Advertisement

The Remarkable Case of the Axiom of Choice

  • Shahid Rahman
  • Zoe McConaughey
  • Ansten Klev
  • Nicolas Clerbout
Chapter
Part of the Logic, Argumentation & Reasoning book series (LARI, volume 18)

Abstract

It is rightly said that the principle of set theory known as the Axiom of Choice is “probably the most interesting and in spite of its late appearance, the most discussed axiom of mathematics, second only to Euclid’s Axiom of Parallels which was introduced more than two thousand years ago” (Fraenkel, Bar-Hillel, & Levy, 1973).

References

  1. Bell, J. (2009). The Axiom of Choice. London: College Publications.Google Scholar
  2. Bishop, E. (1967). Foundations of constructive mathematics. New York/Toronto, Canada/London: McGraw-Hill.Google Scholar
  3. Clerbout, N., & Rahman, S. (2015). Linking game-theoretical approaches with constructive type theory: Dialogical strategies as CTT-demonstrations. Dordrecht: Springer.CrossRefGoogle Scholar
  4. Diaconescu, R. (1975). Axiom of Choice and complementation. Proceedings of the American Mathematical Society, 51, 176–178.CrossRefGoogle Scholar
  5. Fraenkel, A., Bar-Hillel, Y., & Levy, A. (1973). Foundations of set theory (2nd ed.). Dordrecht: North-Holland.Google Scholar
  6. Goodman, N. D., & Myhill, J. (1978). Choice implies excluded middle. Zeitschrigt für mathematische Logik und Grundlagen der Mathematik, 24, 461.CrossRefGoogle Scholar
  7. Hintikka, J. (1996). The principles of mathematics revisited. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  8. Hintikka, J. (2001). Intuitionistic logic as epistemic logic. Synthese, 127, 7–19.CrossRefGoogle Scholar
  9. Jovanovic, R. (2013). Hintikka’s take on the Axiom of Choice and the constructive challenge. Revista de Humanidades de Valparaíso, 2, 135–152.Google Scholar
  10. Martin-Löf, P. (1984). Intuitionistic type theory. Notes by Giovanni Sambin of a series of lectures given in Padua, June 1980. Naples, Italy: Bibliopolis.Google Scholar
  11. Martin-Löf, P. (2006). 100 years of Zermelo’s Axiom of Choice: What was the problem with it? The Computer Journal, 49(3), 345–350.CrossRefGoogle Scholar
  12. Poincaré, H. (1905). La valeur de la science. Paris, France: Flammarion.Google Scholar
  13. Poincaré, H. (1907). The value of science. (G. B. Halstead, Trans.). New York: The Science Press.Google Scholar
  14. Rahman, S., Clerbout, N., & Jovanovic, R. (2015). The dialogical take on Martin-Löf's proof of the Axiom of Choice. South American Journal of Logic, 1(1), 179–208.Google Scholar
  15. van Heijenoort, J. (1967). Logic as calculus and logic as language. Synthese, 17, 324–330.CrossRefGoogle Scholar
  16. Zermelo, E. (1904). Neuer Beweis, dass jede Menge Wohlordnung werden kan (Aus einem an Hern Hilbert gerichteten Briefe). Mathematische Annalen, 59, 514–516.CrossRefGoogle Scholar
  17. Zermelo, E. (1908a). Neuer Beweis für die Möglichkeit einer Wohlordnung. Mathematische Annalen, 65, 107–128.Google Scholar
  18. Zermelo, E. (1908b). Untersuchungen über die Grundlagen der Mengenlehre, I. Mathematische Annalen, 65, 261–281.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Shahid Rahman
    • 1
  • Zoe McConaughey
    • 2
    • 3
  • Ansten Klev
    • 4
  • Nicolas Clerbout
    • 5
  1. 1.Département de philosophie CNRS, UMR 8163 - STL - Savoirs Textes LangageUniv. LilleLilleFrance
  2. 2.Univ. Lille CNRS, UMR 8163 - STL - Savoirs Textes LangageLilleFrance
  3. 3.Département de philosophie & Centre Interuniversitaire de Recherche en Science et TechnologieUniversité du Québec à MontréalMontréalCanada
  4. 4.Institute of PhilosophyCzech Academy of SciencesPragueCzechia
  5. 5.Universidad de ValparaísoValparaísoChile

Personalised recommendations