Advertisement

Modulation of the Core Neural Network in Stress: The Role of Brain-Derived Neurotrophic Factor and LTP

  • Maxwell Bennett
  • Jim Lagopoulos
Chapter

Abstract

The rat BDNF gene consists of 4 short 50 exons and a 30 exon encoding the mature BDNF protein (Timmusk et al. 1993). Quantitative PCR analysis of BDNF mRNA containing these five upstream exons indicates that each of the alternative transcripts is most abundant in the hippocampus, intermediate in the substantia nigra and cerebellum and least abundant in the striatum, although the magnitude of these differences in expression varies indicating that BDNF gene transcription in the mature brain is regulated by alternate promoters that are differentially active across these regions (Bishop et al. 1994). Thus the BDNF gene possesses differential exon regulation and usage with different subcellular distributions as well as different distributions in different parts of the brain. The gene consists of 8 untranslated 50 exons each possessing their own promoters with the possibility of being connected to a 30 coding exon, thus forming a tripartite transcript that allows for different splice variants of BDNF mRNA. So the rodent BDNF transcripts consist of a protein-coding exon spliced to one of eight noncoding exons as well as a transcript containing only the protein-coding exon. This structure of the rodent BDNF gene is shown in Fig. 4.1 [see Fig. 3 in Boulle et al. (2012)]. Exons are represented in this figure as boxes and the introns as lines with the exon numbers indicated in Roman numerals. The 30 coding exon (exon IX) contains two polyadenylation sites (poly A). The red box shows the region of exon IX coding for the pro-BDNF protein. It is the variety of transcripts made possible by this arrangement of the BDNF gene that allows for specificity to different regions of the brain (Aid et al. 2007). Furthermore, these transcripts of BDNF genes in rodents are not only specific to different regions of the cortex and archicortex, but their expression in these regions is under control of the epigenetic processes of histone deacetylation and DNA methylation. The flexibility provided by different splice variants of BDNF mRNA, with differences in their 50 or 30 extremities, together with epigenetic modulation of transcription of the BDNF gene, provides for a wide variety of regulatory processes in determining the formation and regression of dendritic spines in different brain regions in response to stress.

References

  1. Aardal-Eriksson E, Karlberg BE, Holm AC (1998) Salivary cortisol—an alternative to serum cortisol determinations in dynamic function tests. Clin Chem Lab Med 36(4):215–222.  https://doi.org/10.1515/CCLM.1998.037 CrossRefPubMedGoogle Scholar
  2. Abuhatzira L, Makedonski K, Kaufman Y, Razin A, Shemer R (2007) MeCP2 deficiency in the brain decreases BDNF levels by REST/CoREST-mediated repression and increases TRKB production. Epigenetics 2(4):214–222CrossRefGoogle Scholar
  3. Adzic M, Djordjevic J, Djordjevic A, Niciforovic A, Demonacos C, Radojcic M, Krstic-Demonacos M (2009) Acute or chronic stress induce cell compartment-specific phosphorylation of glucocorticoid receptor and alter its transcriptional activity in Wistar rat brain. J Endocrinol 202(1):87–97.  https://doi.org/10.1677/JOE-08-0509 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Aid T, Kazantseva A, Piirsoo M, Palm K, Timmusk T (2007) Mouse and rat BDNF gene structure and expression revisited. J Neurosci Res 85(3):525–535.  https://doi.org/10.1002/jnr.21139 CrossRefPubMedGoogle Scholar
  5. Alonso M, Medina JH, Pozzo-Miller L (2004) ERK1/2 activation is necessary for BDNF to increase dendritic spine density in hippocampal CA1 pyramidal neurons. Learn Mem 11(2):172–178.  https://doi.org/10.1101/lm.67804 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Alvarez VA, Ridenour DA, Sabatini BL (2007) Distinct structural and ionotropic roles of NMDA receptors in controlling spine and synapse stability. J Neurosci 27(28):7365–7376.  https://doi.org/10.1523/JNEUROSCI.0956-07.2007 CrossRefPubMedGoogle Scholar
  7. Amaral MD, Pozzo-Miller L (2007) TRPC3 channels are necessary for brain-derived neurotrophic factor to activate a nonselective cationic current and to induce dendritic spine formation. J Neurosci 27(19):5179–5189.  https://doi.org/10.1523/JNEUROSCI.5499-06.2007 CrossRefPubMedPubMedCentralGoogle Scholar
  8. An JJ, Gharami K, Liao GY, Woo NH, Lau AG, