Nanoantimicrobials Mechanism of Action

  • Manal Mostafa
  • Amal-Asran
  • Hassan Almoammar
  • Kamel A. Abd-Elsalam
Part of the Nanotechnology in the Life Sciences book series (NALIS)


Understanding the molecular mode of actions of nanoantmicrobial will be helpful in creating viable administration systems to control critical pathogenic plant diseases. Similarly, the understanding of those mechanisms may assist to avoid resistance mechanisms, which are known and used in the case of pathogenic microorganisms. The potential mechanism of toxicity has been attributed to several possible mechanisms; the disintegration or arrival of particles from the nanoparticles inspire either provocative reaction, mitochondrial brokenness, interruption of cell layer respectability, oxidative pressure, protein or DNA degradation and harm, or reactive oxygen species (ROS) age, influencing the proteins and phospholipids and eventually causing cell passing. Specific attention was given to antimicrobial agents antimicrobial instruments with center around age of reactive oxygen species (ROS) including hydrogen peroxide (H2O2), OH-(hydroxyl radicals), and O2−2 (peroxide). ROS has been a major consideration for a few systems including cell wall harm because of NPs-restricted association and improved membrane permeability.


Nanoantimicrobials Nanoparticles (NPs) Nanostructures Chitosan Nanocomposites Magnetic nanoparticles Bimetallic nanoparticles 



This research was supported by the Science and Technology Development Fund (STDF), Joint Egypt (STDF)-South Africa (NRF) Scientific Cooperation, Grant ID 27837 to Kamel Abd-Elsalam.


  1. Abbaszadegan A, Ghahramani Y, Gholami A, Hemmateenejad B, Dorostkar S, Nabavizadeh M, Sharghi H (2015) The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: a preliminary study. J Nanomater ID 720654Google Scholar
  2. Abd-Elsalam KA, Vasil’kov AY, Said-Galiev EE, Rubina MS, Khokhlov AR, Naumkin AV, Shtykova EV, Alghuthaymi MA (2017) Bimetallic and chitosan nanocomposites hybrid with trichoderma: novel antifungal agent against cotton soil-borne fungi. Euro J Plant Pathol.
  3. Abkhoo J, Panjehkeh N (2017) Evaluation of antifungal activity of silver nanoparticles on Fusarium oxysporum. Int J Inf Secur 4(2):e41126. CrossRefGoogle Scholar
  4. Ahmed IIS, Yadav DR, Lee YS (2016) Applications of nickel nanoparticles for control of fusarium wilt on lettuce and tomato. Int J Innov Res Sci Eng Technol 5:7378–7385CrossRefGoogle Scholar
  5. Akhavan O, Ghaderi E, Esfandiar A (2011) Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation. J Phys Chem B 115:6279–6288PubMedCrossRefGoogle Scholar
  6. Al-Jumaili A, Alancherry S, Bazaka K, Jacob MV (2017) Review on the antimicrobial properties of carbon nanostructures. Materials 10:1066. CrossRefPubMedCentralPubMedGoogle Scholar
  7. Allahverdiyev AM, Abamor ES, Bagirova M, Baydar SY, Ates SC, Kaya F, Kaya C (2013) Investigation of antileishmanial activities of Tio2@Ag nanoparticles on biological properties of L. tropica and L. infantum parasites, in vitro. Experimental Parasitol 135:55–63CrossRefGoogle Scholar
  8. Alonso A, Vigués N, Muñoz-Berbel X, Macanás J, Muñoz M, Mas J, Muraviev DN (2011) Environmentally-safe bimetallic Ag@Co magnetic nanocomposites with antimicrobial activity. Chem Commun (Camb) 47:10464–10466CrossRefGoogle Scholar
  9. Ansari MA, Khan HM, Khan AA, Pal R, Cameotra SS (2013) Antibacterial potential of Al2O3 nanoparticles against multidrug resistance strains of Staphylococcus aureus isolated from skin exudates. J Nanopart Res 15:1970CrossRefGoogle Scholar
  10. Arciniegas-Grijalba PA, Patin˜o-Portela MC, Mosquera-Sa´nchez LP, Guerrero-Vargas JA, Rodrı´guez-Pa´ez JE (2017) ZnO nanoparticles (ZnO-NPs) and their antifungal activity against coffee fungus Erythricium salmonicolor. Appl Nanosci 7:225–241CrossRefGoogle Scholar
  11. Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4:634–664PubMedCrossRefGoogle Scholar
  12. Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. J Nanopart:689419.
  13. Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. CrossRefPubMedGoogle Scholar
  14. Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Baruah S, Dutta J (2009) Nanotechnology applications in pollution sensing and degradation in agriculture: a review. Environ Chem Lett 7:161–204CrossRefGoogle Scholar
  16. Benhamou N (1992) Ultrastructural and cytochemical aspects of chitosan on Fusarium oxysporum f. sp. radices-lycopersici, agent of tomato crown and root rot. Phytopathology 82:1185–1193CrossRefGoogle Scholar
  17. Bhuyan T, Mishra K, Khanuja M, Prasad R, Varma A (2015) Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater Sci Semicond Process 32:55–61CrossRefGoogle Scholar
  18. Borkow G, Gabbay J (2005) Copper as a biocidal tool. Curr Med Chem 12:2163–2175PubMedCrossRefGoogle Scholar
  19. Brady-Est´evez AS, Kang S, Elimelech M (2008) A single walled-carbon-nanotube filter for removal of viral and bacterial pathogens. Small 4:481–484CrossRefGoogle Scholar
  20. Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fievet M (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6:866–870PubMedCrossRefGoogle Scholar
  21. Brunel F, Gueddari NE, Moerschbacher BM (2013) Complexation of copper (II) with chitosan nanogels: toward control of microbial growth. Carbohydr Polym 92:1348–1356PubMedCrossRefGoogle Scholar
  22. Budak H, Akpinar BA (2015) Plant miRNAs: biogenesis, organization and origins. Funct Integr Genomics 15:523–531PubMedCrossRefGoogle Scholar
  23. Butt HJ, Berger R, Bonaccurso E, Chen Y, Wang J (2007) Impact of atomic force microscopy on interface and colloid science. Adv Colloid Interf Sci 133:91–104CrossRefGoogle Scholar
  24. Canale Rappussi MC, Pascholati SF, Aparecida Benato E, Cia P (2009) Chitosan reduces infection by Guignardia citricarpa in postharvest “Valencia” oranges. Braz Arch BioTechnol 52:513–521CrossRefGoogle Scholar
  25. Carbon J, David H (1968) Thiobases in Escherichia coli transfer RNA-2- thiocytosine and 5-methylaminomethyl-2-thiouracil. Science 161(3846):1146–1147PubMedCrossRefGoogle Scholar
