Advertisement

Functioning of the Core Neural Network in Fear and Extinction

  • Maxwell Bennett
  • Jim Lagopoulos
Chapter

Abstract

Evidence suggests that mechanisms that underlie anxiety have much in common with Pavlovian fear conditioning (Pitman et al. 1999; LeDoux 2000; Bouton et al. 2001; Sullivan et al. 2003; Maren and Quirk 2004; Shin et al. 2006; Bremner et al. 2008; Graham and Milad 2011) and is conserved across species (Phelps and LeDoux 2005; LeDoux 2014). The Pavlovian fear response to a conditioned stimulus (CS; say a tone) in conjunction with a unconditioned stimulus (US; say a shock) is learnt in dorsal lateral amygdala (LAd) and retained for long periods up to years (Quirk et al. 1995; Rogan et al. 1997; Pape and Pare 2010) following only a few US-CS pairings (McAllister et al. 1986; Gale et al. 2004). This learning involves the phenomenon of long-term potentiation (LTP) (McKernan and Shinnick-Gallagher 1997; Tsvetkov et al. 2002; Cho et al. 2013). On the other hand, extinction occurs with repeated presentations of the CS in the absence of the US, which leads to gradual decay in the fear response (Pavlov 1927; Rescorla 2002; Maren and Quirk 2004; Myers and Davis 2007). This is dependent on the establishment of an extinction memory rather than decay of the fear memory (Herry et al. 2008). There is a considerable literature implicating N-methyl-d-aspartate (NMDA) receptors, together with LTP, in the formation of these memories (see, e.g. Schafe et al. 2001; Lin et al. 2003a, b; Quirk et al. 2010; Dalton et al. 2012) and pharmacological treatments sought to potentiate LTP in extinction (see, e.g. Lin et al. 2003a, b; Ressler et al. 2004; Davis et al. 2006). In this work a review is first presented on the mechanisms in the amygdala involved in establishing and stabilizing this extinction memory (Sects. 6.1–6.3). Existing models of these processes are next considered (Sect. 6.4) before a new model is presented (Sect. 6.5) that incorporates the most recent observations in a coherent framework.

References

  1. Adhikari A, Lerner TN, Finkelstein J, Pak S, Jennings JH, Davidson TJ et al (2015) Basomedial amygdala mediates top-down control of anxiety and fear. Nature 527(7577):179–185.  https://doi.org/10.1038/nature15698 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Amano T, Unal CT, Pare D (2010) Synaptic correlates of fear extinction in the amygdala. Nat Neurosci 13(4):489–494.  https://doi.org/10.1038/nn.2499 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Anastasio TJ (2013) Computational search for hypotheses concerning the endocannabinoid contribution to the extinction of fear conditioning. Front Comput Neurosci 7:74.  https://doi.org/10.3389/fncom.2013.00074 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Artola A, Singer W (1993) Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation. Trends Neurosci 16(11):480–487CrossRefGoogle Scholar
  5. Artola A, Brocher S, Singer W (1990) Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex. Nature 347(6288):69–72.  https://doi.org/10.1038/347069a0 CrossRefPubMedGoogle Scholar
  6. Ascoli GA, Alonso-Nanclares L, Anderson SA, Barrionuevo G, Benavides-Piccione R, Burkhalter A et al (2008) Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci 9(7):557–568.  https://doi.org/10.1038/nrn2402 CrossRefPubMedGoogle Scholar
  7. Baker JD, Azorlosa JL (1996) The NMDA antagonist MK-801 blocks the extinction of Pavlovian fear conditioning. Behav Neurosci 110(3):618–620CrossRefGoogle Scholar
  8. Ball JM, Hummos AM, Nair SS (2012) Role of sensory input distribution and intrinsic connectivity in lateral amygdala during auditory fear conditioning: a computational study. Neuroscience 224:249–267.  https://doi.org/10.1016/j.neuroscience.2012.08.030 CrossRefPubMedGoogle Scholar
  9. Bauer EP, LeDoux JE (2004) Heterosynaptic long-term potentiation of inhibitory interneurons in the lateral amygdala. J Neurosci 24(43):9507–9512.  https://doi.org/10.1523/jneurosci.3567-04.2004 CrossRefPubMedGoogle Scholar
  10. Bauer EP, Schafe GE, LeDoux JE (2002) NMDA receptors and L-type voltage-gated calcium channels contribute to long-term potentiation and different components of fear memory formation in the lateral amygdala. J Neurosci 22(12):5239–5249CrossRefGoogle Scholar
  11. Benito E, Barco A (2010) CREB’s control of intrinsic and synaptic plasticity: implications for CREB-dependent memory models. Trends Neurosci 33(5):230–240.  https://doi.org/10.1016/j.tins.2010.02.001 CrossRefPubMedGoogle Scholar
  12. Bennett MR, Arnold J, Hatton SN, Lagopoulos J (2017) Regulation of fear extinction by long-term depression: the roles of endocannabinoids and brain derived neurotrophic factor. Behav Brain Res 319:148–164.  https://doi.org/10.1016/j.bbr.2016.11.029 CrossRefPubMedGoogle Scholar
