Computer-Based Neuropsychological Assessment: A Validation of Structured Examination of Executive Functions and Emotion

  • Gilberto Galindo-AldanaEmail author
  • Victoria Meza-Kubo
  • Gustavo Castillo-Medina
  • Israel Ledesma-Amaya
  • Javier Galarza-Del-Angel
  • Alfredo Padilla-López
  • Alberto L. Morán
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10906)


An increase in the use of Computer-Based Neuropsychological Assessment tools (CBNA) has approached clinical neuropsychology appliance. In clinical diagnosis practice it is strongly needed to acquire precise data which often presents a challenge for clinicians and neuroscientists. Procedures for validation of methods in clinical neuropsychology are reliable when results between clinical and control samples are expected and observed different, by using paper-based and computer-based methods. The aim of the present study is to describe the validation procedures of a CBNA tool in a sample of control and clinical participants. The method consisted in comparing 35 control adolescents with 33 clinically referred pairs. A CBNA composed by two neuropsychological assessment tests for measuring effect of emotions on executive functions, was administered to each participant. Results showed differences between groups, observed in performance over the tasks. It was concluded that CBNA gives accurately results that otherwise could not be acquired by conventional paper-based methods, reducing errors of tests administration and application costs, as well as conserving reliability.


Computer-based Assessment Neuropsychology 


  1. 1.
    Zygouris, N.C., Vlachos, F., Dadaliaris, A.N., Oikonomou, P., Stamoulis, G.I., Vavougios, D., et al.: A neuropsychological approach of developmental dyscalculia and a screening test via a web application. Int. J. Eng. Pedag. 7(4), 51–65 (2017)CrossRefGoogle Scholar
  2. 2.
    Zygouris, S., Tsolaki, M.: Computerized cognitive testing for older adults: a review. Am. J. Alzheimer’s Dis. Other Dementias 30(1), 13–28 (2015)CrossRefGoogle Scholar
  3. 3.
    Schatz, P., Browndyke, J.: Applications of computer-based neuropsychological assessment. J. Head Trauma Rehabil. 17(5), 395 (2002)CrossRefGoogle Scholar
  4. 4.
    Fliessbach, K., Hoppe, C., Schlegel, U., Elger, C.E., Helmstaedter, C.: NeuroCogFX–a computer-based neuropsychological assessment battery for the follow-up examination of neurological patients. Fortschr. Neurol. Psychiatr. 74(11), 643–650 (2006)CrossRefGoogle Scholar
  5. 5.
    Meza-Kubo, V., Morán, A.L., Carrillo, I., Galindo, G., García-Canseco, E.: Assessing the user experience of older adults using a neural network trained to recognize emotions from brain signals. J. Biomed. Inf. 62, 202–209 (2016)CrossRefGoogle Scholar
  6. 6.
    Parsey, C.M., Schmitter-Edgecombe, M.: Applications of technology in neuropsychological assessment. Clin. Neuropsychol. 27(8), 1328–1361 (2013)CrossRefGoogle Scholar
  7. 7.
    Tien, A.Y., Spevack, T.V., Jones, D.W., Pearlson, G.D., Schlaepfer, T.E., Strauss, M.E.: Computerized Wisconsin card sorting test: comparison with manual administration. Kaohsiung J. Med. Sci. 12(8), 479–485 (1996)Google Scholar
  8. 8.
    Cameron, J.L.: Interrelationships between hormones, behavior, and affect during adolescence: understanding hormonal, physical, and brain changes occurring in association with pubertal activation of the reproductive axis. Introduction to part III. Ann. New York Acad. Sci. 1021, 110–123 (2004)CrossRefGoogle Scholar
  9. 9.
    American Psychological Association: Developing Adolescents: A Reference for Professionals. APA, Washington DC (2002)Google Scholar