  26. Cardinale M (2014) Scanning a microhabitat: plant-microbe interactions revealed by confocal laser microscopy. Front Microbiol 5:94. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Carré G, Hamon E, Ennahar S, Estner M, Lett MC, Horvatovich P, Gies JP, Kellerb V, Kellerb N, Andrea P (2014) TiO2 Photocatalysis damages lipids and proteins in Escherichia coli. Appl Environ Microbiol 80:2573–2581PubMedPubMedCentralCrossRefGoogle Scholar
  28. Cataldo F, Da Ros T (2008) Medicinal chemistry and pharmacological potential of fullerenes and carbon nanotubes. Springer Science & Business Media, DordrechtCrossRefGoogle Scholar
  29. Chandra S, Chakarborty N, Dasgupta A, Sarkar J, Panda K, Acharya K (2015) Chitosan nanoparticle: a positive modulator of innate immune responses in plants. Sci Rep 5:1–13Google Scholar
  30. Chang YN, Zhang M, Xia L, Zhang J, Xing G (2012) The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials 5:2850–2871PubMedCentralCrossRefPubMedGoogle Scholar
  31. Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Watkins R (2008) Applications and implications of nanotechnologies for the food sector. Food Addit Contam 25:241–258CrossRefGoogle Scholar
  32. Chen JP, Peng H, Wang X, Shao F, Yuan Z, Han H (2014) Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale 6:1879–1889PubMedCrossRefGoogle Scholar
  33. Chen Q, Ma Z, Liu G, Wei H, Xie X (2016) Antibacterial activity of cationic cyclen-functionalized fullerene derivatives: membrane stress. Dig J Nanomater Biostruct (DJNB) 11:753–761Google Scholar
  34. Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42:4583–4588PubMedCrossRefGoogle Scholar
  35. Choi JY, Kim KH, Choy KC, Oh KT, Kim KN (2007) Photocatalytic antibacterial effect of TiO 2 fim formed on Ti and TiAg exposed to Lactobacillus acidophilus. J Biomed Mater Res Part B 80:353–359CrossRefGoogle Scholar
  36. Chou KS, Chen CC (2007) Fabrication and characterization of silver core and porous silica shell nanocomposite particles. Microporous and Mesoporous Mater 98:208–213CrossRefGoogle Scholar
  37. Chung YC, Chen CY (2008) Antibacterial characteristics and activity of acid-soluble chitosan. Bioresour Technol 99:2806–2814PubMedCrossRefGoogle Scholar
  38. Chung YC, Su YP, Chen CC, Jia G, Wang HL, Wu JC, Lin JG (2004) Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta Pharmacol Sin 25:932–936PubMedGoogle Scholar
  39. Chwalibog A, Sawosz E, Hotowy A, Szeliga J, Mitura S, Mitura K et al (2010) Visualization of interaction between inorganic nanoparticles and bacteria or fungi. Int J Nanomed 5:1085–1094CrossRefGoogle Scholar
  40. Cioffi N, Rai M (2012) NanoAntimicrobials: progress and prospects springer. Springer-Verlag, Berlin, HeidelbergGoogle Scholar
  41. Cioffi N, Torsi L, Ditaranto N, Sabbatini L, Zambonin PG, Tantillo G, Ghibelli LD, Alessio M, Bleve-Zacheo T, Traversa E (2004) Antifungal activity of polymer-based copper nano-composite coatings. Appl Phys Lett 85:2417–2419CrossRefGoogle Scholar
  42. Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17:5255–5262CrossRefGoogle Scholar
  43. Come V, Deschamps A, Mertial A (2003) Bioactive packaging materials from edible chitosan polymer-antimicrobial activity assessment on dairy-related contaminants. J Food Sci 68:2788–2792CrossRefGoogle Scholar
  44. Cota-Arriola O, Cortez-Rocha MO, Burgos-Hernández A, Ezquerra-Brauer JM, Plascencia-Jatomea M (2013) Controlled release matrices and micro/nanoparticles of chitosan with antimicrobial potential: development of new strategies for microbial control in agriculture. J Sci Food Agric 93:1525–1536PubMedCrossRefGoogle Scholar
  45. Cui Y, Zhao Y, Tian Y, Liu W, Ma W, Jiang X (2012) The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials 33:2327–2333PubMedCrossRefGoogle Scholar
  46. Cui J, Yang Y, Zheng M, Liu Y, Xiao Y, Lei B, Chen W (2014) Facile fabrication of graphene oxide loaded with silver nanoparticles as antifungal materials. Mater Res Express 1:045007CrossRefGoogle Scholar
  47. Das R, Gang S, Nath SS, Bhattacharjee R (2010) Linoleic acid capped copper nanoparticles for antibacterial activity. Bionanosci J 4:82–86CrossRefGoogle Scholar
  48. Das SN, Madhuprakash J, Sarma PVSRN, Purushotham P, Suma K, Manjeet K, Podile AR (2015) Biotechnological approaches for field applications of chitooligosaccharides (COS) to induce innate immunity in plants. Crit Rev Biotechnol 35:29–43PubMedCrossRefGoogle Scholar
  49. De Faria AF, De Moraes ACM, Alves OL (2014) Toxicity of nanomaterials to microorganisms: mechanisms, methods, and new perspectives. In: Duran N, Guterres SS, Alves OL (eds) Nano medicine and Nanotoxicology. Springer, New York, pp 363–405CrossRefGoogle Scholar
  50. De Filpo G, Palermo AM, Rachiele F, Nicoletta FP (2013) Preventing fungal growth in wood by titanium dioxide nanoparticles. Int Biodeterior Biodegradation 85:217–222CrossRefGoogle Scholar
  51. De La Torre-Roche R, Hawthorne J, Deng YQ, Xing BS, Cai WJ, Newman LA, Wang Q, Ma XM, Hamdi H, White JC (2013) Multiwalled carbon nanotubes and C-60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants. Environ Sci Technol 47:12539–12547CrossRefGoogle Scholar
  52. Dizaj SM, Mennati A, Jafari S, Khezri K, Adibkia K (2015) Antimicrobial activity of carbon-based nanoparticles. Adv Pharm Bull 5:19–23Google Scholar
  53. Donsì F, Annunziata M, Sessa M, Ferrari G (2011) Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. LWT Food Sci Technol 44:1908–1914CrossRefGoogle Scholar
  54. Durán N, Durán M, Bispo M, Jesus d, Seabra AB, Fávaro WJ, Nakazato G (2016) Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine 12:789–799PubMedCrossRefGoogle Scholar
  55. El Hadrami A, Adam LR, El Hadrami I, Daayf F (2010) Chitosan in plant protection. Mar Drugs 8:968–987PubMedPubMedCentralCrossRefGoogle Scholar
  56. Fakruddin MD, Hossain Z, Afroz H (2012) Prospects and applications of nanobiotechnology: a medical perspective. J Nanobiotechnol 10:31CrossRefGoogle Scholar
