability and retention effect. Int J Nanomedicine 9:2539–2555. https://doi.org/10.2147/IJN.S47129 CrossRefPubMedPubMedCentralGoogle Scholar
  203. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at nanolevels. Science 311:622–627. https://doi.org/10.1126/science.1114397 CrossRefPubMedGoogle Scholar
  204. Nenaah GE, Ibrahim SIA, Al-Assiuty BA (2015) Chemical composition, insecticidal activity and persistence of three Asteraceae essential oils and their nanoemulsions against Callosobruchus maculatus (F.). J Stored Prod Res 61:9–16. https://doi.org/10.1016/j.jspr.2014.12.007 CrossRefGoogle Scholar
  205. Nguemtchouin MGM, Ngassoum MB, Chalier P, Kamga R, Ngamo LST, Cretin M (2013) Ocimum gratissimum essential oil and modified montmorillonite clay, a means of controlling insect pests in stored products. J Stored Prod Res 52:57–62. https://doi.org/10.1016/j.jspr.2012.09.006 CrossRefGoogle Scholar
  206. Nishisaka C, Grillo R, Sanches G, Fraceto L, Lima R (2014) Analysis of the effects of pesticides and nanopesticides on the environment. BMC Proc 8(Suppl 4):P100. https://doi.org/10.1186/1753-6561-8-S4-P100 CrossRefPubMedCentralGoogle Scholar
  207. Nuruzzaman M, Rahman MM, Liu Y, Naidu R (2016) Nanoencapsulation, nano-guard for pesticides: a new window for safe application. J Agric Food Chem 64(7):1447–1483. https://doi.org/10.1021/acs.jafc.5b05214 CrossRefPubMedGoogle Scholar
  208. Ocsoy I, Paret ML, Ocsoy MA, Kunwar S, Chen T, You MX, Tan WH (2013) Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano 7:8972–8980. https://doi.org/10.1021/nn4034794 CrossRefPubMedPubMedCentralGoogle Scholar
  209. Oh SD, Lee S, Choi SH, Lee IS, Lee YM, Chun JH, Park HJ (2006) Synthesis of Ag and Ag-SiO2 nanoparticles by gamma-irradiation and their antibacterial and antifungal efficiency against Salmonella enterica serovar Typhimurium and Botrytis cinerea. Colloids Surf A Physicochem Eng Asp 275:228–233.Google Scholar
  210. Oliveira HC, Stolf-Moreira R, Martinez CBR, Grillo R, de Jesus MB, Fraceto LF (2015) Nanoencapsulation enhances the post-emergence herbicidal activity of atrazine against mustard plants. PLoS One 10:e0132971. https://doi.org/10.1371/journal.pone.0132971 CrossRefPubMedPubMedCentralGoogle Scholar
  211. Pandey A, Chandra S, Chauhan LKS, Narayan G, Chowdhuri DK (2013) Cellular internalization and stress response of ingested amorphous silica nanoparticles in the midgut of Drosophila melanogaster. Biochim Biophys Acta Gen Subjects 1830:2256–2266. https://doi.org/10.1016/j.bbagen.2012.10.001 CrossRefGoogle Scholar
  212. Paret ML, Vallad GE, Averett DR, Jones JB, Olson SM (2013) Photocatalysis: effect of light-activated nanoscale formulations of TiO2 on Xanthomonas perforans and control of bacterial spot of tomato. Phytopathology 103:228–236. https://doi.org/10.1094/PHYTO-08-12-0183-R
  213. Parisi C, Vigani M, Rodríguez-Cerezo E (2015) Agricultural nanotechnologies: what are the current possibilities? NanoToday 10:124–127. https://doi.org/10.1016/j.nantod.2014.09.009 CrossRefGoogle Scholar
  214. Patil CD, Borase HP, Suryawanshi RK, Patil SV (2016) Trypsin inactivation by latex fabricated gold nanoparticles: a new strategy towards insect control. Enzym Microb Technol 92:18–25. https://doi.org/10.1016/j.enzmictec.2016.06.005 CrossRefGoogle Scholar
