Advertisement

Neural Mechanisms of Animal Navigation

  • Koutarou D. Kimura
  • Masaaki Sato
  • Midori Sakura
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10922)

Abstract

Animals navigate to specific destinations for survival and reproduction. Notable examples include birds, fishes, and insects that are driven by their inherited motivation and acquired memory to migrate thousands of kilometers. The navigational abilities of these animals depend on their small and imprecise sensory organs and brains. Thus, understanding the mechanisms underlying animal navigation may lead to the development of novel tools and algorithms that can be used for more effective human-computer interactions in self-driving cars, autonomous robots and/or human navigation. How are such navigational abilities implemented in the animal brain? Neurons (i.e., nerve cells) that respond to external signals related to the animal’s direction and/or travel distance have been found in insects, and neurons that encode the animal’s place, direction, or speed have been identified in rats and mice. Although the research findings accumulated to date are not sufficient for a complete understanding of the neural mechanisms underlying navigation in the animal brain, they do provide key insights. In this review, we discuss the importance of neurobiological studies of navigation for engineering and computer science researchers and briefly summarize the current knowledge of the neural bases of navigation in model animals, including insects, rodents, and worms. In addition, we describe how modern engineering and computer technologies, such as virtual reality and machine learning, can help advance navigation research in animals.

Keywords

Neural computation Spatial information Biologically-inspired engineering 

Notes

Acknowledgments

This work was supported by KAKENHI JP 16H06545 (K.D.K), 17H05985 (M. Sato), and 17H05975 (M. Sakura).