  57. Fondevilla S, Rubiales D (2012) Powdery mildew control in pea. A review. Agron Sustain Dev 32:401–409CrossRefGoogle Scholar
  58. Foster HA, Ditta IB, Varghese S, Steele A (2011) Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Appl Microbiol Biotechnol 90:1847–1868PubMedCrossRefGoogle Scholar
  59. Fröhlich E (2017) Role of omics techniques in the toxicity testing of nanoparticles. J Nanobiotechnol 15:84. CrossRefGoogle Scholar
  60. Fu PP, Xia Q, Hwang HM, Ray PC, Yu H (2014) Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal 22:64–75PubMedCrossRefGoogle Scholar
  61. García-Rincóna J, Vega-Pérezb J, Guerra-Sánchezb MG, Hernández-Lauzardo AN, Peña-Díazc A, Velázquez-Del Vallea MG (2010) Effect of chitosan on growth and plasma membrane properties of Rhizopus stolonifer (Ehrenb.:Fr.) Vuill. Pestic Biochem Phys 97:275–278CrossRefGoogle Scholar
  62. Goswami A, Roy I, Sengupta S, Debnath N (2010) Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519:1252–1257CrossRefGoogle Scholar
  63. Goy RC, Britto D, Assis OBG (2009) A review of the antimicrobial activity of chitosan. Polímeros 19:241–247CrossRefGoogle Scholar
  64. Grass G, Rensing C, Solioz M (2011) Metallic copper as an antimicrobial surface. Appl Environ Microbiol 77:1541–1548PubMedCrossRefGoogle Scholar
  65. Gupta A, Silver S (1998) Silver as a biocide: will resistance become a problem? Nat Biotechnol 16:888–890PubMedCrossRefGoogle Scholar
  66. Gurunathan S, Han JW, Dayem AA, Eppakayala V, Kim JH (2012) Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int J Nanomedicine 7:5901–5914PubMedPubMedCentralCrossRefGoogle Scholar
  67. Hadwiger LA (1999) Host-parasite interactions: elicitation of defense responses in plant with chitosan. Experientia Suppl 87:185–200Google Scholar
  68. Haghighi F, Roudbar Mohammadi S, Mohammadi P, Eskandari M, Hosseinkhani S (2012) The evaluation of Candida albicans bio¿lms formation on silicone catheter, PVC and glass coated with titanium dioxide nanoparticles by XTT method and ATPase assay. Bratisl Lek Listy 113:711–715Google Scholar
  69. Hamouda T, Baker J (2000) Antimicrobial mechanism of action of surfactant lipid preparations in enteric gram-negative bacilli. J Appl Microbiol 89:397–403PubMedCrossRefGoogle Scholar
  70. He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166:207–215PubMedCrossRefGoogle Scholar
  71. He Y, Ingudam S, Reed S, Gehring A, Strobaugh TPN, Irwin P (2016) Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens. J Nanobiotechnol 14:54. CrossRefGoogle Scholar
  72. Helander IM, Nurmiaho-Lassila EL, Ahvenainen R, Rhoades J, Roller S (2001) Chitosan disrupts the barrier properties of the outer membrane of gram-negative bacteria. Int J Food Microbiol 71:235–244PubMedCrossRefGoogle Scholar
  73. Hernández-Lauzardo A, Velázquez M, Guerra-Sánchez M (2011) Current status of action mode and effect of chitosan against phytopathogens fungi. Afr J Microbiol Res 5:4243–4247Google Scholar
  74. Hoseinzadeh A, Habibi-Yangjeh A, Davari M (2016) Antifungal activity of magnetically separable Fe3O4/ZnO/AgBr nanocomposites prepared by a facile microwave-assisted method. Prog Nat Sci: Mater Int J 26:334–340CrossRefGoogle Scholar
  75. Hossain F, Perales-Perez OJ, Hwang S, Román F (2014) Antimicrobial nanomaterials as water disinfectant: applications, limitations and future perspectives. Sci Total Environ 466–467:1047–1059PubMedCrossRefGoogle Scholar
  76. Huang S, Wang L, Liu L, Hou Y, Li L (2015) Nanotechnology in agriculture, livestock, and aquaculture in China. A review. Agron Sustain Dev 35:369–400CrossRefGoogle Scholar
  77. Huh AJ, Kwon YJ (2011) “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 156:128–145PubMedCrossRefGoogle Scholar
  78. Imada K, Sakai S, Kajihara H, Tanaka S, Ito S (2016) Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. Plant Pathol 65:551–560CrossRefGoogle Scholar
  79. Imam J, Singh PK, Shukla P (2016) Plant microbe interactions in post genomic era: perspectives and applications. Front Microbiol 7:1488. CrossRefPubMedPubMedCentralGoogle Scholar
  80. Ingle AP, Duran N, Rai M (2013) Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: a review. Appl Microbiol Biotechnol 98:1001–1009PubMedCrossRefGoogle Scholar
  81. Ismail M, Prasad R, Ibrahim AIM, Ahmed ISA (2017) Modern prospects of nanotechnology in plant pathology. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd, Singapore, pp 305–317CrossRefGoogle Scholar
  82. Issam ST, Adele MG, Adele CP, Stephane G, Veronique C (2005) Chitosan polymer as bioactive coating and film against Aspergillus niger contamination. J Food Sci 70:100–104CrossRefGoogle Scholar
  83. Jastrzębska AM, Kurtycz P, Olszyna AR (2012) Recent advances in graphene family materials toxicity investigations. J Nanopart Res 14(12):1–21CrossRefGoogle Scholar
  84. Jayaseelan C, Rahuman AA, Kirthi AV, Marimuthu S, Santhoshkumar T, Bagavan A, Gaurav K, Karthik L, Rao KV (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta A Mol Biomol Spectrosc 90:78–84PubMedCrossRefGoogle Scholar
  85. Jayaseelan C, Ramkumar R, Abdul Rahuman A, Perumal P (2013) Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind Crop Prod 45:423–429CrossRefGoogle Scholar
  86. Je JY, Kim SK (2006) Chitosan derivatives killed bacteria by disrupting the outer and inner membrane. J Agric Food Chem 54:6629–6633PubMedCrossRefGoogle Scholar
  87. Jiang W, Mashayekhi H, Xing B (2009) Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environ Pollut 157:1619–1625PubMedCrossRefGoogle Scholar
  88. Jo Y, Kim BH, Jun G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043CrossRefGoogle Scholar
  89. Jo DH, Kim JH, Lee TG, Kim JH (2015) Review article: size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomedicine 11:1603–1611PubMedCrossRefGoogle Scholar
  90. Joshi N, Jain N, Pathak A, Singh J, Prasad R, Upadhyaya CP (2018) Biosynthesis of silver nanoparticles using Carissa carandas berries and its potential antibacterial activities. J Sol-Gel Sci Techn.