  215. Pereira AE, Grillo R, Mello NF, Rosa AH, Fraceto LF (2014) Application of poly(epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. J Hazard Mater 268:207–215. https://doi.org/10.1016/j.jhazmat.2014.01.025 CrossRefPubMedGoogle Scholar
  216. Pérez-de-Luque A, Hermosín MC (2013) Nanotechnology and its use in agriculture. In: Bagchi D, Bagchi M, Moriyama H, Shahidi F (eds) Bio-nanotechnology: a revolution in food, biomedical and health sciences. Wiley-Blackwell, West Sussex, pp 299–405.Google Scholar
  217. Pietrzak K, Twaruzek M, Czyzowska A, Kosicki R, Gutarowska B (2015) Influence of silver nanoparticles on metabolism and toxicity of moulds. Acta Biochim Pol 62:851–857. https://doi.org/10.18388/abp.2015_1146 CrossRefPubMedGoogle Scholar
  218. Pompa PP, Vecchio G, Galeone A, Brunetti V, Sabella S, Maiorano G, Falqui A, Bertoni G, Cingolani R (2011) In vivo toxicity assessment of gold nanoparticles in Drosophila melanogaster. Nano Res 4:405–413. https://doi.org/10.1007/s12274-011-0095-z CrossRefGoogle Scholar
  219. Population Institute (2017) FAO says food production must rise by 70%. Available online at: https://www.populationinstitute.org/resources/populationonline/issue/1/8
  220. Pradhan S, Roy I, Lodh G, Patra P, Choudhury SR, Samanta A, Goswami A (2013) Entomotoxicity and biosafety assessment of PEGylated acephate nanoparticles: a biologically safe alternative to neurotoxic pesticides. J Environ Sci Health B 48:559–569. https://doi.org/10.1080/03601234.2013.774891 CrossRefPubMedGoogle Scholar
  221. Prado AGS, Moura AO, Nunes AR (2011) Nanosized silica modified with carboxylic acid as support for controlled release of herbicides. J Agric Food Chem 59:8847–8852. https://doi.org/10.1021/jf202509g CrossRefPubMedGoogle Scholar
  222. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13:705–713. https://doi.org/10.5897/AJBX2013.13554 CrossRefGoogle Scholar
  223. Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014 CrossRefPubMedPubMedCentralGoogle Scholar
  224. Qian K, Shi TY, Tang T, Zhang SL, Liu XL, Cao YS (2011) Preparation and characterization of nano-sized calcium carbonate as controlled release pesticide carrier for validamycin against Rhizoctonia solani. Microchim Acta 173:51–57. https://doi.org/10.1007/s00604-010-0523-x CrossRefGoogle Scholar
  225. Rajiv P, Rajeshwari S, Venckatesh R (2013) Bio-fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Spectrochim Acta A Mol Biomol Spectrosc 112:384–387. https://doi.org/10.1016/j.saa.2013.04.072 CrossRefPubMedGoogle Scholar
  226. Raliya R, Tarafdar JC, Gulecha K, Choudhary K, Ram R, Mal P, Saran RP (2013) Scope of nanoscience and nanotechnology in agriculture. J Appl Biol Biotechnol 1:41–44. https://doi.org/10.7324/JABB.2013.1307 CrossRefGoogle Scholar
  227. Rani PU, Madhusudhanamurthy J, Sreedhar B (2014) Dynamic adsorption of α-pinene and linalool on silica nanoparticles for enhanced antifeedant activity against agricultural pests. J Pestic Sci 87:191–200. https://doi.org/10.1007/s10340-013-0538-2
  228. Rao KJ, Paria S (2013) Use of sulfur nanoparticles as a green pesticide on Fusarium solani and Venturia inaequalis phytopathogens. RSC Adv 3:10471–10478. https://doi.org/10.1039/c3ra40500a CrossRefGoogle Scholar