  13. Bienenstock E, Cooper L, Munro P (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 2(1):32–48CrossRefGoogle Scholar
  14. Bienvenu TC, Busti D, Magill PJ, Ferraguti F, Capogna M (2012) Cell-type-specific recruitment of amygdala interneurons to hippocampal theta rhythm and noxious stimuli in vivo. Neuron 74(6):1059–1074.  https://doi.org/10.1016/j.neuron.2012.04.022 CrossRefPubMedGoogle Scholar
  15. Bissiere S, Humeau Y, Luthi A (2003) Dopamine gates LTP induction in lateral amygdala by suppressing feedforward inhibition. Nat Neurosci 6(6):587–592.  https://doi.org/10.1038/nn1058 CrossRefPubMedGoogle Scholar
  16. Blair HT, Schafe GE, Bauer EP, Rodrigues SM, LeDoux JE (2001) Synaptic plasticity in the lateral amygdala: a cellular hypothesis of fear conditioning. Learn Mem 8(5):229–242.  https://doi.org/10.1101/lm.30901 CrossRefPubMedGoogle Scholar
  17. Bliss TVP, Lømo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232(2):331–356.  https://doi.org/10.1113/jphysiol.1973.sp010273 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Bocchio M, Nabavi S, Capogna M (2017) Synaptic plasticity, engrams, and network oscillations in amygdala circuits for storage and retrieval of emotional memories. Neuron 94(4):731–743.  https://doi.org/10.1016/j.neuron.2017.03.022 CrossRefPubMedGoogle Scholar
  19. Bouton ME, King DA (1983) Contextual control of the extinction of conditioned fear: tests for the associative value of the context. J Exp Psychol Anim Behav Process 9(3):248–265CrossRefGoogle Scholar
  20. Bouton ME, Mineka S, Barlow DH (2001) A modern learning theory perspective on the etiology of panic disorder. Psychol Rev 108(1):4–32CrossRefGoogle Scholar
  21. Bouton ME, Westbrook RF, Corcoran KA, Maren S (2006) Contextual and temporal modulation of extinction: behavioral and biological mechanisms. Biol Psychiatry 60(4):352–360.  https://doi.org/10.1016/j.biopsych.2005.12.015 CrossRefPubMedGoogle Scholar
  22. Bremner JD, Elzinga B, Schmahl C, Vermetten E (2008) Structural and functional plasticity of the human brain in posttraumatic stress disorder. Prog Brain Res 167:171–186.  https://doi.org/10.1016/s0079-6123(07)67012-5 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Burgos-Robles A, Vidal-Gonzalez I, Quirk GJ (2009) Sustained conditioned responses in prelimbic prefrontal neurons are correlated with fear expression and extinction failure. J Neurosci 29(26):8474–8482.  https://doi.org/10.1523/jneurosci.0378-09.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Busti D, Geracitano R, Whittle N, Dalezios Y, Manko M, Kaufmann W et al (2011) Different fear states engage distinct networks within the intercalated cell clusters of the amygdala. J Neurosci 31(13):5131–5144.  https://doi.org/10.1523/jneurosci.6100-10.2011 CrossRefPubMedGoogle Scholar
  25. Carlsen J, Zaborszky L, Heimer L (1985) Cholinergic projections from the basal forebrain to the basolateral amygdaloid complex: a combined retrograde fluorescent and immunohistochemical study. J Comp Neurol 234(2):155–167.  https://doi.org/10.1002/cne.902340203 CrossRefPubMedGoogle Scholar
  26. Carrere M, Alexandre F (2015) A pavlovian model of the amygdala and its influence within the medial temporal lobe. Front Syst Neurosci 9:41.  https://doi.org/10.3389/fnsys.2015.00041 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Chen A, Hough CJ, Li H (2003) Serotonin type II receptor activation facilitates synaptic plasticity via N-methyl-D-aspartate-mediated mechanism in the rat basolateral amygdala. Neuroscience 119(1):53–63CrossRefGoogle Scholar
  28. Cho JH, Deisseroth K, Bolshakov VY (2013) Synaptic encoding of fear extinction in mPFC-amygdala circuits. Neuron 80(6):1491–1507.  https://doi.org/10.1016/j.neuron.2013.09.025 CrossRefPubMedGoogle Scholar
  29. Ciocchi S, Herry C, Grenier F, Wolff SB, Letzkus JJ, Vlachos I et al (2010) Encoding of conditioned fear in central amygdala inhibitory circuits. Nature 468(7321):277–282.  https://doi.org/10.1038/nature09559 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Clopath C, Gerstner W (2010) Voltage and spike timing interact in STDP—a unified model. Front Synaptic Neurosci 2:25.  https://doi.org/10.3389/fnsyn.2010.00025 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Dalton GL, Wu DC, Wang YT, Floresco SB, Phillips AG (2012) NMDA GluN2A and GluN2B receptors play separate roles in the induction of LTP and LTD in the amygdala and in the acquisition and extinction of conditioned fear. Neuropharmacology 62(2):797–806.  https://doi.org/10.1016/j.neuropharm.2011.09.001 CrossRefPubMedGoogle Scholar