  91. Jyoti S, Satendra S, Sushma S, Anjana T, Shashi S (2007) Antistressor activity of Ocimum sanctum (Tulsi) against experimentally induced oxidative stress in rabbits. Methods Find Exp Clin Pharmacol 29:411–416PubMedCrossRefGoogle Scholar
  92. Kairyte K, Kadys A, Luksiene Z (2013) Antibacterial and antifungal activity of photoactivated ZnO nanoparticles in suspension. Photochem J Photobiol B 128:78–84CrossRefGoogle Scholar
  93. Kang S, Pinault M, Pfefferle LD, Elimelech M (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23:8670–8673PubMedCrossRefGoogle Scholar
  94. Karthikeyan R, Amaechi BT, Rawls HR, Lee VA (2011) Antimicrobial activity of nanoemulsion on cariogenic Streptococcus mutans. Arch Oral Biol 56:437–445PubMedCrossRefGoogle Scholar
  95. Katiyar D, Hemantarajan A, Sing B (2015) Chitosan as a promising natural compound to enhance potential physiological responses in plant: a review. Ind J Plant Physiol 20:1–9CrossRefGoogle Scholar
  96. Kaur K (2016) Nanoemulsions as delivery vehicles for food and pharmaceuticals. In: Grumezescu AM (ed) Emulsions. Nanotechnology in the Agri-Food Industry, vol. 3.
  97. Kaur P, Thakur R, Choudhary A (2012) An in vitro study of the antifungal activity of silver/chitosan nanoformulations against important seed borne pathogens. Int J Sci Technol Res 1:83–86Google Scholar
  98. Kim J, Cho H, Ryu S, Choi M (2000) Effects of metal ions on the activity of protein tyrosine phosphatase VHR: highly potent and reversible oxidative inactivation by Cu2+ ion. Arch Biochem Biophys 382:72–80PubMedCrossRefGoogle Scholar
  99. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee J, Kim SH, Park YK, Park YH, Hwang CY et al (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med 3(95):101–157Google Scholar
  100. Kim SW, Kim KS, Lamsal K, Kim YJ, Kim SB, Jung M, Sim SJ, Kim HS, Chang SJ, Kim JK, Lee YS (2009) An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J Microbiol Biotechnol 19:760–764PubMedGoogle Scholar
  101. Kim SH, Lee HS, Ryu DS, Choi SJ, Lee DS (2011) Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. Kor Microbiol Biotechnol 39:77–85Google Scholar
  102. Kleandrova VV, Luan F, Speck-Planche A, Cordeiro M (2015) Review of structures containing fullerene-C60 for delivery of antibacterial agents. Multitasking model for computational assessment of safety profiles. Curr Bioinforma 10:565–578CrossRefGoogle Scholar
  103. Knief C (2014) Analysis of plant microbe interactions in the era of next generation sequencing technologies. Front Plant Sci 5:216. CrossRefPubMedPubMedCentralGoogle Scholar
  104. Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S, Hishida H, Takahashi Y, Uruga T (2007) Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol 128:648–653PubMedCrossRefGoogle Scholar
  105. Kuppusamy P, Yusoff MM, Maniam GP, Govindan N (2016) Biosynthesized metallic nanoparticles using for pharmacological applications. Saudi Pharmaceutical J 24:473–484CrossRefGoogle Scholar
  106. Kuzma J (2007) Moving forward responsibly oversight for the nanotechnology-biology interface. J Nanopart Res 9:165–182CrossRefGoogle Scholar
  107. Lankadurai BP, Nagato EG, Simpson MJ (2013) Environmental metabolomics: an emerging approach to study organism responses to environmental stressors. Environ Rev 21:180–205CrossRefGoogle Scholar
  108. Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: mechanisms, moleculartargets and applications. Nat Rev Microbiol 11:371–384PubMedCrossRefGoogle Scholar
  109. Leuba KD, Durmus NG, Taylor EN, Webster TJ (2013) Short communication: carboxylate functionalized superparamagnetic iron oxide nanoparticles (SPION) for the reduction of S. aureus growth post biofilm formation. Int J Nanomedicine 8:731–736PubMedPubMedCentralGoogle Scholar
  110. Leung YH, Ng AMC, Xu X, Shen Z, Gethings LA, Wong MT, Chan CM, Guo MY, Ng YH, Djurišić AB, Lee PK (2014) Mechanisms of antibacterial activity of MgO: non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli. Small 10:1171–1183PubMedCrossRefGoogle Scholar
  111. Li XF, Feng XQ, Yang S, Wang TP (2008) Effects of molecular weight and concentration of chitosan on antifungal activity against Aspergillus niger. Iran Polym J 17:843–852Google Scholar
  112. Li Y, Zhang W, Niu J, Chen Y (2012a) Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano 6:5164–5173PubMedCrossRefPubMedCentralGoogle Scholar
  113. Li Y, Yu S, Wu Q, Tang M, Pu Y, Wang D (2012b) Chronic Al2O3-nanoparticle exposure causes neurotoxic effects on locomotion behaviors by inducing severe ROS production and disruption of ROS defense mechanisms in nematode Caenorhabditis elegans. Hazard Mater J 219–220:221–230CrossRefGoogle Scholar
  114. Li B, Liu BP, Shan CL, Ibrahim M, Lou YH, Wang YL, Xie GL, Li HY, Sun GC (2013a) Antibacterial activity of two chitosan solutions and their effect on rice bacterial leaf blight and leaf streak. Pest Manag Sci 69:312–320PubMedCrossRefGoogle Scholar
  115. Li C, Wang X, Chen F, Zhang C, Zhi X, Wang K, Cui D (2013b) The antifungal activity of graphene oxide –silver nanocomposites. Biomaterials 34:3882–3890PubMedCrossRefGoogle Scholar
  116. Li JG, Zhu WH, Zhang M, Zheng X, Di Z et al (2014) Antibacterial activity of large area monolayer graphene film manipulated by charge transfer. Sci Rep 4:4359–4367PubMedPubMedCentralCrossRefGoogle Scholar