References

  1. 1.
    Kanzaki, R., Sugi, N., Shibuya, T.: Self-generated zigzag turning of Bombyx mori males during pheromone-mediated upwind walking. Zool. Sci. 9, 515–527 (1992)Google Scholar
  2. 2.
    Brower, L.P.: Monarch butterfly orientation: missing pieces of a magnificent puzzle. J. Exp. Biol. 199, 93–103 (1996)Google Scholar
  3. 3.
    Wiltschko, W., Wiltschko, R.: Magnetic orientation and magnetoreception in birds and other animals. J. Comp. Physiol. A 191, 675–693 (2005)CrossRefGoogle Scholar
  4. 4.
    Goto, Y., Yoda, K., Sato, K.: Asymmetry hidden in birds’ tracks reveals wind, heading, and orientation ability over the ocean. Sci. Adv. 3, e1700097 (2017)CrossRefGoogle Scholar
  5. 5.
    Taube, J.S., Muller, R.U., Ranck, J.B.: Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J. Neurosci. 10, 420–435 (1990)CrossRefGoogle Scholar
  6. 6.
    Taube, J.S., Muller, R.U., Ranck, J.B.: Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations. J. Neurosci. 10, 436–447 (1990)CrossRefGoogle Scholar
  7. 7.
    Seelig, J.D., Jayaraman, V.: Neural dynamics for landmark orientation and angular path integration. Nature 521, 186–191 (2015)CrossRefGoogle Scholar
  8. 8.
    Varga, A.G., Ritzmann, R.E.: Cellular basis of head direction and contextual cues in the insect brain. Curr. Biol. 26, 1816–1828 (2016)CrossRefGoogle Scholar
  9. 9.
    Wehner, R., Wehner, S.: Insect navigation: the use of maps or Ariadne’s thread? Ethol. Ecol. Evol. 2, 27–48 (1990)CrossRefGoogle Scholar
  10. 10.
    Stone, T., Webb, B., Adden, A., Weddig, N.B., Honkanen, A., Templin, R., Wcislo, W., Scimeca, L., Warrant, E., Heinze, S.: An anatomically constrained model for path integration in the bee brain. Curr. Biol. 27, 3069–3085 (2017)CrossRefGoogle Scholar
  11. 11.
    Moser, E.I., Moser, M.-B., McNaughton, B.L.: Spatial representation in the hippocampal formation: a history. Nat. Neurosci. 20, 1448–1464 (2017)CrossRefGoogle Scholar
  12. 12.
    Heinze, S.: Unraveling the neural basis of insect navigation. Curr. Opin. Insect Sci. 24, 58–67 (2017)CrossRefGoogle Scholar
  13. 13.
    White, J.G., Southgate, E., Thomson, J.N., Brenner, S.: The Structure of the nervous system of the nematode Caenorhabditis elegans. Phil. Trans. R. Soc. B 314, 1–340 (1986)CrossRefGoogle Scholar
  14. 14.
    von Frisch, K.: Dance Language and Orientation of Bees. Harvard University Press, Cambridge (1993)CrossRefGoogle Scholar
  15. 15.
    Wehner, R., Labhart, T.: Polarisation vision. In: Warrant, E., Nilsson, D.-E. (eds.) Invertebrate Vision, pp. 291–348. Cambridge University Press, Cambridge (2006)Google Scholar
  16. 16.
    Collett, T.S., Collett, M.: Memory use in insect visual navigation. Nat. Rev. Neurosci. 3, 542–552 (2002)CrossRefGoogle Scholar
  17. 17.
    Labhart, T., Meyer, E.P.: Detectors for polarized skylight in insects: a survey of ommatidial specializations in the dorsal rim area of the compound eye. Microsc. Res. Tech. 47, 368–379 (1999)CrossRefGoogle Scholar
  18. 18.
    Sakura, M., Lambrinos, D., Labhart, T.: Polarized skylight navigation in insects: model and electrophysiology of e-vector coding by neurons in the central complex. J. Neurophysiol. 99, 667–682 (2008)CrossRefGoogle Scholar
  19. 19.
    Heinze, S., Homberg, U.: Maplike representation of celestial e-vector orientations in the brain of an insect. Science 315, 995–997 (2007)CrossRefGoogle Scholar
  20. 20.
    Pfeiffer, K., Homberg, U.: Coding of azimuthal directions via time-compensated combination of celestial compass cues. Curr. Biol. 17, 960–965 (2007)CrossRefGoogle Scholar
  21. 21.
    Srinivasan, M.V., Zhang, S., Altwein, M., Tautz, J.: Honeybee navigation: nature and calibration of the “Odometer”. Science 287, 851–953 (2000)CrossRefGoogle Scholar
  22. 22.