  229. Rashidi L, Khosravi-Darani K (2011) The applications of nanotechnology in food industry. Crit Rev Food Sci Nutr 51:723–730. https://doi.org/10.1080/10408391003785417 CrossRefPubMedGoogle Scholar
  230. Rispail N, De Matteis L, Santos R, Miguel AS, Custardoy L, Testillano PS, Risueno MC, Pérez-de-Luque A, Maycock C, Fevereiro P, Oliva A, Fernández-Pacheco R, Ibarra MR, de la Fuente JM, Marquina C, Rubiales D, Prats E (2014) Quantum dot and superparamagnetic nanoparticle interaction with pathogenic fungi: internalization and toxicity profile. ACS Appl Mater Interfaces 6:9100–9110. https://doi.org/10.1021/am501029g CrossRefPubMedGoogle Scholar
  231. Rizwan M, Ali S, Qayyum MF, Ok YS, Adrees M, Ibrahim M, Zia-ur-Rehmand M, Farid M, Abbas F (2017) Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: a critical review. J Hazard Mater 322:2–16. https://doi.org/10.1016/j.jhazmat.2016.05.061 CrossRefPubMedGoogle Scholar
  232. Rodriguez-Gonzalez V, Dominguez-Espindola RB, Casas-Flores S, Patron-Soberano OA, Camposeco-Solis R, Lee SW (2016) Antifungal nanocomposites inspired by titanate nanotubes for complete inactivation of Botrytis cinerea isolated from tomato infection. ACS Appl Mater Interfaces 8:31625–31637. https://doi.org/10.1021/acsami.6b10060 CrossRefPubMedGoogle Scholar
  233. Rouhani M, Samih MA, Kalantari S (2013) Insecticidal effect of silica and silver nanoparticles on the cowpea seed beetle, Callosobruchus maculatus F. (Col.: Bruchidae). J Entomol Res 4:297–305.Google Scholar
  234. Sabbour MM, Abd El- Aziz SE (2016a) Roll of three essential oils and their Nano against Ephestia cautella (Lepidoptera-Pyralidae) under laboratory and store conditions. Int J PharmTech Res 9:194–200.Google Scholar
  235. Sabbour MM, Abd El- Aziz SE (2016b) Efficacy of three essential oils and their nano-particles against Sitophilus granarius under laboratory and store conditions. J Entomol Res 40:229–234. https://doi.org/10.5958/0974-4576.2016.00042.6 CrossRefGoogle Scholar
  236. Sagiri SS, Anis A, Pal K (2016) Review on encapsulation of vegetable oils: strategies, preparation methods, and applications. Polym-Plast Technol 55:291–311. https://doi.org/10.1080/03602559.2015.1050521 CrossRefGoogle Scholar
  237. Saharan V, Mehrotra A, Khatik R, Rawal P, Sharma SS, Pal A (2013) Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int J Biol Macromol 62:677–683. https://doi.org/10.1016/j.ijbiomac.2013.10.012 CrossRefPubMedGoogle Scholar
  238. Saharan V, Sharma G, Yadav M, Choudhary KM, Sharma SS, Pal A, Raliya R, Biswas P (2015) Synthesis and in vitro antifungal efficacy of Cu–chitosan nanoparticles against pathogenic fungi of tomato. Int J Biol Macromol 75:346–353. https://doi.org/10.1016/j.ijbiomac.2015.01.027 CrossRefPubMedGoogle Scholar
  239. Saini P, Gopal M, Kumar R, Srivastava C (2014) Development of pyridalyl nanocapsule suspension for efficient management of tomato fruit and shoot borer (Helicoverpa armigera). J Environ Sci Health B 49:344–351. https://doi.org/10.1080/03601234.2014.882168 CrossRefGoogle Scholar
  240. Sandhya, Kumar S, Kumar D, Dilbaghi N (2017) Preparation, characterization, and bio-efficacy evaluation of controlled release carbendazim-loaded polymeric nanoparticles. Environ Sci Pollut Res 2:926–937. https://doi.org/10.1007/s11356-016-7774-y CrossRefGoogle Scholar