  32. Davis M, Myers KM, Chhatwal J, Ressler KJ (2006) Pharmacological treatments that facilitate extinction of fear: relevance to psychotherapy. NeuroRx 3(1):82–96.  https://doi.org/10.1016/j.nurx.2005.12.008 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Delaney AJ, Sah P (2001) Pathway-specific targeting of GABA(A) receptor subtypes to somatic and dendritic synapses in the central amygdala. J Neurophysiol 86(2):717–723CrossRefGoogle Scholar
  34. Destexhe A, Sejnowski TJ (2009) The Wilson-Cowan model, 36 years later. Biol Cybern 101(1):1–2.  https://doi.org/10.1007/s00422-009-0328-3 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Do-Monte FH, Manzano-Nieves G, Quinones-Laracuente K, Ramos-Medina L, Quirk GJ (2015) Revisiting the role of infralimbic cortex in fear extinction with optogenetics. J Neurosci 35(8):3607–3615.  https://doi.org/10.1523/jneurosci.3137-14.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Duvarci S, Pare D (2014) Amygdala microcircuits controlling learned fear. Neuron 82(5):966–980.  https://doi.org/10.1016/j.neuron.2014.04.042 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Ehrlich I, Humeau Y, Grenier F, Ciocchi S, Herry C, Luthi A (2009) Amygdala inhibitory circuits and the control of fear memory. Neuron 62(6):757–771.  https://doi.org/10.1016/j.neuron.2009.05.026 CrossRefPubMedGoogle Scholar
  38. El Boustani S, Yger P, Fregnac Y, Destexhe A (2012) Stable learning in stochastic network states. J Neurosci 32(1):194–214.  https://doi.org/10.1523/jneurosci.2496-11.2012 CrossRefPubMedGoogle Scholar
  39. Fadok JP, Dickerson TM, Palmiter RD (2009) Dopamine is necessary for cue-dependent fear conditioning. J Neurosci 29(36):11089–11097.  https://doi.org/10.1523/JNEUROSCI.1616-09.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Falls WA, Miserendino MJ, Davis M (1992) Extinction of fear-potentiated startle: blockade by infusion of an NMDA antagonist into the amygdala. J Neurosci 12(3):854–863CrossRefGoogle Scholar
  41. Feng F, Samarth P, Pare D, Nair SS (2016) Mechanisms underlying the formation of the amygdalar fear memory trace: a computational perspective. Neuroscience 322:370–376.  https://doi.org/10.1016/j.neuroscience.2016.02.059 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Gale GD, Anagnostaras SG, Godsil BP, Mitchell S, Nozawa T, Sage JR et al (2004) Role of the basolateral amygdala in the storage of fear memories across the adult lifetime of rats. J Neurosci 24(15):3810–3815.  https://doi.org/10.1523/jneurosci.4100-03.2004 CrossRefPubMedGoogle Scholar
  43. Gerstner W, Kempter R, van Hemmen JL, Wagner H (1996) A neuronal learning rule for sub-millisecond temporal coding. Nature 383(6595):76–81.  https://doi.org/10.1038/383076a0 CrossRefPubMedGoogle Scholar
  44. Goosens KA, Hobin JA, Maren S (2003) Auditory-evoked spike firing in the lateral amygdala and Pavlovian fear conditioning: mnemonic code or fear bias? Neuron 40(5):1013–1022CrossRefGoogle Scholar
  45. Graham BM, Milad MR (2011) The study of fear extinction: implications for anxiety disorders. Am J Psychiatry 168(12):1255–1265.  https://doi.org/10.1176/appi.ajp.2011.11040557 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Han JH, Kushner SA, Yiu AP, Cole CJ, Matynia A, Brown RA et al (2007) Neuronal competition and selection during memory formation. Science 316(5823):457–460.  https://doi.org/10.1126/science.1139438 CrossRefPubMedGoogle Scholar
  47. Han JH, Kushner SA, Yiu AP, Hsiang HL, Buch T, Waisman A et al (2009) Selective erasure of a fear memory. Science 323(5920):1492–1496.  https://doi.org/10.1126/science.1164139 CrossRefPubMedGoogle Scholar
  48. Haubensak W, Kunwar PS, Cai H, Ciocchi S, Wall NR, Ponnusamy R et al (2010) Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature 468(7321):270–276.  https://doi.org/10.1038/nature09553 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Herry C, Ciocchi S, Senn V, Demmou L, Muller C, Luthi A (2008) Switching on and off fear by distinct neuronal circuits. Nature 454(7204):600–606.  https://doi.org/10.1038/nature07166 CrossRefPubMedGoogle Scholar
  50. Holmes A, Fitzgerald PJ, MacPherson KP, DeBrouse L, Colacicco G, Flynn SM et al (2012) Chronic alcohol remodels prefrontal neurons and disrupts NMDAR-mediated fear extinction encoding. Nat Neurosci 15(10):1359–1361.  https://doi.org/10.1038/nn.3204 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Hong I, Song B, Lee S, Kim J, Kim J, Choi S (2009) Extinction of cued fear memory involves a distinct form of depotentiation at cortical input synapses onto the lateral amygdala. Eur J Neurosci 30(11):2089–2099.  https://doi.org/10.1111/j.1460-9568.2009.07004.x CrossRefPubMedGoogle Scholar
  52. Hromadka T, Deweese MR, Zador AM (2008) Sparse representation of sounds in the unanesthetized auditory cortex. PLoS Biol 6(1):e16.  https://doi.org/10.1371/journal.pbio.0060016 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Hsieh C, Tsokas P, Serrano P, Hernandez AI, Tian D, Cottrell JE et al (2017) Persistent increased PKMzeta in long-term and remote spatial memory. Neurobiol Learn Mem 138:135–144.  https://doi.org/10.1016/j.nlm.2016.07.008 CrossRefPubMedGoogle Scholar