  10. 10.
    Giedd, J.N.: The teen brain: insights from neuroimaging. J. Adolesc. Health: Off. Publ. Soc. Adolesc. Med. 42(4), 335–343 (2008)CrossRefGoogle Scholar
  11. 11.
    McAnarney, E.: Adolescent brain development: forging new links? J. Adolesc. Health 42, 321–323 (2008)CrossRefGoogle Scholar
  12. 12.
    Shaw, P., Greenstein, D., Lerch, J., Clasen, L., Lenroot, R., Gogtay, N., et al.: Intellectual ability and cortical development in children and adolescents. Nature 440(7084), 676–679 (2006)CrossRefGoogle Scholar
  13. 13.
    Flores, J., Ostrosky, F.: Desarrollo neuropsicológico de los lóbulos frontales y funciones ejecutivas. Moderno, M. (ed.) México (2012)Google Scholar
  14. 14.
    Luria, A.R.: Higher Cortical Functions in Man. Springer, Heidelberg (1983). Barcelona FontanellaCrossRefGoogle Scholar
  15. 15.
    Coneus, K., Laucht, M.: The effect of early noncognitive skills on social outcomes in adolescence. Educ. Econ. 22(2), 112–140 (2014)CrossRefGoogle Scholar
  16. 16.
    Gómez-Maqueo, B.: Inventario Autodescriptivo del Adolescente: Manual Moderno (2012)Google Scholar
  17. 17.
    Anderson, V.A., Anderson, P., Northam, E., Jacobs, R., Catroppa, C.: Development of executive functions through late childhood and adolescence in an Australian sample. Dev. Neuropsychol. 20(1), 385–406 (2001)CrossRefGoogle Scholar
  18. 18.
    Guimarães, B., Ribeiro, J., Cruz, B., Ferreira, A., Alves, H., Cruz-Correia, R., et al.: Performance equivalency between computer-based and traditional pen-and-paper assessment: a case study in clinical anatomy. Anat. Sci. Educ. 11, 124–136 (2017)CrossRefGoogle Scholar
  19. 19.
    Iverson, G.L., Brooks, B.L., Ashton, V.L., Johnson, L.G., Gualtieri, C.T.: Does familiarity with computers affect computerized neuropsychological test performance? J. Clin. Exp. Neuropsychol. 31(5), 594–604 (2009)CrossRefGoogle Scholar
  20. 20.
    Kurek, A., Jose, P.E., Stuart, J.: Discovering unique profiles of adolescent information and communication technology (ICT) use: are ICT use preferences associated with identity and behaviour development? Cyberpsychology 11(4), 1–18 (2017)Google Scholar
  21. 21.
    Bechara, A.: The role of emotion in decision-making: evidence from neurological patients with orbitofrontal damage. Brain Cogn. 55(1), 30–40 (2004)CrossRefGoogle Scholar
  22. 22.
    Galindo, G., Fraga, M., Machinskaya, R., Solovieva, Y., Mangan, P.: Effect of emotionally valenced stimuli on working memory performance. Psychol. Neurosci. 8(3), 333–340 (2015)CrossRefGoogle Scholar
  23. 23.
    Ciesielska, N., Sokołowski, R., Mazur, E., Podhorecka, M., Polak-Szabela, A., Kędziora-Kornatowska, K.: Is the montreal cognitive assessment (MoCA) test better suited than the mini-mental state examination (MMSE) in mild cognitive impairment (MCI) detection among people aged over 60? Meta-analysis. Psychiatr. Pol. 50(5), 1039–1052 (2016)CrossRefGoogle Scholar
  24. 24.
    Rozovskaya, R., Machinskaya, R., Pechenkova, E.: The influence of emotional coloring of images on visual working memory in adults and adolescents. Hum. Physiol. 42(1), 69–78 (2016)CrossRefGoogle Scholar
  25. 25.
    Lang, P., Bradley, M., Cuthbert, B.: International affective picture system (IAPS): affective ratings of pictures and instruction manual. University of Florida, Gainesville, FL (2008)Google Scholar
  26. 26.
    Bechara, A., Damasio, A.R., Damasio, H., Anderson, S.W.: Insensitivity to future consequences following damage to human prefrontal cortex. Cognition 50(1–3), 7–15 (1994)CrossRefGoogle Scholar
  27. 27.