  241. Sangeetha J, Thangadurai D, Hospet R, Purushotham P, Karekalammanavar G, Mundaragi AC, David M, Shinge MR, Thimmappa SC, Prasad R, Harish ER (2017a) Agricultural nanotechnology: concepts, benefits, and risks. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd, Singapore, pp 1–17.Google Scholar
  242. Sangeetha J, Thangadurai D, Hospet R, Purushotham P, Manowade KR, Mujeeb MA, Mundaragi AC, Jogaiah S, David M, Thimmappa SC, Prasad R, Harish ER (2017b) Production of bionanomaterials from agricultural wastes. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd, Singapore, pp 33–58.CrossRefGoogle Scholar
  243. Sangeetha J, Thangadurai D, Hospet R, Harish ER, Purushotham P, Mujeeb MA, Shrinivas J, David M, Mundaragi AC, Thimmappa AC, Arakera SB, Prasad R (2017c) Nanoagrotechnology for soil quality, crop performance and environmental management. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd, Singapore, pp 73–97.CrossRefGoogle Scholar
  244. Sankar MV, Abideen S (2015) Pesticidal effect of green synthesized silver and lead nanoparticles using Avicennia marina against grain storage pest Sitophilus oryzae. Int J Nanomat Biostruct 5:32–39.Google Scholar
  245. Santo-Orihuela PL, Foglia ML, Targovnik AM, Miranda MV, Desimone MF (2016) Nanotoxicological effects of SiO2 nanoparticles on Spodoptera frugiperda Sf9 cells. Curr Pharm Biotechnol 17:465–470.Google Scholar
  246. Sarijo SH, Hussein MZ, Yahaya AH, Zainal Z, Yarmo MA (2010a) Synthesis of phenoxyherbicides-intercalated layered double hydroxide nanohybrids and their controlled release property. Curr Nanosci 6:199–205. https://doi.org/10.2174/157341310790945614 CrossRefGoogle Scholar
  247. Sarijo SH, Hussein MZ, Yahaya AHJ, Zainal Z (2010b) Effect of incoming and outgoing exchangeable anions on the release kinetics of phenoxyherbicides nanohybrids. J Hazard Mater 182:563–569. https://doi.org/10.1016/j.jhazmat.2010.06.070 CrossRefPubMedGoogle Scholar
  248. Sarkar DJ, Kumar J, Shakil NA, Walia S (2012) Release kinetics of controlled release formulations of thiamethoxam employing nano-ranged amphiphilic PEG and diacid based block polymers in soil. J Environ Sci Health A Tox Hazard Subst Environ Eng 47:1701–1712. https://doi.org/10.1080/10934529.2012.687294 CrossRefPubMedGoogle Scholar
  249. Sarlak N, Taherifar A, Salehi F (2014) Synthesis of nanopesticides by encapsulating pesticide nanoparticles using functionalized carbon nanotubes and application of new nanocomposite for plant disease treatment. J Agric Food Chem 62:4833–4838. https://doi.org/10.1021/jf404720d CrossRefPubMedGoogle Scholar
  250. Sathiyabama M, Manikandan A (2016) Chitosan nanoparticle induced defense responses in fingermillet plants against blast disease caused by Pyricularia grisea (Cke.) Sacc. Carbohydr Polym 154:241–246. https://doi.org/10.1016/j.carbpol.2016.06.089 CrossRefPubMedGoogle Scholar
  251. Savi GD, Scussel VM (2014) Inorganic compounds at regular and nanoparticle size and their anti-toxigenic fungi activity. In: Book of abstracts of the 11th international working conference on stored product protection, Chiang Mai, pp 589−598.Google Scholar