  117. Lin X, Li J, Ma S, et al (2014) Toxicity of TiO2 nanoparticles to Escherichia coli: effects of particle size, crystal phase and water chemistry. Rozhkova EA, ed. PLoS One. 2014;9(10):e110247. doi:
  118. Liu XF, Guan YL, Yang DZ, Li Z, Yao KD (2001) Antibacterial action of chitosan and carboxymethylated chitosan. J Appl Polym Sci 79:1324–1335CrossRefGoogle Scholar
  119. Liu H, Du YM, Wang XH, Sun LP (2004) Chitosan kills bacteria through cell membrane damage. Int J Food Microbiol 95:147–155PubMedCrossRefGoogle Scholar
  120. Liu J, Qiao SZ, Hu QZ, Lu GQ (2011a) Magnetic nanocomposites with mesoporous structures: synthesis and applications. Small 7:425–443PubMedCrossRefGoogle Scholar
  121. Liu S, Zeng TH, Hofmann M, Burcombe E, Wei J, Jiang R, Kong J, Chen Y (2011b) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5:6971–6980PubMedCrossRefGoogle Scholar
  122. Liu J, Zhao Z, Feng H, Cui FJ (2012) One-pot synthesis of Ag–Fe3O4 nanocomposites in the absence of additional reductant and its potent antibacterial properties. Mater Chem 22:13891–13894CrossRefGoogle Scholar
  123. Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H et al (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–924PubMedCrossRefGoogle Scholar
  124. Ma L, Li J, Y Y, Yu CM, Wang Y, Li XM, Li N (2014) Germination and physiological response of wheat (Triticum aestivum) to pre-soaking with oligochitosan. Int J Agric Biol 16:766–770Google Scholar
  125. Makhluf S, Dror R, Nitzan Y et al (2005) Microwave-assisted synthesis of nanocrystalline MgO and its use as bacteriocide. Adv Funct Mater 15:1708–1715CrossRefGoogle Scholar
  126. Malarkodi C, Rajeshkumar S, Paulkumar K, Gnanajobitha G, Vanaja M, Annadurai G (2013) Biosynthesis of semiconductor nanoparticles by using sulfur reducing bacteria Serratia nematodiphila. Adv Nano Res 1:83–91CrossRefGoogle Scholar
  127. Mansilla AY, Albertengo L, Rodríguez MS, Debbaudt A, Zúñiga A, Casalongué CA (2013) Evidence on antimicrobial properties and mode of action of a chitosan obtained from crustacean exoskeletons on Pseudomonas syringae pv. tomato DC3000. Appl Microbiol Biotechnol 97:6957–6966PubMedCrossRefGoogle Scholar
  128. Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551CrossRefGoogle Scholar
  129. Markowska-Szczupak A, Ulfig K, Morawski AW (2011) The application of titanium dioxide for deactivation of bioparticulates: an overview. Catal Today 169:249–257CrossRefGoogle Scholar
  130. Marquez IG, Akuaku J, Cruz I, Cheetham J, Golshani A, Smith ML (2013) Disruption of protein synthesis as antifungal mode of action by chitosan. Int J Food Micobiol 164:108–112CrossRefGoogle Scholar
  131. Matˇeejka V, Tokarsk´y J (2014) Photocatalytical nanocomposites: a review. J Nanosci Nanotechnol 14:1597–1616CrossRefGoogle Scholar
  132. Mathur A, Raghavan A, Chaudhury P, Johnson JB, Roy R, Kumari J, Chaudhuri G, Chandrasekaran N, Suraishkumar GK (2015) Cytotoxicity of titania nanoparticles towards waste water isolate Exiguobacterium acetylicum under UVA, visible light and dark conditions. Environ J Chem Eng 3:1837–1846CrossRefGoogle Scholar
  133. Matsumura Y, Yoshikata K, Kunisaki S, Tsuchido T (2003) Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol 69:4278–4281PubMedPubMedCentralCrossRefGoogle Scholar
  134. Meng XH, Tian S (2009) Effects of preharvest application of antagonistic yeast combined with chitosan on decay and quality of harvested table grape fruit. J Sci Food Agric 89:1838–1842CrossRefGoogle Scholar
  135. Meng XH, Qin GZ, Tian SP (2010) Influences of preharvest spraying Cryptococcus laurentii combined with chitosan coating on postharvest disease and quality of table grapes in storage. LWT – Food Sci Technol 43:596–601CrossRefGoogle Scholar
  136. Moghimi R, Ghaderi L, Rafati H, Aliahmadi A, McClements DJ (2016) Superior antibacterial activity of nanoemulsion of Thymus daenensis essential oil against E. coli. Food Chem 194:410–415PubMedCrossRefGoogle Scholar
  137. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT et al (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353PubMedCrossRefGoogle Scholar
  138. Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–4453PubMedCrossRefGoogle Scholar
  139. Nair R, Kumar D (2013) Plant diseases—control and remedy through nanotechnology. In: Tuteja N, Gill S (eds) Crop improvement under adverse conditions. Springer, New York, pp 231–243CrossRefGoogle Scholar
  140. Nambiar PR, Gupta RR, Misra V (2010) An “omics” based survey of human colon cancer. Mutat Res 693:3–18PubMedCrossRefGoogle Scholar
  141. Navrotsky A (2000) Technology and applications nanomaterials in the environment agriculture and technology (NEAT). J Nanopart Res 2:321–323CrossRefGoogle Scholar
  142. Niazi JH, Gu MB (2009) Toxicity of metallic nanoparticles in microorganisms- a review. In. 452. Atmospheric and biological environmental monitoring, Kim YJ, Platt U, Gu MB, Iwahashi H, 453. Eds. Springer Netherlands: Dordrecht, 2009, pp 193–206Google Scholar
  143. Ocsoy I, Paret LM, Ocsoy AM, Kunwar S, Chen T, You M, Tan W (2013) Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ASC Nano 7:8972–8980CrossRefGoogle Scholar
  144. Pandian CJR, Palanivel S, Dhanasekaran (2016) Screening antimicrobial activity of nickel nanoparticles synthesized using Ocimum sanctum leaf extract. J Nanoparticle Article ID 4694367, 13.
