Advertisement

Role of Microbes in Plant Protection Using Intersection of Nanotechnology and Biology

  • Manoj Kaushal
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

Plant pathogens are one of the dominating components which restrain crop productivity. Preliminary step headed for managing plant disease is to accurately recognize the pathogen under lab, glasshouse, and field conditions. Modern approach, such as culture-based, antibody-based rapid methods and quantitative polymerase chain reaction (Q-PCR), entrusts on multiple assays to precisely identify the specific plant pathogens which are further time-consuming and lack high sensitivity. Nanobiotechnology ameliorates crop productivity through transmission of genes to target sites for breeding of varieties resistant to different plant pathogens with focus on improving sensitivity. Intersection of nanotechnology and biology also improves specificity and agility of pathogen detection which further facilitates crop disease management. Bio-fabrication of nanoparticles like silver (Ag) and copper (Cu) is used as novel antimicrobials for the management of pathogenic microorganisms that inhibits fungal hyphae and conidial germination in agricultural crops. Biological agents reduce metal which leads to capping of nanoparticles through the secretion of various enzymes. A modern class of protein nanocompartments called as encapsulins that encapsulate cargo proteins are found in bacteria and archaea. Nanobiotechnology also reduces detection times of crop pathogens and cost by the development of biosensors and phage proteins. In this chapter we emphasize on microbial semblance in nanobiotechnology applications that precede to integrated disease management of agricultural crops including precise diagnostic layout of plant diseases and modification of crop environments to adversely affect crop pathogens.

Keywords

Nanoparticles Phytopathogens Microorganisms Crop protection Smart agriculture Nanosensors 

References

  1. Abd FG, Al-Kawaz AJAH, HOM A-D (2013) Phenotypic and genotypic investigations on silver nanoparticles of Morganella morganii recovered from (cauti). Iraq Inter J Med Pharma Sci 3:29–38Google Scholar
  2. Aguilar-Mendez MA, San Martin-Martinez E, Ortega-Arroyo L, Cobian-Portillo G, Sanchez-Espindola E (2010) Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloesporioides. J Nanopart Res 13:2525–2532CrossRefGoogle Scholar
  3. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R et al (2003a) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surfaces B 28(4):313–318CrossRefGoogle Scholar
  4. Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2003b) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19(8):3550–3553CrossRefGoogle Scholar
  5. Alghuthaymi MA, Almoammar H, Rai M, Said-Galiev E, Abd-Elsalam KA (2015) Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnol Biotechnol Equ 29(2):221–222CrossRefGoogle Scholar
  6. Amenta V, Aschberger K, Arena M, Bouwmeester H, Moniz FB, Brandhoff P et al (2015) Regulatory aspects of nanotechnology in the Agri/feed/food sector in EU and non-EU countries. Regul Toxicol Pharmacol 73:463–476PubMedCrossRefGoogle Scholar
  7. Anusuya S, Sathiyabama M (2013) Effect of chitosan on rhizome rot disease of turmeric caused by Pythium aphanidermatum. ISRN Biotechnol 305349:1–5Google Scholar
  8. Arakaki A, Nakazawa H, Nemoto M, Mori T, Matsunaga T (2008) Formation of magnetite by bacteria and its application. J Royal Soc Inter 5(26):977–999CrossRefGoogle Scholar
  9. Asli S, Neumann PM (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32:577–584PubMedCrossRefGoogle Scholar
  10. Auer C, Frederick R (2009) Crop improvement using small RNAs: applications and predictive ecological risk assessments. Trends Biotechnol 27:644–651PubMedCrossRefGoogle Scholar
  11. Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. J Nanoparticles 689419. https://doi.org/10.1155/2014/689419
  12. Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. https://doi.org/10.1021/acs.langmuir.5b03081 CrossRefPubMedGoogle Scholar
  13. Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Babu MMG, Gunasekaran P (2009) Production and structural characterization of crystalline silver nanoparticles from Bacillus cereus isolate. Colloids Surfaces B 74(1):191–195CrossRefGoogle Scholar
  15. Bai HJ, Zhang ZM (2009) Microbial synthesis of semiconductor lead sulfide nanoparticles using immobilized Rhodobacter sphaeroides. Mater Lett 63(9–10):764–766CrossRefGoogle Scholar