    Blanch, J., Muñoz-Moreno, J.A., Reverte, R., Ayuso-Mateos, J.L.: Neurocognitive deficits in patients with human immunodeficiency virus infection. Handb. Clin. Neurol. 106, 589–605 (2012)CrossRefGoogle Scholar
  28. 28.
    Segalowitz, S.J., Mahaney, P., Santesso, D.L., MacGregor, L., Dywan, J., Willer, B.: Retest reliability in adolescents of a computerized neuropsychological battery used to assess recovery from concussion. Neurorehabilitation 22(3), 243–251 (2007)Google Scholar
  29. 29.
    Cipresso, P., Albani, G., Serino, S., Pedroli, E., Pallavicini, F., Mauro, A., et al.: Virtual multiple errands test (VMET): a virtual reality-based tool to detect early executive functions deficit in Parkinson’s disease. Front. Behav. Neurosci. 8, 405 (2014)CrossRefGoogle Scholar
  30. 30.
    Tun, P.A., Lachman, M.E.: The association between computer use and cognition across adulthood: use it so you won’t lose it? Psychol. Aging 25(3), 560–568 (2010)CrossRefGoogle Scholar
  31. 31.
    Carey, C.L., Woods, S.P., Rippeth, J.D., Gonzalez, R., Moore, D.J., Marcotte, T.D., et al.: Initial validation of a screening battery for the detection of HIV-associated cognitive impairment. Clin. Neuropsychol. 18(2), 234–248 (2004)CrossRefGoogle Scholar
  32. 32.
    Parsons, T.D.: Neuropsychological assessment using virtual environments: enhanced assessment technology for improved ecological validity. In: Brahnam, S., Jain, L.C. (eds.) Advanced Computational Intelligence Paradigms in Healthcare 6 Virtual Reality in Psychotherapy, Rehabilitation, and Assessment, pp. 271–289. Springer, Heidelberg (2011). Scholar
  33. 33.
    Engelhardt, L., Goldhammer, F., Naumann, J., Frey, A.: Experimental validation strategies for heterogeneous computer-based assessment items. Comput. Hum. Behav. 76, 683–692 (2017)CrossRefGoogle Scholar
  34. 34.
    White, S., Kim, Y.Y., Chen, J., Liu, F., National Center for Education Statistics: Performance of Fourth-Grade Students in the 2012 NAEP Computer-Based Writing Pilot Assessment: Scores, Text Length, and Use of Editing Tools. Working Paper Series. NCES 2015-119. National Center for Education Statistics (2015)Google Scholar
  35. 35.
    MacKenzie, L.E., Patterson, V.C., Zwicker, A., Drobinin, V., Fisher, H.L., Abidi, S., et al.: Hot and cold executive functions in youth with psychotic symptoms. Psychol. Med. 47(16), 2844–2853 (2017)CrossRefGoogle Scholar
  36. 36.
    Poon, K.: Hot and cool executive functions in adolescence: development and contributions to important developmental outcomes. Front. Psychol. 8, 2311 (2018)CrossRefGoogle Scholar
  37. 37.
    Hybel, K.A., Mortensen, E.L., Lambek, R., Thastum, M., Thomsen, P.H.: Cool and hot aspects of executive function in childhood obsessive-compulsive disorder. J. Abnorm. Child Psychol. 45(6), 1195–1205 (2017)CrossRefGoogle Scholar
  38. 38.
    Kouklari, E.-C., Tsermentseli, S., Monks, C.P.: Hot and cool executive function in children and adolescents with autism spectrum disorder: cross-sectional developmental trajectories. Child Neuropsychol.: J. Normal Abnorm. Dev. Child. Adolesc. 1–27 (2017)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Gilberto Galindo-Aldana
    • 1
    Email author
  • Victoria Meza-Kubo
    • 2
  • Gustavo Castillo-Medina
    • 2
  • Israel Ledesma-Amaya
    • 1
  • Javier Galarza-Del-Angel
    • 1
  • Alfredo Padilla-López
    • 1
  • Alberto L. Morán
    • 2
  1. 1.Engineering and Bussiness School, Guadalupe Victoria, Research Group of Mental Health, Society and ProfessionUniversidad Autónoma de Baja CaliforniaMexicaliMéxico
  2. 2.Faculty of Sciences, Research Group of Technology for Intelligent EnvironmentsUniversidad Autónoma de Baja CaliforniaEnsenadaMéxico

Personalised recommendations