  145. Parry JM, Parry EM (2012) Genetic toxicology: principles and methods. Humana Press, New YorkCrossRefGoogle Scholar
  146. Paspaltsis I, Kotta K, Lagoudaki R, Grigoriadis N, Poulios I, Sklaviadis T (2006) Titanium dioxide photocatalytic inactivation of prions. J Gen Virol 87:3125–3130PubMedCrossRefGoogle Scholar
  147. Pelgrift RY, Friedman AJ (2013) Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev 65:1803–1815PubMedCrossRefGoogle Scholar
  148. Perez Espitia PJP, Soares NFF, Coimbra JSR, Andrade NJ, Cruz RS, Medeiros EAA (2012) Zinc oxide nanoparticles: synthesis antimicrobial activity and food packaging applications. Food Bioprocess Technol 5:1447–1464CrossRefGoogle Scholar
  149. Peter KS, Rosalyn L, George LM, Klabunde JK (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686CrossRefGoogle Scholar
  150. Petrus E, Petrus E, Tinakumari S, Chai L, Ubong A, Tunung R, Elexson N, Chai LF, Son R (2011) A study on the minimum inhibitory concentration and minimum bactericidal concentration of nano colloidal silver on food borne pathogens. Int Food Res J 18:55–66Google Scholar
  151. Pichyangkura R, Chadchawan S (2015) Biostimulant activity of chitosan in horticulture. Sci Hortic 196:49–65CrossRefGoogle Scholar
  152. Pontón J (2008) La pared celular de los hongos y el mecanismo de accio’n de la anidulafungina. Rev Iberoam Micol 25:78–82PubMedCrossRefGoogle Scholar
  153. Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart:963961
  154. Prasad R, Swamy VS, Varma A (2012) Biogenic synthesis of silver nanoparticles from the leaf extract of Syzygium cumini (L.) and its antibacterial activity. Int J Pharma Bio Sci 3(4):745–752Google Scholar
  155. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afri J Biotechnol 13:705–713CrossRefGoogle Scholar
  156. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. CrossRefGoogle Scholar
  157. Prasad R, Bhattacharyya A, Nguyen QD (2017a) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. CrossRefPubMedPubMedCentralGoogle Scholar
  158. Prasad R, Gupta N, Kumar M, Kumar V, Wang S, Abd-Elsalam KA (2017b) Nanomaterials act as plant defense mechanism. In: Prasad R, Kumar V, Kumar M (eds) Nanotechnology. Springer, Singapore, pp 253–269CrossRefGoogle Scholar
  159. Priyanka KP, Harikumar VS, Balakrishna KM, Varghese T (2017) Inhibitory effect of TiO2 NPs on symbiotic arbuscular mycorrhizal fungi in plant roots. IET Nanobiotechnol 111:66–70Google Scholar
  160. Rabea EI, Badawy MEI, Steurbaut W, Stevens CV (2009) In vitro assessment of N-(benzyl) chitosan derivatives against some plant pathogenic bacteria and fungi. Eur Polym J 45:237–245CrossRefGoogle Scholar
  161. Raghupathi KR, Koodali RT, Manna AC (2011) Size dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27:4020–4028PubMedCrossRefGoogle Scholar
  162. Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94:287–293PubMedCrossRefPubMedCentralGoogle Scholar
  163. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotech Adv 27:76–83CrossRefGoogle Scholar
  164. Rai A, Prabhune A, Perry CC (2010) Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J Mater Chem 20:6789–6798CrossRefGoogle Scholar
  165. Raimondi S, Zanni E, Talora C, Rossi M, Palleschi C, Uccelletti D (2008) SOD1, a new Kluyveromyces lactis helper gene for heterologous protein secretion. Appl Environ Microbiol 74:7130–7137PubMedPubMedCentralCrossRefGoogle Scholar
  166. Roda F, Al-Thani PNK, Al-Maadeed MA (2014) Garphene oxide as antimicrobial against two gram-positive and two gram-negative bacteria in addition to one fungus. Online J Biol Sci 14:230–239CrossRefGoogle Scholar
  167. Roopan SM, Surendra TV, Elango G et al (2014) Biosynthetic trends and future aspects of bimetallic nanoparticles and its medicinal applications. Appl Microbiol Biotechnol 98:5289–5300PubMedCrossRefGoogle Scholar
  168. Ruparelia JP, Chatterjee A, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4:707–716PubMedCrossRefGoogle Scholar
  169. Sadiq IM, Chowdhury N, Chandrasekaran A, Mukherjee (2009) Antimicrobial sensitivity of E. coli to alumina NPs. Nanomed Nanotechnol 5:282–286CrossRefGoogle Scholar
  170. Sadiq IM, Pakrashi S, Chandrasekaran N, Mukherjee A (2011) Studies on toxicity of aluminium oxide (Al2O3) nanoparticles to microalgae species: Scenedesmus sp and Chlorella sp. J Nanopart Res 13:3287–3299CrossRefGoogle Scholar
  171. Sadjad S, Ali K, Hossein M (2017) Nano-bio control of bacteria: a novel mechanism for antibacterial activities of magnetic nanoparticles as a temporary nanomagnets. J Mol Liquids 251.
  172. Saharan V, Mehrotra A, Khatik R, Rawal P, Sharma SS, Pal A (2013) Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int J Biol Macromol 62:677–683PubMedCrossRefPubMedCentralGoogle Scholar
  173. Saharan V, Sharma G, Yadav M, Choudhary MK, Sharma SS, Pal A, Raliya R, Biswas P (2015) Synthesis and in vitro antifungal efficacy of Cu–chitosan nanoparticles against pathogenic fungi of tomato. Int J Biol Macromolecules 75:346–353CrossRefGoogle Scholar
  174. Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2:3–3CrossRefGoogle Scholar
  175. Samberg ME, Orndorff PE, Monteiro-Riviere NA (2011) Antibacterial efficacy of silver nanoparticles of different sizes, surface conditions and synthesis methods. Nanotoxicology 5(2):244–253PubMedCrossRefGoogle Scholar
  176. Sang WK, Jin HJ, Kabir L et al (2012) Antifungal effects of silver nanoparticles (Ag NPs) against various plant pathogenic fungi. Mycobiology 40:415–427Google Scholar
  177. Santos CMJ, Mangadlao F, Ahmed A, Advincula LRC et al (2012) Graphene nanocomposite for biomedical applications: fabrication, antimicrobial and cytotoxic investigations. Nanotechnology 23:395101–395101PubMedCrossRefGoogle Scholar
  178. Saraf M, Pandya U, Thakkar A (2014) Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiol Res 169:18–29PubMedCrossRefGoogle Scholar