  16. Bai HJ, Zhang ZM, Gong J (2006) Biological synthesis of semiconductor zinc sulfide nanoparticles by immobilized Rhodobacter sphaeroides. Biotechnol Lett 28(14):1135–1139PubMedCrossRefGoogle Scholar
  17. Bailey KL, Boyetchko SM, Langle T (2010) Social and economic drivers shaping the future of biological control: a Canadian perspective on the factors affecting the development and use of microbial biopesticides. Biol Control 52:221–229CrossRefGoogle Scholar
  18. Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surfaces B 68:88–92CrossRefGoogle Scholar
  19. Bansal V, Poddar P, Ahmad A, Sastry M (2006) Room temperature biosynthesis of ferroelectric barium titanate nanoparticles. J Amer Chem Soc 128(36):11958–11963CrossRefGoogle Scholar
  20. Bao H, Hao N, Yang Y, Zhao D (2003) Biosynthesis of biocompatible cadmium telluride quantum dots using yeast cells. Nano Res 3:491–498Google Scholar
  21. Baruah S, Dutta J (2009) Nanotechnology applications in pollution sensing and degradation in agriculture: a review. Environ Chem Lett 7:161–204CrossRefGoogle Scholar
  22. Battke F, Leopold K, Maier M, Schmidhalter U, Schuster M (2008) Palladium exposure of barley: uptake and effects. Plant Biol 10:272–276PubMedCrossRefGoogle Scholar
  23. Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surfaces B 47(2):160–164CrossRefGoogle Scholar
  24. Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal Nanobiotechnology. Springer International Publishing, Switzerland, pp 307–319CrossRefGoogle Scholar
  25. Bin Hussein MZ, Hashim N, Yahaya AH, Zainal Z (2009) Controlled release formulation of agrochemical pesticide based on 4-(2,4-dichlorophenoxy) butyrate nanohybrid. J Nanosci Nanotechnol 9:2140–2147CrossRefGoogle Scholar
  26. Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 48:173–179PubMedCrossRefGoogle Scholar
  27. Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surfaces B 83:42–48CrossRefGoogle Scholar
  28. Chavan S (2009) Biocontrol of insect pests in agriculture using chitinolytic enzyme complex of Myrothecium verrucaria [Thesis]. University of Pune, PuneGoogle Scholar
  29. Chen HD, Yada R (2011) Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Technol 22:585–594CrossRefGoogle Scholar
  30. Chen L, Song Y, Tang B, Song X, Yang H, Li B, Zhao Y, Huang C, Han X, Wang S, Li Z (2015) Aquatic risk assessment of a novel strobilurin fungicide: a microcosm study compared with the species sensitivity distribution approach. Ecotoxic Environ Safety. https://doi.org/10.1016/j.ecoenv.2015.06.027
  31. Chowdappa P, Gowda S (2013) Nanotechnology in crop protection: status and scope. Pest Manage Hort Ecosys 19(2):131–151Google Scholar
  32. Dasgupta N, Ranjan S, Mundekkad D, Ramalingam C, Shanker R, Kumar A (2015) Nanotechnology in agro-food: from field to plate. Food Res Int 69:381–400CrossRefGoogle Scholar
  33. Deepa K, Panda T (2014) Synthesis of gold nanoparticles from different cellular fractions of Fusarium oxysporum. J Nanosci Nanotechnol 14:3455–3463PubMedCrossRefGoogle Scholar
  34. Degrassi G, Bertani I, Devescovi G, Fabrizi A, Gatti A, Venturi V (2012) Response of plant-bacteria interaction models to nanoparticles. EQA 8:39–50Google Scholar
  35. DeOliveira JL, Campos EVR, Bakshi M, Abhilash PC, Fraceto LF (2014) Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnol Adv 32:1550–1561CrossRefGoogle Scholar
  36. Devi TP, Kulanthaivel S, Kamil D, Borah JL, Prabhakaran N, Srinivasa N (2013) Biosynthesis of silver nanoparticles from Trichoderma species. Indian J Exp Biol 51:543–547PubMedGoogle Scholar
  37. DeWindt W, Aelterman P, Verstraete W (2005) Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls. Environ Microbiol 7(3):314–225CrossRefGoogle Scholar
  38. Dinjaski N, Prieto MA (2015) Smart polyhydroxyalkanoate nanobeads by protein based functionalization. Nanomedicine 11:885–899PubMedCrossRefGoogle Scholar
  39. Du W, Sun Y, Ji R, Zhu J, Wub J, Guo H (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monitor 13:822–828CrossRefGoogle Scholar
  40. Duran N, Marcato PD, Alves OL, DeSouza G, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:1–8CrossRefGoogle Scholar
  41. Duran N, Marcato PD, De Souza GIH, Alves OL, Esposito E (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotech 3(2):203–208CrossRefGoogle Scholar
  42. Duran N, Marcato PD, Alves OL, Da Silva JPS, De Souza GIH, Rodrigues FA, Esposito E (2010) Ecosystem protection by effluent bioremediation, silver nanoparticles impregnation in a textile fabrics process. J Nanopart Res 12:285–292CrossRefGoogle Scholar