  252. Savi GD, da Silva PMM, Possato JC, Barichello T, Castagnaro D, Scussel VM (2012) Biological activity of gold nanoparticles towards filamentous pathogenic fungi. J Nano Res 20:11–20. https://doi.org/10.4028/www.scientific.net/JNanoR.20.11 CrossRefGoogle Scholar
  253. Savi GD, Bortoluzzi AJ, Scussel VM (2013) Antifungal properties of zinc compounds against toxigenic fungi and mycotoxin. Int J Food Sci Technol 48:1834–1840. https://doi.org/10.1111/ijfs.12158 CrossRefGoogle Scholar
  254. Sawangphruk M, Srimuk P, Chiochan P, Sangsri T, Siwayaprahm P (2012) Synthesis and antifungal activity of reduced graphene oxide nanosheets. Carbon 50:5156–5161. https://doi.org/10.1016/j.carbon.2012.06.056 CrossRefGoogle Scholar
  255. Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53. https://doi.org/10.2147/NSA.S39406 CrossRefPubMedPubMedCentralGoogle Scholar
  256. Sharma D, Sharma S, Kaith BS, Rajput J, Kaur M (2011) Synthesis of ZnO nanoparticles using surfactant free in-air and microwave method. Appl Surf Sci 257:9661–9672. https://doi.org/10.1016/j.apsusc.2011.06.094 CrossRefGoogle Scholar
  257. Sharon A, Shlezinger N (2013) Fungi infecting plants and animals: killers, non-killers, and cell death. PLoS Pathog 9:e1003517. https://doi.org/10.1371/journal.ppat.1003517 CrossRefPubMedPubMedCentralGoogle Scholar
  258. Shu Y, Zhang G, Wang J (2012) Response of the common cutworm Spodoptera litura to zinc stress: Zn accumulation, metallothionein and cell ultrastructure of the midgut. Sci Total Environ 438:210–217. https://doi.org/10.1016/j.scitotenv.2012.06.065 CrossRefPubMedGoogle Scholar
  259. Shyla KK, Natarajan N, Nakkeeran S (2014) Antifungal activity of zinc oxide, silver and titanium dioxide nanoparticles against Macrophomina phaseolina. J Mycol Plant Pathol 44:268–273.Google Scholar
  260. Siddiqi KS, Husen A (2017) Plant response to engineered metal oxide nanoparticles. Nanoscale Res Lett 12:92. https://doi.org/10.1186/s11671-017-1861-y CrossRefPubMedPubMedCentralGoogle Scholar
  261. Silva MD, Cocenza DS, de Melo NFS, Grillo R, Rosa AH, Fraceto LF (2010) Alginate nanoparticles as a controlled release system for clomazone herbicide. Quim Nova 33:1868–1873. https://doi.org/10.1590/S0100-40422010000900009 CrossRefGoogle Scholar
  262. Silva MD, Cocenza DS, Grillo R, de Melo NFS, Tonello PS, de Oliveira LC, Cassimiro DL, Rosa AH, Fraceto LF (2011) Paraquat-loaded alginate/chitosan nanoparticles: preparation, characterization and soil sorption studies. J Hazard Mater 190:366–374. https://doi.org/10.1016/j.jhazmat.2011.03.057 CrossRefGoogle Scholar
  263. Sioutas C, Delfino RJ, Singh M (2005) Exposure assessment for atmospheric ultrafine particles (UFPs) and implications in epidemiologic research. Environ Health Perspect 113:947–955. https://doi.org/10.1289/ehp.7939 CrossRefPubMedPubMedCentralGoogle Scholar
  264. Soujanya PL, Sekhar JC, Kumar P, Sunil N, Prasad CV, Mallavadhani UV (2016) Potentiality of botanical agents for the management of post harvest insects of maize: a review. J Food Sci Technol Mysore 53:2169–2184. https://doi.org/10.1007/s13197-015-2161-0 CrossRefGoogle Scholar
  265. Stadler T, Buteler M, Weaver DK (2010a) Novel use of nanostructured alumina as an insecticide. Pest Manag Sci 66:577–579. https://doi.org/10.1002/ps.1915 CrossRefPubMedGoogle Scholar