  54. Hu H, Real E, Takamiya K, Kang MG, Ledoux J, Huganir RL, Malinow R (2007) Emotion enhances learning via norepinephrine regulation of AMPA-receptor trafficking. Cell 131(1):160–173.  https://doi.org/10.1016/j.cell.2007.09.017 CrossRefPubMedGoogle Scholar
  55. Huang YY, Kandel ER (1998) Postsynaptic induction and PKA-dependent expression of LTP in the lateral amygdala. Neuron 21(1):169–178CrossRefGoogle Scholar
  56. Huang YY, Li XC, Kandel ER (1994) cAMP contributes to mossy fiber LTP by initiating both a covalently mediated early phase and macromolecular synthesis-dependent late phase. Cell 79(1):69–79CrossRefGoogle Scholar
  57. Jiang L, Kundu S, Lederman JD, Lopez-Hernandez GY, Ballinger EC, Wang S et al (2016) Cholinergic signaling controls conditioned fear behaviors and enhances plasticity of cortical-amygdala circuits. Neuron 90(5):1057–1070.  https://doi.org/10.1016/j.neuron.2016.04.028 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Johansen JP, Diaz-Mataix L, Hamanaka H, Ozawa T, Ycu E, Koivumaa J et al (2014) Hebbian and neuromodulatory mechanisms interact to trigger associative memory formation. Proc Natl Acad Sci USA 111(51):E5584–E5592.  https://doi.org/10.1073/pnas.1421304111 CrossRefPubMedGoogle Scholar
  59. Johnson PL, Molosh A, Fitz SD, Arendt D, Deehan GA, Federici LM et al (2015) Pharmacological depletion of serotonin in the basolateral amygdala complex reduces anxiety and disrupts fear conditioning. Pharmacol Biochem Behav 138:174–179.  https://doi.org/10.1016/j.pbb.2015.09.021 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Karalis N, Dejean C, Chaudun F, Khoder S, Rozeske RR, Wurtz H et al (2016) 4-Hz oscillations synchronize prefrontal-amygdala circuits during fear behavior. Nat Neurosci 19(4):605–612.  https://doi.org/10.1038/nn.4251 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Kim J, Lee S, Park K, Hong I, Song B, Son G et al (2007) Amygdala depotentiation and fear extinction. Proc Natl Acad Sci USA 104(52):20955–20960.  https://doi.org/10.1073/pnas.0710548105 CrossRefPubMedGoogle Scholar
  62. Kim D, Pare D, Nair SS (2013) Mechanisms contributing to the induction and storage of Pavlovian fear memories in the lateral amygdala. Learn Mem 20(8):421–430.  https://doi.org/10.1101/lm.030262.113 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Kim D, Samarth P, Feng F, Pare D, Nair SS (2016) Synaptic competition in the lateral amygdala and the stimulus specificity of conditioned fear: a biophysical modeling study. Brain Struct Funct 221(4):2163–2182.  https://doi.org/10.1007/s00429-015-1037-4 CrossRefPubMedGoogle Scholar
  64. Krieg D, Triesch J (2014) A unifying theory of synaptic long-term plasticity based on a sparse distribution of synaptic strength. Front Synaptic Neurosci 6:3.  https://doi.org/10.3389/fnsyn.2014.00003 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Lafenetre P, Chaouloff F, Marsicano G (2007) The endocannabinoid system in the processing of anxiety and fear and how CB1 receptors may modulate fear extinction. Pharmacol Res 56(5):367–381.  https://doi.org/10.1016/j.phrs.2007.09.006 CrossRefPubMedGoogle Scholar
  66. LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184.  https://doi.org/10.1146/annurev.neuro.23.1.155 CrossRefPubMedGoogle Scholar
  67. LeDoux JE (2014) Coming to terms with fear. Proc Natl Acad Sci USA 111(8):2871–2878.  https://doi.org/10.1073/pnas.1400335111 CrossRefPubMedGoogle Scholar
  68. LeDoux JE, Cicchetti P, Xagoraris A, Romanski LM (1990) The lateral amygdaloid nucleus: sensory interface of the amygdala in fear conditioning. J Neurosci 10(4):1062–1069CrossRefGoogle Scholar
  69. Leen TK, Friel R (2012) Stochastic perturbation methods for spike-timing-dependent plasticity. Neural Comput 24(5):1109–1146.  https://doi.org/10.1162/NECO_a_00267 CrossRefPubMedGoogle Scholar
  70. Lesting J, Geiger M, Narayanan RT, Pape HC, Seidenbecher T (2011a) Impaired extinction of fear and maintained amygdala-hippocampal theta synchrony in a mouse model of temporal lobe epilepsy. Epilepsia 52(2):337–346.  https://doi.org/10.1111/j.1528-1167.2010.02758.x CrossRefPubMedGoogle Scholar
  71. Lesting J, Narayanan RT, Kluge C, Sangha S, Seidenbecher T, Pape HC (2011b) Patterns of coupled theta activity in amygdala-hippocampal-prefrontal cortical circuits during fear extinction. PLoS One 6(6):e21714.  https://doi.org/10.1371/journal.pone.0021714 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Lesting J, Daldrup T, Narayanan V, Himpe C, Seidenbecher T, Pape H-C (2013) Directional theta coherence in prefrontal cortical to amygdalo-hippocampal pathways signals fear extinction. PLoS One 8(10):e77707CrossRefGoogle Scholar