  43. Dzhavakhiya V, Shcherbakova L, Semina Y, Zhemchuzhina N, Campbell B (2012) Chemosensitization of plant pathogenic fungi to agricultural fungicides. Front Microbiology 3:1–9CrossRefGoogle Scholar
  44. ElBeyrouthya M, ElAzzi D (2014) Nanotechnologies: novel solutions for sustainable agriculture. Adv Crop Sci Technol 2:e118Google Scholar
  45. El-Kassas HY, El-Sheekh MM (2014) Cytotoxic activity of biosynthesized gold nanoparticles with an extract of the red seaweed Corallina officinalis on the MCF-7 human breast cancer cell line. Asian Pacific J Cancer Preven 15(10):4311–4317CrossRefGoogle Scholar
  46. El-rafie MH, Shaheen TI, Mohamed AA, Hebeish A (2012) Biosynthesis and applications of silver nanoparticles onto cotton fabrics. Carbohydr Polym 90:915–920PubMedCrossRefGoogle Scholar
  47. Fateixa S, Neves MC, Almeida A, Oliveira J, Trindade T (2009) Anti-fungal activity of SiO2/Ag2S nanocomposites against Aspergillus niger. Colloids Surfaces B 74:304–308CrossRefGoogle Scholar
  48. Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine: nanotech. Biol Med 6(1):e103–e109Google Scholar
  49. Filipenko EA, Filipenko ML, Deineko EV, Shumnyi VK (2007) Analysis of integration sites of T-DNA insertions in transgenic tobacco plants. Cytol Genet 41:199–203CrossRefGoogle Scholar
  50. Frampton RA, Pitman AR, Fineran PC (2012) Advances in bacteriophage-mediated control of plant pathogens. Inter J Microbiol. https://doi.org/10.1155/2012/326452
  51. Gade A, Rai M, Karwa A, Bonde P, Ingle A (2007) Extracellular biosynthesis of silver nanoparticles by Pleurotus species. Int J Med Mushroom Res 9(3–4):298–299Google Scholar
  52. Gade AK, Bonde P, Ingle AP, Marcato PD, Duran N, Rai MK (2008) Exploitation of Aspergillus niger for the synthesis of silver nanoparticles. J Biobased Mater Bioener 2:243–247CrossRefGoogle Scholar
  53. Gade A, Gaikwad S, Duran N, Rai M (2013) Screening of different species of Phoma for synthesis of silver nanoparticles. Biotechnol Appl Biochem 60(5):482–493PubMedCrossRefGoogle Scholar
  54. Gaikwad S, Birla SS, Ingle AP, Gade AK, Marcato PD, Rai MK, Duran D (2013) Screening of different Fusarium species to select potential species for the synthesis of silver nanoparticles. J Braz Chem Soc 24:1974–1982Google Scholar
  55. Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine 5:382–386PubMedCrossRefPubMedCentralGoogle Scholar
  56. Ge Y, Schimel JP, Holden PA (2011) Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ Sci Technol 45:1659–1664PubMedCrossRefGoogle Scholar
  57. Golinska P, Wypij M, Ingle AP, Gupta I, Dahm H, Rai M (2014) Biogenic synthesis of metal nanoparticles from Actinomycetes: biomedical applications and cytotoxicity. Appl Microbiol Biotech 98:8083–8097CrossRefGoogle Scholar
  58. Guo BL, Han P, Guo LC, Cao YQ, Li AD, Kong JZ, Zhai HF, Wu D (2015) The antibacterial activity of Ta-doped ZnO nanoparticles. Nanoscale Res Lett 10(1):1047PubMedGoogle Scholar
  59. Gurunathan S, Kalishwaralal K, Vaidyanathan R, Venkataraman D, Pandian SRK, Muniyandi J et al (2009) Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surfaces B 74(1):328–335CrossRefGoogle Scholar
  60. He SY, Guo ZR, Zhang Y, Zhang S, Wang J, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulate. Mater Letter 61:3984–3987CrossRefGoogle Scholar
  61. He L, Liu Y, Mustapha A, Lin M (2010) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166:207–215PubMedCrossRefGoogle Scholar
  62. Husseiny MI, El-Aziz MA, Badr Y, Mahmoud MA (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta A 67(3–4):1003–1006CrossRefGoogle Scholar
  63. Jacob JJ, Suthindhiran K (2016) Magnetotactic bacteria and magnetosomes – scope and challenges. Mater Sci Eng C 68:919–928CrossRefGoogle Scholar
  64. Jaidev LR, Narasimha G (2010) Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity. Colloids Surfaces B 81:430–433CrossRefGoogle Scholar
  65. Jain N, Bhargava A, Majumdar S, Tarafdar JC, Panwar J (2011) Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale 3(2):635–641PubMedCrossRefGoogle Scholar
  66. Jha AK, Prasad K, Prasad K (2009) A green low-cost biosynthesis of Sb2O3 nanoparticles. Biochem Eng J 43(3):303–306CrossRefGoogle Scholar
  67. Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043CrossRefGoogle Scholar