  266. Stadler T, Buteler M, Weaver DK (2010b) Nanoinsecticidas: Nuevas perspectivas para el control de plagas [Nanoinsecticides: new perspectives for pest management]. Rev Soc Entomol Argent 69:149–156.Google Scholar
  267. Stadler T, Buteler M, Weaver DK, Sofie S (2012) Sitophilus oryzae (L.) and Rhyzopertha dominica (F.) at varying ambient humidity levels. J Stored Prod Res 48:81–90. https://doi.org/10.1016/j.jspr.2011.09.004 CrossRefGoogle Scholar
  268. Strayer A, Ocsoy I, Tan W, Jones JB, Paret ML (2016) Low concentrations of a silver-based nanocomposite to manage bacterial spot of tomato in the greenhouse. Plant Dis 100:1460–1465. https://doi.org/10.1094/PDIS-05-15-0580-RE CrossRefGoogle Scholar
  269. Sun Z, Shi C, Wang X, Fang Q, Huang J (2017) Synthesis, characterization, and antimicrobial activities of sulfonated chitosan. Carbohydr Polym 155:321–328. https://doi.org/10.1016/j.carbpol.2016.08.069 CrossRefPubMedGoogle Scholar
  270. Suppan S (2013). Nanomaterials in soil: our future food chain? institute for agriculture and trade policy. Available online at: http://www.iatp.org/documents/nanomaterials-in-soil-our-future-food-chain
  271. Suriyaprabha R, Karunakaran G, Kavitha K, Yuvakkumar R, Rajendran V, Kammam N (2014) Application of silica nanoparticles in maize to enhance fungal resistance. IET Nanobiotechnol 8:133–137. https://doi.org/10.1049/iet-nbt.2013.0004 CrossRefPubMedGoogle Scholar
  272. Tan DY, Yuan P, Annabi-Bergaya F, Dong FQ, Liu D, He HP (2015) A comparative study of tubular halloysite and platy kaolinite as carriers for the loading and release of the herbicide amitrole. Appl Clay Sci 114:190–196. https://doi.org/10.1016/j.clay.2015.05.024 CrossRefGoogle Scholar
  273. Vaculíková E, Černíková A, Plachá D, Pisarčík M, Dedková K, Peikertová P, Devínsky F, Jampílek J (2016a) Cimetidine nanoparticles for permeability enhancement. J Nanosci Nanotechnol 16:7840–7843. https://doi.org/10.1166/jnn.2016.12562 CrossRefGoogle Scholar
  274. Vaculíková E, Černíková A, Plachá D, Pisarčík M, Peikertová P, Dedková K, Devínsky F, Jampílek J (2016b) Preparation of hydrochlorothiazide nanoparticles for solubility enhancement. Molecules 21:1005. https://doi.org/10.3390/molecules21081005 CrossRefGoogle Scholar
  275. Vanathi P, Rajiv P, Sivaraj R (2016) Synthesis and characterization of Eichhornia-mediated copper oxide nanoparticles and assessing their antifungal activity against plant pathogens. Bull Mater Sci 39:1165–1170. https://doi.org/10.1007/s12034-016-1276-x CrossRefGoogle Scholar
  276. Vani C, Brindhaa U (2013) Silica nanoparticles as nanocides against Corcyra cephalonica (S.), the stored grain pest. Int J Pharm Bio Sci 4(B):1108–1118.Google Scholar
  277. Ventola CL (2012) The nanomedicine revolution: part 3: regulatory and safety challenges. Pharm Therapeutics 37:631–639.Google Scholar
  278. Vestel J, Caldwell DJ, Constantine L, D’Aco VJ, Davidson T, Dolan DG, Millard SP, Murray-Smith R, Parke NJ, Ryan JJ, Straub JO, Wilson P (2016) Use of acute and chronic ecotoxicity data in environmental risk assessment of pharmaceuticals. Environ Toxicol Chem 35:1201–1212. https://doi.org/10.1002/etc.3260 CrossRefPubMedGoogle Scholar