  179. Sawai J, Yoshikawa T (2004) Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay. J Appl Microbiol 96:803–809PubMedCrossRefGoogle Scholar
  180. Sawai JE, Kawada F, Kanou H, Igarashi A, Hashimoto T, Kokugan M, Shimizu (1996) Detection of active oxygen generated from ceramic powders having antibacterial activity. J Chem Eng Jpn 29:627–633CrossRefGoogle Scholar
  181. Sawai J, Kojima H, Igarashi H, Hasimoto A, Shoji S, Takehara A, Sawaki T, Kokugan T, Shimizu M (1997) Escherichia coli damage by ceramic powder slurries. J Chem Eng Jpn 30:1034–1039CrossRefGoogle Scholar
  182. Sawai J, Kojima H, Igarashi H, Hasimoto A, Shoji S, Sawaki T, Hakoda A, Kawada E, Kokugan T, Shimizu M (2000) Antibacterial characteristics of magnesium oxide powder. World J Microbiol Biotechnol 16:187–194CrossRefGoogle Scholar
  183. Sawai J, Shuga S, Kojima H (2001) Kinetic analysis of death of bacteria in CaO powder slurry. Int Biodeterior Biodegradation 47:23–26CrossRefGoogle Scholar
  184. Sawangphruk M, Srimuk P, Chiochan P, Sangsri T, Siwayaprahm P (2012) Synthesis antifungal activity of reduced graphene oxide nanosheets. Carbon 50:5156–5161CrossRefGoogle Scholar
  185. Sayed HH, Shamroukh AH, Rashad AE (2006) Synthesis and biological evaluation of some pyrimidine, pyrimido [2,1-b] [1,3] thiazine and thiazolo [3,2-a] pyrimidine derivatives. Acta Pharma 56:23–144Google Scholar
  186. Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF (2010) Metal-based nanoparticles and their toxicity assessment. WIREs Nanomed Nanobiotechnol 2:554–568CrossRefGoogle Scholar
  187. Shah MA, Towkeer A (2010) Principles of nanosciences and nanotechnology. Narosa Publishing House, New DelhiGoogle Scholar
  188. Shankramma K, Yallappa S, Shivanna MB, Manjanna J (2016) Fe2O3 magnetic nanoparticles to enhance S. lycopersicum (tomato) plant growth and their biomineralization. Appl Nanosci 6:983–990CrossRefGoogle Scholar
  189. Shao X, Wang H, Xu F, Cheng S (2013) Effects and possible mechanisms of tea tree oil vapor treatment on the main disease in postharvest strawberry fruit. Postharvest Biol Technol 7:94–101CrossRefGoogle Scholar
  190. Sharma P, Sharma A, Sharma M, Bhalla N, Estrela P, Jain A, Thakur P, Thakur A (2017) Nanomaterial fungicides: in vitro and in vivo antimycotic activity of cobalt and nickel nanoferrites on phytopathogenic fungi. Glob Chall 1(1700041):1–7Google Scholar
  191. Sharon M, Choudhary AK, Kumar R (2010) Nanotechnology in agricultural diseases and food safety. J Phytology 2:83–92Google Scholar
  192. Shrivastava S, Prasad R, Varma A (2014) Anatomy of root from eyes of a microbiologist. In: Morte A, Varma A (eds) Root engineering, vol 40. Springer, Berlin/Heidelberg, pp 3–22CrossRefGoogle Scholar
  193. Sierra-Fernandez A, De la Rosa-García SC, Gomez-Villalba LS, Gómez-Cornelio S, Rabanal ME, Fort R, Quintana P (2017) Synthesis, photocatalytic, and antifungal properties of MgO, ZnO and Zn/Mg oxide nanoparticles for the protection of calcareous stone heritage. ACS Appl Mater Interfaces 929:24873–24886CrossRefGoogle Scholar
  194. Singh N, Manshian B, Jenkins GJ, Griffiths SM, Williams PM, Maffeis TG, Wright CJ, Doak SH (2009) Nanogenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30:3891–3914PubMedCrossRefPubMedCentralGoogle Scholar
  195. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nanomicro Lett 7:219–242Google Scholar
  196. Sonawane RS, Hegde SG, Dongare MK (2003) Preparation of titanium (VI) oxide thin film photocatalyst by sol–gel dip coating. Mater Chem Phys 77(3):744–746CrossRefGoogle Scholar
  197. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci 275:177–182PubMedCrossRefPubMedCentralGoogle Scholar
  198. Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336PubMedCrossRefGoogle Scholar
  199. Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686CrossRefGoogle Scholar
  200. Sudarshan NR, Hoover DG, Knorr D (1992) Antibacterial action of chitosan. Food Biotechnol 6:257–272CrossRefGoogle Scholar
  201. Tang Y (2015) Non-genomic omic techniques. In: Tang Y, Sussman M, Liu D, Poxton I, Schwartzman J (eds) Molecular Medical Microbiology. Academic Press, London, pp 399–406Google Scholar
  202. Tang Z-X, Lv B-F (2014) MgO nanoparticles as antibacterial agent: preparation and activity. Braz J Chem Eng 31(3):591–601CrossRefGoogle Scholar
  203. Tarafdar JC, Sharma S, Raliya R (2013) Nanotechnology: interdisciplinary science of applications. Afr J Biotechnol 12(3):219–226Google Scholar
  204. Tavaria FK, Costa EM, Gens EJ, Malcata FX, Pintado ME (2013) Influence of abiotic factors on the antimicrobial activity of chitosan. J Dermatol 40:1014–1019PubMedCrossRefGoogle Scholar
  205. Theron J, Walker JA, Cloete TE (2008) Nanotechnology and water treatment: applications and emerging opportunities. Crit Rev Microbiol 34:43–69PubMedCrossRefGoogle Scholar
  206. Torres R, Valentines MC, Usall J, Vinas I, Larrigaudiere C (2003) Possible involvement of hydrogen peroxide in the development of resistance mechanisms in “golden delicious” apple fruit. Postharvest Biol Technol 27:235–242CrossRefGoogle Scholar
  207. Tu Y, Lv M, Xiu P, Huynh T, Zhang M, Castelli M, Liu Z, Huang Q, Fan C, Fang H, Zhou R (2013) Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat Nanotechnol 8:594–601PubMedCrossRefGoogle Scholar
  208. Usha R, Prabu E, Palaniswamy M, Venil CK, Rajendran R (2010) Synthesis of metal oxide nanoparticles by Streptomyces sp for development of antimicrobial textiles. Global J Biotechnol Biochem 5:153–160Google Scholar
  209. Usman MS, Ibrahim NA, Shameli K, Zainuddin N, Junus WMZW (2012) Copper nanoparticles mediated by chitosan: synthesis and characterization via chemical methods. Molecules 17:14928–14936PubMedCrossRefGoogle Scholar
  210. Vahabi K, Mansoori GA, Karimi S (2011) Biosynthesis of silver nanoparticles by fungus Trichoderma reesei. Inscience J 1:65–79CrossRefGoogle Scholar