  73. Li G, Nair SS, Quirk GJ (2009) A biologically realistic network model of acquisition and extinction of conditioned fear associations in lateral amygdala neurons. J Neurophysiol 101(3):1629–1646.  https://doi.org/10.1152/jn.90765.2008 CrossRefPubMedGoogle Scholar
  74. Li H, Penzo MA, Taniguchi H, Kopec CD, Huang ZJ, Li B (2013) Experience-dependent modification of a central amygdala fear circuit. Nat Neurosci 16(3):332–339.  https://doi.org/10.1038/nn.3322 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Likhtik E, Stujenske JM, Topiwala MA, Harris AZ, Gordon JA (2014) Prefrontal entrainment of amygdala activity signals safety in learned fear and innate anxiety. Nat Neurosci 17(1):106–113.  https://doi.org/10.1038/nn.3582 CrossRefPubMedGoogle Scholar
  76. Lin CH, Lee CC, Gean PW (2003a) Involvement of a calcineurin cascade in amygdala depotentiation and quenching of fear memory. Mol Pharmacol 63(1):44–52CrossRefGoogle Scholar
  77. Lin CH, Yeh SH, Leu TH, Chang WC, Wang ST, Gean PW (2003b) Identification of calcineurin as a key signal in the extinction of fear memory. J Neurosci 23(5):1574–1579CrossRefGoogle Scholar
  78. Lisman J (1989) A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proc Natl Acad Sci USA 86(23):9574–9578CrossRefGoogle Scholar
  79. Loewenstein Y, Kuras A, Rumpel S (2011) Multiplicative dynamics underlie the emergence of the log-normal distribution of spine sizes in the neocortex in vivo. J Neurosci 31(26):9481–9488.  https://doi.org/10.1523/jneurosci.6130-10.2011 CrossRefPubMedGoogle Scholar
  80. Mahanty NK, Sah P (1998) Calcium-permeable AMPA receptors mediate long-term potentiation in interneurons in the amygdala. Nature 394(6694):683–687.  https://doi.org/10.1038/29312 CrossRefPubMedGoogle Scholar
  81. Malkani S, Rosen JB (2000) Specific induction of early growth response gene 1 in the lateral nucleus of the amygdala following contextual fear conditioning in rats. Neuroscience 97(4):693–702CrossRefGoogle Scholar
  82. Manko M, Bienvenu TC, Dalezios Y, Capogna M (2012) Neurogliaform cells of amygdala: a source of slow phasic inhibition in the basolateral complex. J Physiol 590(22):5611–5627.  https://doi.org/10.1113/jphysiol.2012.236745 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Maren S (2001) Neurobiology of Pavlovian fear conditioning. Annu Rev Neurosci 24:897–931.  https://doi.org/10.1146/annurev.neuro.24.1.897 CrossRefPubMedGoogle Scholar
  84. Maren S (2011) Seeking a spotless mind: extinction, deconsolidation, and erasure of fear memory. Neuron 70(5):830–845.  https://doi.org/10.1016/j.neuron.2011.04.023 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Maren S (2015) Out with the old and in with the new: synaptic mechanisms of extinction in the amygdala. Brain Res 1621:231–238.  https://doi.org/10.1016/j.brainres.2014.10.010 CrossRefPubMedGoogle Scholar
  86. Maren S, Quirk GJ (2004) Neuronal signalling of fear memory. Nat Rev Neurosci 5(11):844–852.  https://doi.org/10.1038/nrn1535 CrossRefPubMedGoogle Scholar
  87. Markram H, Lubke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275(5297):213–215CrossRefGoogle Scholar
  88. Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5(10):793–807.  https://doi.org/10.1038/nrn1519 CrossRefPubMedGoogle Scholar
  89. Martina M, Royer S, Pare D (1999) Physiological properties of central medial and central lateral amygdala neurons. J Neurophysiol 82(4):1843–1854CrossRefGoogle Scholar
  90. McAllister WR, McAllister DE, Scoles MT, Hampton SR (1986) Persistence of fear-reducing behavior: relevance for the conditioning theory of neurosis. J Abnorm Psychol 95(4):365–372CrossRefGoogle Scholar
  91. McDonald AJ (1984) Neuronal organization of the lateral and basolateral amygdaloid nuclei in the rat. J Comp Neurol 222(4):589–606.  https://doi.org/10.1002/cne.902220410 CrossRefPubMedGoogle Scholar
  92. McDonald AJ, Mascagni F, Guo L (1996) Projections of the medial and lateral prefrontal cortices to the amygdala: a Phaseolus vulgaris leucoagglutinin study in the rat. Neuroscience 71(1):55–75CrossRefGoogle Scholar
  93. McKernan MG, Shinnick-Gallagher P (1997) Fear conditioning induces a lasting potentiation of synaptic currents in vitro. Nature 390(6660):607–611.  https://doi.org/10.1038/37605 CrossRefPubMedGoogle Scholar
  94. Milad MR, Vidal-Gonzalez I, Quirk GJ (2004) Electrical stimulation of medial prefrontal cortex reduces conditioned fear in a temporally specific manner. Behav Neurosci 118(2):389–394.  https://doi.org/10.1037/0735-7044.118.2.389 CrossRefPubMedGoogle Scholar
  95. Morgan MA, Romanski LM, LeDoux JE (1993) Extinction of emotional learning: contribution of medial prefrontal cortex. Neurosci Lett 163(1):109–113CrossRefGoogle Scholar