  279. Vitanovic E (2012) Use of Cu fungicides in vineyards and olive groves. In: Dhanasekaran D, Thajuddin N, Panneerselvam A (eds) Fungicides for plant and animal diseases. InTech, Rijeka, pp 279–298. https://doi.org/10.5772/26953 CrossRefGoogle Scholar
  280. Vlad S, Tanase C, Macocinschi D, Ciobanu C, Balaes T, Filip D, Gostin IN, Gradinaru LM (2012) Antifungal behaviour of polyurethane membranes with zinc oxide nanoparticles. Digest J Nanomater Biostruct 7:51–58.Google Scholar
  281. Wagner G, Korenkov V, Judy JD, Bertsch PM (2016) Nanoparticles composed of Zn and ZnO inhibit peronospora tabacina spore germination in vitro and P. tabacina infectivity on tobacco leaves. Nano 2016:6. https://doi.org/10.3390/nano6030050 CrossRefGoogle Scholar
  282. Wang XP, Liu XQ, Chen JN, Han HY, Yuan ZD (2014) Evaluation and mechanism of antifungal effects of carbon nanomaterials in controlling plant fungal pathogen. Carbon 68:798–806. https://doi.org/10.1016/j.carbon.2013.11.072 CrossRefGoogle Scholar
  283. Wang X, Cai A, Wen X, Jing D, Qi H, Yuan H (2017) Graphene oxide-Fe3O4 nanocomposites as high-performance antifungal agents against Plasmopara viticola. Sci China Mater 60:258–268. https://doi.org/10.1007/s40843-016-9005-9
  284. Wanyika H (2013) Sustained release of fungicide metalaxyl by mesoporous silica nanospheres. J Nanopart Res 15:UNSP 1831. https://doi.org/10.1007/s11051-013-1831-y CrossRefGoogle Scholar
  285. Watson SB, Gergely A, Janus ER (2011) Where is “Agronanotechnology” heading in the United States and european union? Nat Resour Environ 26:8–12.Google Scholar
  286. Wen YZ, Zhang LJ, Chen ZW, Sheng XL, Qiu JG, Xu DM (2016) Co-exposure of silver nanoparticles and chiral herbicide imazethapyr to Arabidopsis thaliana: enantioselective effects. Chemosphere 145:207–214. https://doi.org/10.1016/j.chemosphere.2015.11.035 CrossRefPubMedGoogle Scholar
  287. Wennersten R, Fidler J, Spitsyna A (2008) Nanotechnology: a new technological revolution in the 21st century. In: Misra KB (ed) Handbook of performability engineering. Springer, London, pp 943–952.CrossRefGoogle Scholar
  288. Wibowo D, Zhao CX, Peters BC, Middelberg AP (2014) Sustained release of fipronil insecticide in vitro and in vivo from biocompatible silica nanocapsules. J Agric Food Chem 62:12504–12511. https://doi.org/10.1021/jf504455x CrossRefPubMedGoogle Scholar
  289. Wilpiszewska K, Spychaj T, Pazdzioch W (2016) Carboxymethyl starch/montmorillonite composite microparticles: properties and controlled release of isoproturon. Carbohydr Polym 136:101–106. https://doi.org/10.1016/j.carbpol.2015.09.021 CrossRefPubMedGoogle Scholar
  290. Xing K, Shen XQ, Zhu X, Ju XY, Miao XM, Tian J, Feng ZZ, Peng X, Jiang JH, Qin S (2016) Synthesis and in vitro antifungal efficacy of oleoyl-chitosan nanoparticles against plant pathogenic fungi. Int J Biol Macromol 82:830–836. https://doi.org/10.1016/j.ijbiomac.2015.09.074 CrossRefPubMedGoogle Scholar
  291. Xu L, Cao LD, Li FM, Wang XJ, Huang QL (2014) Utilization of chitosan-lactide copolymer nanoparticles as controlled release pesticide carrier for pyraclostrobin against Colletotrichum gossypii Southw. J Dispers Sci Technol 35:544–550. https://doi.org/10.1080/01932691.2013.800455 CrossRefGoogle Scholar