    Wittlinger, M., Wehner, R., Wolf, H.: The ant odometer: stepping on stilts and stumps. Science 312, 1965–1967 (2006)CrossRefGoogle Scholar
  23. 23.
    O’Keefe, J., Dostrovsky, J.: The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171–175 (1971)CrossRefGoogle Scholar
  24. 24.
    Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., Moser, E.I.: Microstructure of a spatial map in the entorhinal cortex. Nature 436, 801–806 (2005)CrossRefGoogle Scholar
  25. 25.
    Lever, C., Burton, S., Jeewajee, A., O’Keefe, J., Burgess, N.: Boundary vector cells in the subiculum of the hippocampal formation. J. Neurosci. 29, 9771–9777 (2009)CrossRefGoogle Scholar
  26. 26.
    Solstad, T., Boccara, C.N., Kropff, E., Moser, M.-B., Moser, E.I.: Representation of geometric borders in the entorhinal cortex. Science 322, 1865–1868 (2008)CrossRefGoogle Scholar
  27. 27.
    Kropff, E., Carmichael, J.E., Moser, M.-B., Moser, E.I.: Speed cells in the medial entorhinal cortex. Nature 523, 419–424 (2015)CrossRefGoogle Scholar
  28. 28.
    O’Keefe, J., Conway, D.H.: Hippocampal place units in the freely moving rat: why they fire where they fire. Exp. Brain Res. 31, 573–590 (1978)Google Scholar
  29. 29.
    Quirk, G.J., Muller, R.U., Kubie, J.L.: The firing of hippocampal place cells in the dark depends on the rat’s recent experience. J. Neurosci. 10, 2008–2017 (1990)CrossRefGoogle Scholar
  30. 30.
    Brandon, M.P., Koenig, J., Leutgeb, J.K., Leutgeb, S.: New and distinct hippocampal place codes are generated in a new environment during septal inactivation. Neuron 82, 789–796 (2014)CrossRefGoogle Scholar
  31. 31.
    Koenig, J., Linder, A.N., Leutgeb, J.K., Leutgeb, S.: The spatial periodicity of grid cells is not sustained during reduced theta oscillations. Science 332, 592–595 (2011)CrossRefGoogle Scholar
  32. 32.
    Langston, R.F., Ainge, J.A., Couey, J.J., Canto, C.B., Bjerknes, T.L., Witter, M.P., Moser, E.I., Moser, M.-B.: Development of the spatial representation system in the rat. Science 328, 1576–1580 (2010)CrossRefGoogle Scholar
  33. 33.
    Wills, T.J., Cacucci, F., Burgess, N., O’Keefe, J.: Development of the hippocampal cognitive map in preweanling rats. Science 328, 1573–1576 (2010)CrossRefGoogle Scholar
  34. 34.
    Foster, D.J.: Replay comes of age. Annu. Rev. Neurosci. 40, 581–602 (2017)CrossRefGoogle Scholar
  35. 35.
    Pfeiffer, B.E., Foster, D.J.: Hippocampal place-cell sequences depict future paths to remembered goals. Nature 497, 74–79 (2013)CrossRefGoogle Scholar
  36. 36.
    De Bono, M., Maricq, A.V.: Neuronal substrates of complex behaviors in C. elegans. Annu. Rev. Neurosci. 28, 451–501 (2005)CrossRefGoogle Scholar
  37. 37.
    Tian, L., Akerboom, J., Schreiter, E.R., Looger, L.L.: Neural activity imaging with genetically encoded calcium indicators. Prog. Brain Res. 196, 79–94 (2012)CrossRefGoogle Scholar
  38. 38.
    Tye, K.M., Deisseroth, K.: Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat. Rev. Neurosci. 13, 251–266 (2012)CrossRefGoogle Scholar
  39. 39.
    Tanimoto, Y., Yamazoe-Umemoto, A., Fujita, K., Kawazoe, Y., Miyanishi, Y., Yamazaki, S.J., Fei, X., Busch, K.E., Gengyo-Ando, K., Nakai, J., Iino, Y., Iwasaki, Y., Hashimoto, K., Kimura, K.D.: Calcium dynamics regulating the timing of decision-making in C. elegans. eLife 6, 13819 (2017)Google Scholar
  40. 40.
    Doeller, C.F., Barry, C., Burgess, N.: Evidence for grid cells in a human memory network. Nature 463, 657–661 (2010)CrossRefGoogle Scholar
  41. 41.
    Ekstrom, A.D., Kahana, M.J., Caplan, J.B., Fields, T.A., Isham, E.A., Newman, E.L., Fried, I.: Cellular networks underlying human spatial navigation. Nature 425, 184–188 (2003)CrossRefGoogle Scholar
  42. 42.
    Fry, S.N., Rohrseitz, N., Straw, A.D., Dickinson, M.H.: TrackFly: virtual reality for a behavioral system analysis in free-flying fruit flies. J. Neurosci. Methods 171, 110–117 (2008)CrossRefGoogle Scholar