  68. Jung JH, Kim SW, Min JS, Kim YJ, Lamsal K, Kim KS (2010) The effect of nano-silver liquid against the white rot of the green onion caused by Sclerotium cepivorum. Mycobiology 38(1):39–45PubMedPubMedCentralCrossRefGoogle Scholar
  69. Kah M, Machinski P, Koerner P, Tiede K, Grillo R, Fraceto LF et al (2014) Analysing the fate of nanopesticides in soil and the applicability of regulatory protocols using a polymer-based nanoformulation of atrazine. Environ Sci Pollut Res Int 21:11699–11707PubMedCrossRefGoogle Scholar
  70. Kalimuthu K, Babu RS, Venkataraman D, Bilal M, Gurunathan S (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surface B: Biointerfaces 65:150–153CrossRefGoogle Scholar
  71. Kalishwaralal K, Deepak V, Ramkumarpandian S, Nellaiah H, Sangiliyandi G (2008) Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater Lett 62(29):4411–4413CrossRefGoogle Scholar
  72. Kar PK, Murmu S, Saha S, Tandon V, Acharya K (2014) Anthelmintic efficacy of gold nanoparticles derived from a phytopathogenic fungus, Nigrospora oryzae. PLoS One 9(1):e84693PubMedPubMedCentralCrossRefGoogle Scholar
  73. Kasprowicz MJ, Kozio M, Gorczyca A (2010) The effect of silver nanoparticles on phytopathogenic spores of Fusarium culmorum. Can J Microbiol 56:247–253PubMedCrossRefGoogle Scholar
  74. Katas H, Alpar HO (2006) Development and characterisation of chitosan nanoparticles for siRNA delivery. J Control Release 115:216–225PubMedCrossRefGoogle Scholar
  75. Kathiresan K, Manivannan S, Nabeel MA, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surfaces B 7:133–137CrossRefGoogle Scholar
  76. Kaushik A, Solanki PR, Ansarib AA, Malhotra BD, Ahmad S (2009) Iron oxide-chitosan hybrid nanobiocomposite based nucleic acid sensor for pyrethroid detection. Biochem Engineer J 46:132–140CrossRefGoogle Scholar
  77. Khosravi A, Shojaosadati SA (2009) Evaluation of silver nanoparticles produced by fungus Fusarium oxysporum. Int J Nanotechnol 6:973–983CrossRefGoogle Scholar
  78. Kim TH, Jiang HL, Jere D, Parka IK, Cho MH, Nah JW et al (2007) Chemical modification of chitosan as a gene carrier in vitro and in vivo. Prog Polym Sci 32:726–753CrossRefGoogle Scholar
  79. Kim KJ, Sung WS, Moon SK, Choi JS, Kim JG, Lee DG (2008) Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechnol 18:1482–1484PubMedGoogle Scholar
  80. Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver based crystalline nanoparticles, microbially fabricated. Proc Nat Acad Sci USA 96(24):13611–13614PubMedCrossRefGoogle Scholar
  81. Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S, Hishida H et al (2007) Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotech 128(3):648–653CrossRefGoogle Scholar
  82. Kookana RS, Boxall AB, Reeves PT, Ashauer R, Beulke S, Chaudhry Q et al (2014) Nanopesticides: guiding principles for regulatory evaluation of environmental risks. J Agric Food Chem 62:4227–4240PubMedCrossRefGoogle Scholar
  83. Krishnaraj C, Ramachandran R, Mohan K, Kalaichelvan PT (2012) Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim Acta A 93:95–99CrossRefGoogle Scholar
  84. Kulkarni SA, Ghormade V, Kulkarni G, Kapoor M, Chavan SB, Rajendran A et al (2008) Comparison of Metarhizium isolates for biocontrol of Helicoverpa armigera (Lepidoptera: Noctuidae) in chickpea. Biocontrol Sci Tech 18:809–828CrossRefGoogle Scholar
  85. Kumar SA, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, Khan MI (2007a) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29:439–445CrossRefGoogle Scholar
  86. Kumar SA, Ansary AA, Abroad A, Khan MI (2007b) Extracellular biosynthesis of CdSe quantum dots by the fungus, Fusarium oxysporum. J Biomed Nanotech 3(2):190–194CrossRefGoogle Scholar
  87. Kumari M, Ernest V, Mukherjee A, Chandrasekaran N (2012) In vivo nanotoxicity assays in plant models. Methods Mol Biol 926:399–410PubMedCrossRefGoogle Scholar
  88. Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011) Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiology 39(3):194–199PubMedPubMedCentralCrossRefGoogle Scholar
  89. Law N, Ansari S, Livens FR, Renshaw JC, Lloyd JR (2008) Formation of nanoscale elemental silver particles via enzymatic reduction by Geobacter sulfurreducens. Appl Environ Microbiol 74:7090–7093PubMedPubMedCentralCrossRefGoogle Scholar
  90. Leake JR, Donnelly DP, Boddy L (2002) Interactions between ectomycorrhizal fungi and saprotrophic fungi. In: der Heijden MGA V, Sanders IR (eds) Mycorrhizal ecology. Ecological Studies Springer Verlag, Heidelberg, p 157Google Scholar
  91. Lee S, Kim S, Kim S, Lee I (2012) Effects of soil-plant interactive system on response to exposure to ZnO nanoparticles. J Microbiol Biotechnol 22:1264–1270PubMedCrossRefGoogle Scholar
  92. Lefevre CT, Abreu F, Schmidt ML, Lins U, Frankel RB, Hedlund BP et al (2010) Moderately thermophilic magnetotactic bacteria from hot springs in Nevada. Appl Environ Microbiol 76(11):3740–3743PubMedPubMedCentralCrossRefGoogle Scholar
  93. Lengke MF, Ravel B, Fleet ME, Wanger G, Gordon RA, Southam G (2006) Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold (III)-chloride complex. Environ Sci Technol 40(20):6304–6309PubMedCrossRefGoogle Scholar
  94. van Lenteren JC, Martin NA (1999) Biol Control of whitefly. In: Albajes R, Gullino ML, van Lenteren JC, Elad Y (eds) Integrated pest and Dis Manag in greenhouse Crops Dordrecht. Kluwer Academic Publishers, Netherlands, pp 202–216CrossRefGoogle Scholar
  95. Li X, Huizhong X, Zhe-Sheng C, Guofang C (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater. https://doi.org/10.1155/2011/270974
  96. Li G, He D, Qian Y, Guan B, Gao S, Cui Y, Yokoyama K, Wang L (2012) Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int J Mol Sci 13:466–476PubMedCrossRefGoogle Scholar
  97. Liu J, Wang FH, Wang LL, Xiao SY, Tong CY, Tang DY et al (2008) Preparation of fluorescence starch-nanoparticle and its application as plant transgenic vehicle. J Cent S Univ Technol 15:768–7737CrossRefGoogle Scholar
  98. Maliszewska I, Juraszek A, Bielska K (2013) Green synthesis and characterization of silver nanoparticles using ascomycota fungi Penicillium nalgiovense AJ12. J Clust Sci 25:989–1004CrossRefGoogle Scholar
  99. Mallikarjuna K, Narasimha G, John Sushma N, Dillip GR, Subba Reddy BV, Sreedhar B, Deva Prasad Raju B (2015) Biogenic preparation of gold nanostructures reduced from Piper longum leaf broth and their electrochemical studies. J Nanosci Nanotech 15(2):1280–1286CrossRefGoogle Scholar
  100. Malysheva A, Lombi E, Voelcker NH (2015) Bridging the divide between human and environmental nanotoxicology. Nat Nanotechnol 10:835–844PubMedCrossRefGoogle Scholar
  101. Manceau A, Nagy K, Marcus M, Lanson M, Geoffroy N, Jacquet T et al (2008) Formation of metallic copper nanoparticles at the soil-root Interface. Environ Sci Technol 42:1766–1772PubMedCrossRefGoogle Scholar
  102. Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69:485–492PubMedCrossRefGoogle Scholar
  103. Mann S (2001) Biomineralization: principles and concepts in bioinorganic materials chemistry. Oxford University Press, Oxford, UKGoogle Scholar
  104. Manonmani V, Juliet V (2011) Biosynthesis of Ag nanoparticles for the detection of pathogenic bacteria. In: Proceedings of the 2nd international conference on innovation, management and service, Singapore, pp 307–311Google Scholar
  105. Mishra S, Singh HB (2015) Biosynthesized silver nanoparticles as a nanoweapon against phytopathogens: exploring their scope and potential in agriculture. Appl Microbiol Biotech 99:1097–1107CrossRefGoogle Scholar
  106. Mishra AN, Bhadauria S, Gaur MS, Pasricha R (2010) Extracellular microbial synthesis of gold nanoparticles using fungus Hormoconis resinae. J Microbiol 62:45–48Google Scholar
  107. Mishra S, Singh BR, Singh A, Keswani C, Naqvi AH, Singh HB (2014) Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. PLoS One 9(5):e97881PubMedPubMedCentralCrossRefGoogle Scholar
  108. Mohanpuria P, Rana NK, Yadav SK (2007) Biosynthesis of nanoparticles, technological concepts and future applications. J Nanopart Res 7:9275–9280Google Scholar
  109. Mourato A, Gadanho M, Lino AR, Tenreiro R (2011) Biosynthesis of crystalline silver and gold nanoparticles by extremophilic yeasts. Bioinorganic Chem App doi. https://doi.org/10.1155/2011/546074
  110. Mousavi SR, Rezaei M (2011) Nanotechnology in agriculture and food production. J Appl Environ Biol Sci 1:414–419Google Scholar
  111. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI et al (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1(10):515–519CrossRefGoogle Scholar
  112. Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Ghatak J, Tyagi AK, Kale SP (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus Trichoderma asperellum. Nano 19:075103Google Scholar
  113. Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci 156:1–13CrossRefGoogle Scholar
  114. Nayak RR, Pradhan N, Behera D, Pradhan KM, Mishra S, Sukla LB, Mishra BK (2010) Green synthesis of silver nanoparticle by Penicillium purpurogenum NPMF, the process and optimization. J Nanopart Res 13:3129–3137CrossRefGoogle Scholar