  96. Morrison DJ, Rashid AJ, Yiu AP, Yan C, Frankland PW, Josselyn SA (2016) Parvalbumin interneurons constrain the size of the lateral amygdala engram. Neurobiol Learn Mem 135:91–99.  https://doi.org/10.1016/j.nlm.2016.07.007 CrossRefPubMedGoogle Scholar
  97. Moustafa AA, Gilbertson MW, Orr SP, Herzallah MM, Servatius RJ, Myers CE (2013) A model of amygdala-hippocampal-prefrontal interaction in fear conditioning and extinction in animals. Brain Cogn 81(1):29–43.  https://doi.org/10.1016/j.bandc.2012.10.005 CrossRefPubMedGoogle Scholar
  98. Myers KM, Davis M (2002) Behavioral and neural analysis of extinction. Neuron 36(4):567–584CrossRefGoogle Scholar
  99. Myers KM, Davis M (2007) Mechanisms of fear extinction. Mol Psychiatry 12(2):120–150.  https://doi.org/10.1038/sj.mp.4001939 CrossRefPubMedGoogle Scholar
  100. Nabavi S, Fox R, Proulx CD, Lin JY, Tsien RY, Malinow R (2014) Engineering a memory with LTD and LTP. Nature 511(7509):348–352.  https://doi.org/10.1038/nature13294 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Narayanan RT, Seidenbecher T, Kluge C, Bergado J, Stork O, Pape HC (2007) Dissociated theta phase synchronization in amygdalo‐hippocampal circuits during various stages of fear memory. Eur J Neurosci 25(6):1823–1831CrossRefGoogle Scholar
  102. Ngezahayo A, Schachner M, Artola A (2000) Synaptic activity modulates the induction of bidirectional synaptic changes in adult mouse hippocampus. J Neurosci 20(7):2451–2458CrossRefGoogle Scholar
  103. Nguyen PV, Kandel ER (1996) A macromolecular synthesis-dependent late phase of long-term potentiation requiring cAMP in the medial perforant pathway of rat hippocampal slices. J Neurosci 16(10):3189–3198CrossRefGoogle Scholar
  104. Olshausen BA, Field DJ (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583):607–609.  https://doi.org/10.1038/381607a0 CrossRefPubMedGoogle Scholar
  105. Pape HC, Pare D (2010) Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol Rev 90(2):419–463.  https://doi.org/10.1152/physrev.00037.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Pare D, Duvarci S (2012) Amygdala microcircuits mediating fear expression and extinction. Curr Opin Neurobiol 22(4):717–723.  https://doi.org/10.1016/j.conb.2012.02.014 CrossRefPubMedPubMedCentralGoogle Scholar
  107. Pare D, Quirk GJ, Ledoux JE (2004) New vistas on amygdala networks in conditioned fear. J Neurophysiol 92(1):1–9.  https://doi.org/10.1152/jn.00153.2004 CrossRefPubMedGoogle Scholar
  108. Pavlov IP (1927) Conditioned reflexes: an investigation of the physiological activity of the Cerebral Cortex. Oxford University Press, LondonGoogle Scholar
  109. Pfister JP, Gerstner W (2006) Triplets of spikes in a model of spike timing-dependent plasticity. J Neurosci 26(38):9673–9682.  https://doi.org/10.1523/jneurosci.1425-06.2006 CrossRefPubMedGoogle Scholar
  110. Phelps EA, LeDoux JE (2005) Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron 48(2):175–187.  https://doi.org/10.1016/j.neuron.2005.09.025 CrossRefPubMedGoogle Scholar
  111. Pitman RK, Orr SP, Shalev AY, Metzger LJ, Mellman TA (1999) Psychophysiological alterations in post-traumatic stress disorder. Semin Clin Neuropsychiatry 4(4):234–241. https://doi.org/10.153/SCNP00400234Google Scholar
  112. Pool RR, Mato G (2011) Spike-timing-dependent plasticity and reliability optimization: the role of neuron dynamics. Neural Comput 23(7):1768–1789.  https://doi.org/10.1162/NECO_a_00140 CrossRefPubMedGoogle Scholar
  113. Quirk GJ (2006) Extinction: new excitement for an old phenomenon. Biol Psychiatry 60(4):317–318.  https://doi.org/10.1016/j.biopsych.2006.05.023 CrossRefPubMedGoogle Scholar
  114. Quirk GJ, Repa C, LeDoux JE (1995) Fear conditioning enhances short-latency auditory responses of lateral amygdala neurons: parallel recordings in the freely behaving rat. Neuron 15(5):1029–1039CrossRefGoogle Scholar
  115. Quirk GJ, Russo GK, Barron JL, Lebron K (2000) The role of ventromedial prefrontal cortex in the recovery of extinguished fear. J Neurosci 20(16):6225–6231CrossRefGoogle Scholar
  116. Quirk GJ, Likhtik E, Pelletier JG, Pare D (2003) Stimulation of medial prefrontal cortex decreases the responsiveness of central amygdala output neurons. J Neurosci 23(25):8800–8807CrossRefGoogle Scholar
  117. Quirk GJ, Pare D, Richardson R, Herry C, Monfils MH, Schiller D, Vicentic A (2010) Erasing fear memories with extinction training. J Neurosci 30(45):14993–14997.  https://doi.org/10.1523/jneurosci.4268-10.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  118. Rashid AJ, Yan C, Mercaldo V, Hsiang HL, Park S, Cole CJ et al (2016) Competition between engrams influences fear memory formation and recall. Science 353(6297):383–387.  https://doi.org/10.1126/science.aaf0594 CrossRefPubMedGoogle Scholar