  211. Van SN, Minh HD, Anh DN (2013) Study on chitosan nanoparticles on biophysical characteristics and growth of Robusta coffee in green house. Biocatal Agric Biotechnol 2(4):289–294Google Scholar
  212. Van-Loon LC, Van-Strien EA (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol 55:85–97CrossRefGoogle Scholar
  213. Vidic J, Stankic S, Haque F, Ciric D, Goffic R, Vidy A, Jupille J, Delmas BJ (2013) Selective antibacterial effects of mixed ZnMgO nanoparticles. J Nanopart Res 15:1–10CrossRefGoogle Scholar
  214. Wang SY, Gao H (2012) Effect of chitosan-based edible coating on antioxidants, antioxidant enzyme system, and postharvest fruit quality of strawberries (Fragaria x ananassa Duch.). LWT – Food Sci Technol 52:71–79CrossRefGoogle Scholar
  215. Wang SR, Lawson PC, Ray H, Yu (2010) Toxic effects of gold nanoparticles on Salmonella typhimurium bacteria. Toxicol Ind Health 27:547–554CrossRefGoogle Scholar
  216. Wang X, Liu X, Chen J, Han H, Yuan Z (2014) Evaluation and mechanism of antifungal effects of carbon nanomaterials in controlling plant fungal pathogen. Carbon 68:798–806Google Scholar
  217. Wang L, Hu C, Shao L (2017a) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine 12:1227–1249PubMedPubMedCentralCrossRefGoogle Scholar
  218. Wang X, Zhou Z, Chen F (2017b) Surface modification of carbon nanotubes with an enhanced antifungal activity for the control of plant fungal pathogen. Materials 10:1375. CrossRefPubMedCentralPubMedGoogle Scholar
  219. Wani AH, Shah MA (2012) A unique and profound effect of MgO and ZnO nanoparticles on some plant pathogenic fungi. J App Pharm Sci 2:40–44Google Scholar
  220. Waters KM, Masiello LM, Zangar RC et al (2009) Macrophage responses to silica nanoparticles are highly conserved across particle sizes. Toxicol Sci 107:553–569PubMedCrossRefGoogle Scholar
  221. Xie Y, He Y, Irwin PL, Jin T, Shi X (2011) Antibacterial activity and mode of action of ZnO. Appl Environ Microbiol 77:2325–2331PubMedPubMedCentralCrossRefGoogle Scholar
  222. Xing K, Chen XG, Liu CS, Cha DS, Park HJ (2009) Oleoyl-chitosan nanoparticles inhibits Escherichia coli and Staphylococcus aureus by damaging the cell membrane and putative binding to extracellular or intracellular targets. Int J Food Microbiol 132:127–133PubMedCrossRefGoogle Scholar
  223. Xing K, Zhu X, Peng X, Qin S (2015) Chitosan antimicrobial and eliciting properties for pest control in agriculture a review. Agron Sustain Dev 35:569–588CrossRefGoogle Scholar
  224. Xu FF, Imlay JA (2012) Silver (I), mercury (II), cadmium (II), and zinc (II) target exposed enzymic iron-sulfur clusters when they toxify Escherichia coli. Appl Environ Microbiol 78:3614–3621PubMedPubMedCentralCrossRefGoogle Scholar
  225. Yamamoto O, Sawai J, Sasamoto T (2000) Change in antibacterial characteristics with doping amount of ZnO in MgO-ZnO solid solution. Int J Inorg Mater 2:451–454CrossRefGoogle Scholar
  226. Yamanaka M, Hara K, Kudo J (2005) Bactericidal actions of a silver ion solution on Escherichia coli studied by energy filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol 71:7589–7593PubMedPubMedCentralCrossRefGoogle Scholar
  227. Yates JR, Ruse CI, Nakorchevsky A (2009) Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng 11:49–79PubMedCrossRefGoogle Scholar
  228. Yen MT, Yang JH, Mau JL (2008) Antioxidant properties of chitosan from crab shells. Carbohydr Polym 74:840–844CrossRefGoogle Scholar
  229. Yin JJ, Liu J, Ehrenshaft M, Roberts JE, Fu PP, Mason RP, Zhao B (2012) Phototoxicity of nano titanium dioxides in HaCaT keratinocytes generation of reactive oxygen species and cell damage. Toxicol Appl Pharmacol 263:81–88PubMedPubMedCentralCrossRefGoogle Scholar
  230. Yu JC, Tang HY, Yu JG (2002) Bactericidal and photocatalytic activities of TiO2 thin films prepared by sol–gel and reverse micelle methods. J Photochem Photobiol A Chem 3:211–219CrossRefGoogle Scholar
  231. Yu Q, Li J, Zhang Y, Wang Y, Liu L, Li M (2016) Inhibition of gold nanoparticles (AuNPs) on pathogenic biofilm formation and invasion to host cells. Sci Rep 26667(36):6Google Scholar
  232. Zakrzewska A, Boorsma A, Brul S, Hellingwerf KJ, Klis FM (2005) Transcriptional response of Saccharomyces cerevisiae to the plasma membrane-perturbing compound chitosan. Eukaryot Cell 4:703–715PubMedPubMedCentralCrossRefGoogle Scholar
  233. Zhang L, Jiang Y, Ding Y, Povey M, York D (2007) Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanopart Res 9:479–489CrossRefGoogle Scholar
  234. Zhang H, Li R, Liu (2011) Effects of chitin and its derivative chitosan on postharvest decay of fruits: a review. Int J Mol Sci 12:917–934PubMedPubMedCentralCrossRefGoogle Scholar
  235. Zhang A, Sun H, Wang P, Han Y, Wang X (2012) Modern analytical techniques in metabolomics analysis. Analyst 137:293–300PubMedCrossRefGoogle Scholar
  236. Zhao D, Wang J, Sun BH, Sun BH, Gao JQ, Xu R (2000) Development and application of TiO2 photocatalysis as antimicrobial agent. J Liaoning Univ (Nat Sci Ed) 2:173–174Google Scholar
  237. Zhao Y, Tian Y, Cui Y, Liu W, Ma W, Jiang X (2010) Small molecule-capped gold nanoparticles as potent antibacterial agents that target gram-negative bacteria. J Amer Chem Soc 132(35):12349–11256CrossRefGoogle Scholar
  238. Zhou R, Gao H (2014) Cytotoxicity of graphene: recent advances and future perspective. Wiley Interdiscip Rev Nanomed Nanobiotechnol 6:452–474PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Manal Mostafa
    • 1
    • 2
    • 3
  • Amal-Asran
    • 3
  • Hassan Almoammar
    • 4
  • Kamel A. Abd-Elsalam
    • 3
  1. 1.CIHEAM IAMB – Mediterranean Agronomic Institute of BariValenzanoItaly
  2. 2.Microbiology DepartmentFaculty of Agriculture, Cairo UniversityGizaEgypt
  3. 3.Plant Pathology Research Institute, Agricultural Research Center (ARC)GizaEgypt
  4. 4.National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST)RiyadhSaudi Arabia

Personalised recommendations