  115. Nithya R, Ragunathan R (2009) Synthesis of silver nanoparticle using Pleurotus sajor caju and its antimicrobial study. Digest J Nanomater Biostruct 4:623–629Google Scholar
  116. Ocsoy I, Paret ML, Ocsoy MA, Kunwar S, Chen T, You M, Tan W (2013) Nanotechnology in plant disease management: DNA directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano. https://doi.org/10.1021/nn4034794
  117. Oh SD, Lee S, Choi SH, Lee IS, Lee YM, Chun JH, Park HJ (2006) Synthesis of Ag and Ag-SiO2 nanoparticles by y-irradiation and their antibacterial and antifungal efficiency against Salmonella enterica serovar Typhimurium and Botrytis cinerea. Colloids Surfaces A 275:228–233CrossRefGoogle Scholar
  118. Oliveira HC, Stolf-Moreira R, Martinez CBR, Grillo R, DeJesus MB, Fraceto LF (2015a) Nanoencapsulation enhances the post-emergence herbicidal activity of atrazine against mustard plants. PLoS One 10:e0132971PubMedPubMedCentralCrossRefGoogle Scholar
  119. Oliveira HC, Stolf-Moreira R, Martinez CBR, Sousa GFM, Grillo R, DeJesus MB et al (2015b) Evaluation of the side effects of poly (epsilon- caprolactone) nanocapsules containing atrazine toward maize plants. Front Chem 3:61PubMedPubMedCentralCrossRefGoogle Scholar
  120. Oskam G (2006) Metal oxide nanoparticles: synthesis, characterization and application. J Sol-Gel Sci Technol 37:161–164CrossRefGoogle Scholar
  121. Palmqvist NGM, Bejai S, Meijer J, Seisenbaeva GA, Kessler VG (2015) Nano titania aided clustering and adhesion of beneficial bacteria to plant roots to enhance crop growth and stress management. Sci Rep 5:10146PubMedPubMedCentralCrossRefGoogle Scholar
  122. Pandian SRK, Deepak V, Kalishwaralal K, Muniyandi J, Rameshkumar N, Gurunathan S (2009) Synthesis of PHB nanoparticles from optimized medium utilizing dairy industrial waste using Brevibacterium casei SRKP2: a green chemistry approach. Colloids Surfaces B 74(1):266–273CrossRefGoogle Scholar
  123. Parisi C, Vigani M, Rodriguez-Cerezo E (2015) Agricultural nanotechnologies: what are the current possibilities? NanoToday 10:124–127CrossRefGoogle Scholar
  124. Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22(3):295–302CrossRefGoogle Scholar
  125. Paulkumar K, Gnanajobitha G, Vanaja M, Rajeshkumar S, Malarkodi C, Pandian K, Annadurai G (2014) Piper nigrum leaf and stem assisted green synthesis of silver nanoparticles and evaluation of its antibacterial activity against agricultural plant pathogens. The Scientific World J. https://doi.org/10.1155/2014/829894
  126. Perez-de-Luque A, Rubiales D, Marquina CI, Ibarra MR, de la Fuente JM (2008) Nanoparticles in agriculture, development of smart delivery systems for plant research Nano-Spain. Braga-PortugalGoogle Scholar
  127. Perez-Gonzalez T, Jimenez-Lopez C, Neal AL, Rull-Perez F, Rodriguez-Navarro A, Fernandez-Vivas A et al (2010) Magnetite biomineralization induced by Shewanella oneidensis. Geochimica Cosmochimica Acta 74(3):967–979CrossRefGoogle Scholar
  128. Peteu SF, Oancea F, Sicuia OA, Constantinescu F, Dinu S (2010) Responsive polymers for crop protection. Polymers 2:229–251CrossRefGoogle Scholar
  129. Philip D (2009) Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Spectrochim Acta A 73:374–381CrossRefGoogle Scholar
  130. Potara M, Bawaskar M, Simon T, Gaikwad S, Licarete E, Ingle A, Banciu M, Vulpoi A, Astilean S, Rai M (2015) Biosynthesized silver nanoparticles performing as biogenic SERS-nanotags for investigation of C26 colon carcinoma cells. Colloids Surfaces B: Biointerfaces 133:296–303PubMedCrossRefGoogle Scholar
  131. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  132. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363 CrossRefGoogle Scholar
  133. Prasad R, Bhattacharyya A, Nguyen QD (2017a) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014 CrossRefPubMedPubMedCentralGoogle Scholar
  134. Prasad R, Gupta N, Kumar M, Kumar V, Wang S, Abd-Elsalam KA (2017b) Nanomaterials act as plant defense mechanism. In: Prasad R, Kumar V, Kumar M (eds) Nanotechnology. Springer, Singapore, pp 253–269CrossRefGoogle Scholar
  135. Price DRG, Gatehouse JA (2008) RNAi-mediated crop protection against insects. Trends Biotechnol 26:393–399PubMedCrossRefGoogle Scholar
  136. Puebla RA, Dos Santos DS Jr, Aroca RF (2004) Surface enhanced Raman scattering for ultrasensitive chemical analysis of 1 and 2-naphthalenethiols. Analyst 129:1251–1256CrossRefGoogle Scholar