  119. Redondo RL, Kim J, Arons AL, Ramirez S, Liu X, Tonegawa S (2014) Bidirectional switch of the valence associated with a hippocampal contextual memory engram. Nature 513(7518):426–430.  https://doi.org/10.1038/nature13725 CrossRefPubMedPubMedCentralGoogle Scholar
  120. Repa JC, Muller J, Apergis J, Desrochers TM, Zhou Y, LeDoux JE (2001) Two different lateral amygdala cell populations contribute to the initiation and storage of memory. Nat Neurosci 4(7):724–731.  https://doi.org/10.1038/89512 CrossRefPubMedGoogle Scholar
  121. Rescorla RA (2002) Comparison of the rates of associative change during acquisition and extinction. J Exp Psychol Anim Behav Process 28(4):406–415CrossRefGoogle Scholar
  122. Ressler KJ, Rothbaum BO, Tannenbaum L, Anderson P, Graap K, Zimand E et al (2004) Cognitive enhancers as adjuncts to psychotherapy: use of D-cycloserine in phobic individuals to facilitate extinction of fear. Arch Gen Psychiatry 61(11):1136–1144.  https://doi.org/10.1001/archpsyc.61.11.1136 CrossRefPubMedGoogle Scholar
  123. Rogan MT, Staubli UV, LeDoux JE (1997) Fear conditioning induces associative long-term potentiation in the amygdala. Nature 390(6660):604–607.  https://doi.org/10.1038/37601 CrossRefPubMedGoogle Scholar
  124. Royer S, Martina M, Pare D (1999) An inhibitory interface gates impulse traffic between the input and output stations of the amygdala. J Neurosci 19(23):10575–10583CrossRefGoogle Scholar
  125. Rumpel S, LeDoux J, Zador A, Malinow R (2005) Postsynaptic receptor trafficking underlying a form of associative learning. Science 308(5718):83–88.  https://doi.org/10.1126/science.1103944 CrossRefPubMedGoogle Scholar
  126. Santini E, Muller RU, Quirk GJ (2001) Consolidation of extinction learning involves transfer from NMDA-independent to NMDA-dependent memory. J Neurosci 21(22):9009–9017CrossRefGoogle Scholar
  127. Santini E, Ge H, Ren K, Pena de Ortiz S, Quirk GJ (2004) Consolidation of fear extinction requires protein synthesis in the medial prefrontal cortex. J Neurosci 24(25):5704–5710.  https://doi.org/10.1523/JNEUROSCI.0786-04.2004 CrossRefPubMedGoogle Scholar
  128. Schafe GE, Nader K, Blair HT, LeDoux JE (2001) Memory consolidation of Pavlovian fear conditioning: a cellular and molecular perspective. Trends Neurosci 24(9):540–546CrossRefGoogle Scholar
  129. Schiess MC, Callahan PM, Zheng H (1999) Characterization of the electrophysiological and morphological properties of rat central amygdala neurons in vitro. J Neurosci Res 58(5):663–673CrossRefGoogle Scholar
  130. Seidenbecher T, Laxmi TR, Stork O, Pape HC (2003) Amygdalar and hippocampal theta rhythm synchronization during fear memory retrieval. Science 301(5634):846–850.  https://doi.org/10.1126/science.1085818 CrossRefPubMedGoogle Scholar
  131. Senn V, Wolff SB, Herry C, Grenier F, Ehrlich I, Grundemann J et al (2014) Long-range connectivity defines behavioral specificity of amygdala neurons. Neuron 81(2):428–437.  https://doi.org/10.1016/j.neuron.2013.11.006 CrossRefPubMedGoogle Scholar
  132. Shin LM, Rauch SL, Pitman RK (2006) Amygdala, medial prefrontal cortex, and hippocampal function in PTSD. Ann N Y Acad Sci 1071:67–79.  https://doi.org/10.1196/annals.1364.007 CrossRefPubMedGoogle Scholar
  133. Shouval HZ, Bear MF, Cooper LN (2002a) A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proc Natl Acad Sci USA 99(16):10831–10836.  https://doi.org/10.1073/pnas.152343099 CrossRefPubMedGoogle Scholar
  134. Shouval HZ, Castellani GC, Blais BS, Yeung LC, Cooper LN (2002b) Converging evidence for a simplified biophysical model of synaptic plasticity. Biol Cybern 87(5–6):383–391.  https://doi.org/10.1007/s00422-002-0362-x CrossRefPubMedGoogle Scholar
  135. Sierra-Mercado D, Padilla-Coreano N, Quirk GJ (2011) Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear. Neuropsychopharmacology 36(2):529–538.  https://doi.org/10.1038/npp.2010.184 CrossRefPubMedGoogle Scholar
  136. Sigurdsson T, Doyere V, Cain CK, LeDoux JE (2007) Long-term potentiation in the amygdala: a cellular mechanism of fear learning and memory. Neuropharmacology 52(1):215–227.  https://doi.org/10.1016/j.neuropharm.2006.06.022 CrossRefPubMedGoogle Scholar
  137. Sjostrom PJ, Turrigiano GG, Nelson SB (2001) Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron 32(6):1149–1164CrossRefGoogle Scholar
  138. Smith Y, Pare D (1994) Intra-amygdaloid projections of the lateral nucleus in the cat: PHA-L anterograde labeling combined with postembedding GABA and glutamate immunocytochemistry. J Comp Neurol 342(2):232–248.  https://doi.org/10.1002/cne.903420207 CrossRefPubMedGoogle Scholar
  139. Sotres-Bayon F, Bush DE, LeDoux JE (2004) Emotional perseveration: an update on prefrontal-amygdala interactions in fear extinction. Learn Mem 11(5):525–535.  https://doi.org/10.1101/lm.79504 CrossRefPubMedGoogle Scholar