  292. Yang FL, Li XG, Zhu F, Lei CL (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Agric Food Chem 57:10156–10162. https://doi.org/10.1021/jf9023118 CrossRefPubMedGoogle Scholar
  293. Yasur J, Pathipati UR (2015) Lepidopteran insect susceptibility to silver nanoparticles and measurement of changes in their growth, development and physiology. Chemosphere 124:92–102. https://doi.org/10.1016/j.chemosphere.2014.11.029 CrossRefPubMedGoogle Scholar
  294. Yearla SR, Padmasree K (2016) Exploitation of subabul stem lignin as a matrix in controlled release agrochemical nanoformulations: a case study with herbicide diuron. Environ Sci Pollut Res 23:18085–18098. https://doi.org/10.1007/s11356-016-6983-8 CrossRefGoogle Scholar
  295. Zahid N, Alderson PG, Ali A, Maqbool M, Manickam S (2013) In vitro control of Colletotrichum gloeosporioides by using chitosan loaded nanoemulsions. Acta Hortic 1012:769–774. https://doi.org/10.17660/ActaHortic.2013.1012.104 CrossRefGoogle Scholar
  296. Zahir AA, Bagavan A, Kamaraj C, Elango G, Abdul Rahuman A (2012) Efficacy of plant-mediated synthesized silver nanoparticles against Sitophilus oryzae. J Biopest 5:95–102.Google Scholar
  297. Zare-Zardini H, Amiri A, Shanbedi M, Memarpoor-Yazdi M, Asoodeh A (2013) Studying of antifungal activity of functionalized multiwalled carbon nanotubes by microwave-assisted technique. Surf Interace Anal 45:751–755. https://doi.org/10.1002/sia.5152 CrossRefGoogle Scholar
  298. Zhang JT, Liu Y, Li Q, Zhang XP, Shang JK (2013a) Antifungal activity and mechanism of palladium-modified nitrogen-doped titanium oxide photocatalyst on agricultural pathogenic fungi Fusarium graminearum. ACS Appl Mater Interfaces 5:10953–10959. https://doi.org/10.1021/am4031196 CrossRefPubMedGoogle Scholar
  299. Zhang JK, Li M, Fan TF, Xu Q, Wu Y, Chen CY, Huang QL (2013b) Construction of novel amphiphilic chitosan copolymer nanoparticles for chlorpyrifos delivery. J Polym Res 20:107. https://doi.org/10.1007/s10965-013-0107-7 CrossRefGoogle Scholar
  300. Zhou Y, Jiang SJ, Jiao YJ, Wang H (2017) Synergistic effects of nanochitin on inhibition of tobacco root rot disease. Int J Biol Macromol 99:205–212. https://doi.org/10.1016/j.ijbiomac.2017.02.069 CrossRefPubMedGoogle Scholar
  301. Ziaee M, Ganji Z (2016) Insecticidal efficacy of silica nanoparticles against Rhyzopertha dominica F. and Tribolium confusum Jacquelin du Val. J Plant Prot Res 56:250–256. https://doi.org/10.1515/jppr-2016-0037 CrossRefGoogle Scholar
  302. Ziaee M, Moharramipour S, Mohsenifar A (2014a) Toxicity of Carum copticum essential oil-loaded nanogel against Sitophilus granarius and Tribolium confusum. J Appl Entomol 138:763–771. https://doi.org/10.1111/jen.12133 CrossRefGoogle Scholar
  303. Ziaee M, Moharramipour S, Mohsenifar A (2014b) MA-chitosan nanogel loaded with Cuminum cyminum essential oil for efficient management of two stored product beetle pests. J Pest Sci 87:691–699. https://doi.org/10.1007/s10340-014-0590-6 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Josef Jampílek
    • 1
  • Katarína Kráľová
    • 2
  1. 1.Department of Pharmaceutical Chemistry, Faculty of PharmacyComenius UniversityBratislavaSlovakia
  2. 2.Institute of Chemistry, Faculty of Natural SciencesComenius UniversityBratislavaSlovakia

Personalised recommendations