  137. Puoci F, Lemma F, Spizzirri UG, Cirillo G, Curcio M, Picci N (2008) Polymer in agriculture: a review. Am J Agri Biol Sci 3:299–314CrossRefGoogle Scholar
  138. Rai M, Deshmukh S, Gade A, Elsalam K-A (2012a) Strategic nanoparticles-mediated gene transfer in plants and animals - a novel approach. Curr Nano 8:170–179CrossRefGoogle Scholar
  139. Rai MK, Gade AK, Gaikwad S, Marcato PD, Duran N (2012b) Biomedical applications of nanobiosensors: the state-of-the-art. J Brazilian Chem Soc 23:1):14–1):24Google Scholar
  140. Reith F, Lengke MF, Falconer D, Craw D, Southam G (2007) The geomicrobiology of gold. The ISME J 1(7):567–584PubMedCrossRefGoogle Scholar
  141. Ruffolo SA, La Russa MF, Malagodi M, Oliviero Rossi C, Palermo AM, Crisci GM (2010) ZnO and ZnTiO3 nanopowders for antimicrobial stone coating. Appl Phys A Mater Sci Process 100:829–834CrossRefGoogle Scholar
  142. Sadiko A, Du N, Kariuki V, Okello V, Bushlyar V (2014) Current and emerging technologies for the characterization of nanomaterials. ACS Sustain Chem Eng 2:1707–1716CrossRefGoogle Scholar
  143. Sangeetha J, Thangadurai D, Hospet R, Purushotham P, Manowade KR, Mujeeb MA, Mundaragi AC, Jogaiah S, David M, Thimmappa SC, Prasad R, Harish ER (2017a) Production of bionanomaterials from agricultural wastes. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature, Singapore, pp 33–58CrossRefGoogle Scholar
  144. Sangeetha J, Thangadurai D, Hospet R, Harish ER, Purushotham P, Mujeeb MA, Shrinivas J, David M, Mundaragi AC, Thimmappa AC, Arakera SB, Prasad R (2017b) Nanoagrotechnology for soil quality, crop performance and environmental management. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature, Singapore, pp 73–97CrossRefGoogle Scholar
  145. Sanghi R, Verma P (2009) A facile green extracellular biosynthesis of CdS nanoparticles by immobilized fungus. Chem Eng J 155:886–891CrossRefGoogle Scholar
  146. Saravanan M, Nanda A (2010) Extracellular synthesis of silver bionanoparticles from Aspergillus clavatus and its antimicrobial activity against MRSA and MRSE. Colloids Surfaces B 77:214–218CrossRefGoogle Scholar
  147. Sasson Y, Levy-Ruso G, Toledano O, Ishaaya I (2007) Nanosuspensions: emerging novel agrochemical formulations. In: Ishaaya I, Nauen R, Horowitz AR (eds) Insecticides design using advanced technologies. Springer-Verlag, Netherlands, pp 1–32Google Scholar
  148. Sastry RK, Rashmi HB, Rao NH, Ilyas SM (2010) Integrating nanotechnology (NT) into Agri-food systems research in India: a conceptual framework. Technol Forecasting Soc Change 77:639–648CrossRefGoogle Scholar
  149. Sawle BD, Salimath B, Deshpande R, Bedre MD, Prabhakar BK, Venkataraman A (2008) Biosynthesis and stabilization of Au and Au-Ag alloy nanoparticles by fungus, Fusarium semitectum. Sci Tech Adv Mater 9(3):1–6Google Scholar
  150. Senapati S, Mandal D, Ahmad A (2004) Fungus mediated synthesis of silver nanoparticles: a novel biological approach. Ind J Phy A 78(1):101–105Google Scholar
  151. Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R (2005) Extracellular biosynthesis of bimetallic Au-Ag alloy nanoparticles. Small 1(5):517–520PubMedCrossRefGoogle Scholar
  152. Shaligram NS, Bule M, Bhambure R, Singhal RS, Singh SK, Szakacs G, Pandey A (2009) Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem 44:939–943CrossRefGoogle Scholar
  153. Shan G, Xing J, Zhang H, Liu H (2005) Biodesulfurization of dibenzothiophene by microbial cells coated with magnetite nanoparticles. Appl Environ Microbiol 71(8):4497–4502PubMedPubMedCentralCrossRefGoogle Scholar
  154. Simkiss K, Wilbur KM (1989) Biomineralization. Academic, New York, USAGoogle Scholar
  155. Singh D, Rathod V, Ninganagouda S, Hiremath J, Singh AK, Mathew J (2014) Optimization and characterization of silver nanoparticle by endophytic fungi Penicillium sp. isolated from Curcuma longa (turmeric) and application studies against MDR E. coli and S. aureus. Bioinorg Chem Appl. https://doi.org/10.1155/2014/408021
  156. Sinha A, Khare SK (2011) Mercury bioaccumulation and simultaneous nanoparticle synthesis by Enterobacter sp. cells. Bioresour Technol 102:4281–4284PubMedCrossRefGoogle Scholar
  157. Sivamani E, DeLong RK, Qu R (2009) Protamine-mediated DNA coating remarkably improves bombardment transformation efficiency in plant cells. Plant Cell Rep 28:213–221PubMedCrossRefPubMedCentralGoogle Scholar
  158. Smith K, Evans DA, El-Hiti GA (2008) Role of modern chemistry in sustainable arable crop protection. Phil Trans R Soc B 363:623–637PubMedCrossRefGoogle Scholar