  140. Sprekeler H, Michaelis C, Wiskott L (2007) Slowness: an objective for spike-timing-dependent plasticity? PLoS Comput Biol 3(6):e112.  https://doi.org/10.1371/journal.pcbi.0030112 CrossRefPubMedPubMedCentralGoogle Scholar
  141. Stujenske JM, Likhtik E, Topiwala MA, Gordon JA (2014) Fear and safety engage competing patterns of theta-gamma coupling in the basolateral amygdala. Neuron 83(4):919–933.  https://doi.org/10.1016/j.neuron.2014.07.026 CrossRefPubMedPubMedCentralGoogle Scholar
  142. Sullivan GM, Apergis J, Gorman JM, LeDoux JE (2003) Rodent doxapram model of panic: behavioral effects and c-Fos immunoreactivity in the amygdala. Biol Psychiatry 53(10):863–870CrossRefGoogle Scholar
  143. Trouche S, Sasaki JM, Tu T, Reijmers LG (2013) Fear extinction causes target-specific remodeling of perisomatic inhibitory synapses. Neuron 80(4):1054–1065.  https://doi.org/10.1016/j.neuron.2013.07.047 CrossRefPubMedGoogle Scholar
  144. Tsvetkov E, Carlezon WA, Benes FM, Kandel ER, Bolshakov VY (2002) Fear conditioning occludes LTP-induced presynaptic enhancement of synaptic transmission in the cortical pathway to the lateral amygdala. Neuron 34(2):289–300CrossRefGoogle Scholar
  145. Tully K, Li Y, Tsvetkov E, Bolshakov VY (2007) Norepinephrine enables the induction of associative long-term potentiation at thalamo-amygdala synapses. Proc Natl Acad Sci USA 104(35):14146–14150.  https://doi.org/10.1073/pnas.0704621104 CrossRefPubMedGoogle Scholar
  146. Tye KM, Stuber GD, de Ridder B, Bonci A, Janak PH (2008) Rapid strengthening of thalamo-amygdala synapses mediates cue-reward learning. Nature 453(7199):1253–1257.  https://doi.org/10.1038/nature06963 CrossRefPubMedPubMedCentralGoogle Scholar
  147. van Rossum MC, Bi GQ, Turrigiano GG (2000) Stable Hebbian learning from spike timing-dependent plasticity. J Neurosci 20(23):8812–8821CrossRefGoogle Scholar
  148. Viosca J, Lopez de Armentia M, Jancic D, Barco A (2009) Enhanced CREB-dependent gene expression increases the excitability of neurons in the basal amygdala and primes the consolidation of contextual and cued fear memory. Learn Mem 16(3):193–197.  https://doi.org/10.1101/lm.1254209 CrossRefPubMedGoogle Scholar
  149. Vlachos I, Herry C, Luthi A, Aertsen A, Kumar A (2011) Context-dependent encoding of fear and extinction memories in a large-scale network model of the basal amygdala. PLoS Comput Biol 7(3):e1001104.  https://doi.org/10.1371/journal.pcbi.1001104 CrossRefPubMedPubMedCentralGoogle Scholar
  150. Walker DL, Davis M (2000) Involvement of NMDA receptors within the amygdala in short- versus long-term memory for fear conditioning as assessed with fear-potentiated startle. Behav Neurosci 114(6):1019–1033CrossRefGoogle Scholar
  151. Wang H, Wagner JJ (1999) Priming-induced shift in synaptic plasticity in the rat hippocampus. J Neurophysiol 82(4):2024–2028CrossRefGoogle Scholar
  152. Wilson HR, Cowan JD (1972) Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J 12(1):1–24.  https://doi.org/10.1016/s0006-3495(72)86068-5 CrossRefPubMedPubMedCentralGoogle Scholar
  153. Wolff SB, Grundemann J, Tovote P, Krabbe S, Jacobson GA, Muller C et al (2014) Amygdala interneuron subtypes control fear learning through disinhibition. Nature 509(7501):453–458.  https://doi.org/10.1038/nature13258 CrossRefPubMedGoogle Scholar
  154. Yiu AP, Mercaldo V, Yan C, Richards B, Rashid AJ, Hsiang HL et al (2014) Neurons are recruited to a memory trace based on relative neuronal excitability immediately before training. Neuron 83(3):722–735.  https://doi.org/10.1016/j.neuron.2014.07.017 CrossRefPubMedGoogle Scholar
  155. Zheng P, Dimitrakakis C, Triesch J (2013) Network self-organization explains the statistics and dynamics of synaptic connection strengths in cortex. PLoS Comput Biol 9(1):e1002848.  https://doi.org/10.1371/journal.pcbi.1002848 CrossRefPubMedPubMedCentralGoogle Scholar
  156. Zhou Y, Won J, Karlsson MG, Zhou M, Rogerson T, Balaji J et al (2009) CREB regulates excitability and the allocation of memory to subsets of neurons in the amygdala. Nat Neurosci 12(11):1438–1443.  https://doi.org/10.1038/nn.2405 CrossRefPubMedPubMedCentralGoogle Scholar
  157. Zimmerman JM, Maren S (2010) NMDA receptor antagonism in the basolateral but not central amygdala blocks the extinction of Pavlovian fear conditioning in rats. Eur J Neurosci 31(9):1664–1670.  https://doi.org/10.1111/j.1460-9568.2010.07223.x CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Maxwell Bennett
    • 1
  • Jim Lagopoulos
    • 2
  1. 1.The University of SydneyBrain and Mind CentreCamperdown NSWAustralia
  2. 2.Sunshine Coast Mind and Neuroscience Thompson InstituteUniversity of Sunshine CoastBirtinyaAustralia

Personalised recommendations