  43. 43.
    Hölscher, C., Schnee, A., Dahmen, H., Setia, L., Mallot, H.A.: Rats are able to navigate in virtual environments. J. Exp. Biol. 208, 561–569 (2005)CrossRefGoogle Scholar
  44. 44.
    Sato, M., Kawano, M., Mizuta, K., Islam, T., Lee, M.G., Hayashi, Y.: Hippocampus-dependent goal localization by head-fixed mice in virtual reality. eNeuro 4, ENURO.0369-16.2017 (2017)Google Scholar
  45. 45.
    Dombeck, D.A., Reiser, M.B.: Real neuroscience in virtual worlds. Curr. Opin. Neurobiol. 22, 3–10 (2012)CrossRefGoogle Scholar
  46. 46.
    Chen, G., King, J.A., Burgess, N., O’Keefe, J.: How vision and movement combine in the hippocampal place code. PNAS 110, 378–383 (2013)CrossRefGoogle Scholar
  47. 47.
    Anderson, D.J., Perona, P.: Toward a science of computational ethology. Neuron 84, 18–31 (2014)CrossRefGoogle Scholar
  48. 48.
    Gomez-Marin, A., Paton, J.J., Kampff, A.R., Costa, R.M., Mainen, Z.F.: Big behavioral data: psychology, ethology and the foundations of neuroscience. Nat. Neurosci. 17, 1455–1462 (2014)CrossRefGoogle Scholar
  49. 49.
    Krakauer, J.W., Ghazanfar, A.A., Gomez-Marin, A., MacIver, M.A., Poeppel, D.: Neuroscience needs behavior: correcting a reductionist bias. Neuron 93, 480–490 (2017)CrossRefGoogle Scholar
  50. 50.
    Baek, J.-H., Cosman, P., Feng, Z., Silver, J., Schafer, W.R.: Using machine vision to analyze and classify Caenorhabditis elegans behavioral phenotypes quantitatively. J. Neurosci. Methods 118, 9–21 (2002)CrossRefGoogle Scholar
  51. 51.
    Branson, K., Robie, A.A., Bender, J., Perona, P., Dickinson, M.H.: High-throughput ethomics in large groups of Drosophila. Nat. Methods 6, 451–457 (2009)CrossRefGoogle Scholar
  52. 52.
    Dankert, H., Wang, L., Hoopfer, E.D., Anderson, D.J., Perona, P.: Automated monitoring and analysis of social behavior in Drosophila. Nat. Methods 6, 297–303 (2009)CrossRefGoogle Scholar
  53. 53.
    Robie, A.A., Hirokawa, J., Edwards, A.W., Umayam, L.A., Lee, A., Phillips, M.L., Card, G.M., Korff, W., Rubin, G.M., Simpson, J.H., Reiser, M.B., Branson, K.: Mapping the Neural substrates of behavior. Cell 170, 393–406 (2017)CrossRefGoogle Scholar
  54. 54.
    Vogelstein, J.T., Park, Y., Ohyama, T., Kerr, R.A., Truman, J.W., Priebe, C.E., Zlatic, M.: Discovery of brainwide neural-behavioral maps via multiscale unsupervised structure learning. Science 344, 386–392 (2014)CrossRefGoogle Scholar
  55. 55.
    Yamazaki, S.J., Ikejiri, Y., Hiramatsu, F., Fujita, K., Tanimoto, Y., Yamazoe-Umemoto, A., Yamada, Y., Hashimoto, K., Hiryu, S., Maekawa, T., Kimura, K.D.: Experience-dependent modulation of behavioral features in sensory navigation of nematodes and bats revealed by machine learning. bioRxiv, 198879 (2017)Google Scholar
  56. 56.
    Brose, K.: Global neuroscience. Neuron 92, 557–558 (2016)CrossRefGoogle Scholar
  57. 57.
    Yuste, R., Bargmann, C.: Toward a global BRAIN initiative. Cell 168, 956–959 (2017)CrossRefGoogle Scholar
  58. 58.
    Funamizu, A., Kuhn, B., Doya, K.: Neural substrate of dynamic Bayesian inference in the cerebral cortex. Nat. Neurosci. 19, 1682–1689 (2016)CrossRefGoogle Scholar
  59. 59.
    Gold, J.I., Shadlen, M.N.: The neural basis of decision making. Annu. Rev. Neurosci. 30, 535–574 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Koutarou D. Kimura
    • 1
    • 2
  • Masaaki Sato
    • 3
    • 4
  • Midori Sakura
    • 5
  1. 1.Graduate School of ScienceOsaka UniversityToyonakaJapan
  2. 2.Graduate School of Natural SciencesNagoya City UniversityNagoyaJapan
  3. 3.Graduate School of Science and Engineering, Brain and Body System Science InstituteSaitama UniversitySaitamaJapan
  4. 4.RIKEN Brain Science InstituteWakoJapan
  5. 5.Graduate School of ScienceKobe UniversityKobeJapan

Personalised recommendations