  159. Soni N, Prakash S (2011) Factors affecting the geometry of silver nanoparticles synthesis in Chrysosporium tropicum and Fusarium oxysporum. Am J Nanotechnol 2(1):112–121Google Scholar
  160. Suriyaprabha R, Karunakaran G, Kavitha K, Yuvakkumar R, Rajendran V, Kannan N (2014) Application of silica nanoparticles in maize to enhance fungal resistance. IET Nanobiotechnol 8(3):133–137CrossRefPubMedGoogle Scholar
  161. Sweeney RY, Mao C, Gao X, Burt JL, Belcher AM, Georgiou G et al (2004) Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem Biol 11(11):1553–1559PubMedCrossRefGoogle Scholar
  162. Tang H, Yan M, Zhang H, Xia M, Yang D (2005) Preparation and characterization of water-soluble CdS nanocrystals by surface modification of ethylene diamine. Mater Lett 59(8–9):1024–1027CrossRefGoogle Scholar
  163. Tanzil AH, Sultana ST, Saunders SR, Shi L, Marsili E, Beyenal H (2016) Biological synthesis of nanoparticles in biofilms. Enzym Microb Technol. https://doi.org/10.1016/j.enzmictec.2016.07.015
  164. Tiwari M, Narayanan K, Thakar MB, Jagani HV, VenkataRao J (2014) Biosynthesis and wound healing activity of copper nanoparticles. IET Nanobiotechnol 8(4):230–237PubMedCrossRefGoogle Scholar
  165. Tomoyasu Y, Denell RE (2004) Larval RNAi in Tribolium (Coleoptera) for analyzing adult development. Dev Genes Evol 214:575–578PubMedCrossRefGoogle Scholar
  166. Torney F, Trewyn BG, Lin VS, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nature Nanotechnol 2:295–300CrossRefGoogle Scholar
  167. Vandergheynst J, Scher H, Hy G, Schultz D (2007) Water-in-oil emulsions that improve the storage and delivery of the biolarvacide Lagenidium giganteum. BioControl 52:207–229CrossRefGoogle Scholar
  168. Verma VC, Kharwar RN, Gange AC (2010) Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine 5:33–40PubMedCrossRefGoogle Scholar
  169. Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Materials Lett 61(6):1413–1418CrossRefGoogle Scholar
  170. Vijayakumar PS, Abhilash OU, Khan BM, Prasad BLV (2010) Nanogold-loaded sharp-edged carbon bullets as plant-gene carriers. Adv Funct Mater 20:2416–2423CrossRefGoogle Scholar
  171. Vinayaka AC, Basheer S, Thakur MS (2009) Bioconjugation of CdTe quantum dot for the detection of 2,4-dichlorophenoxyacetic acid by competitive fluoroimmunoassay based biosensor. Biosens Bioelectron 24:1615–1620PubMedCrossRefPubMedCentralGoogle Scholar
  172. Vu HT, Keough MJ, Long SM, Pettigrove VJ (2015) Effects of the boscalid fungicide Filan on the marine amphipod Allorchestes compressa at environmentally relevant concentrations. Environ Toxic Chem doi. https://doi.org/10.1002/etc.3247
  173. Wang T, Yang L, Zhang B, Liu J (2010) Extracellular biosynthesis and transformation of selenium nanoparticles and application in H2O2 biosensor. Colloids Surfaces B 80(1):94–102CrossRefGoogle Scholar
  174. Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132PubMedCrossRefPubMedCentralGoogle Scholar
  175. Yao KS, Li SJ, Tzeng KC, Cheng TC, Chang CY, Chiu CY, Liao CY, Hsu JJ, Lin ZP (2009) Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. Adv Mater Res 79:513–516CrossRefGoogle Scholar
  176. Zhang X, Zhang J, Zhu KY (2010) Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae). Insect Mol Biol 19:683–693PubMedCrossRefGoogle Scholar
  177. Zhang X, Yan S, Tyagi RD, Surampalli RY (2011) Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere 82(4):489–494PubMedCrossRefGoogle Scholar
  178. Zheng B, Qian L, Yuan H, Xiao D, Yang X, Paau MC et al (2010a) Preparation of gold nanoparticles on eggshell membrane and their biosensing application. Talanta 82(1):177–183PubMedCrossRefGoogle Scholar
  179. Zheng D, Hu C, Gan T, Dang X, Hu S (2010b) Preparation and application of a novel vanillin sensor based on biosynthesis of Au-Ag alloy nanoparticles. Sensors Actuators B Chem 148(1):247–252CrossRefGoogle Scholar
  180. Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake translocation and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monitor 10:713–717CrossRefGoogle Scholar
  181. Zong X, Wang W, Wei H, Wang J, Chen X, Xu L, Zhu D, Tan Y, Liu Q (2014) Rapid detection of Prunus necrotic ringspot virus using magnetic nanoparticle-assisted reverse transcription loop-mediated isothermal amplification. J Virol Methods 208:85–89PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Manoj Kaushal
    • 1
  1. 1.International Institute of Tropical AgricultureIbadanNigeria

Personalised recommendations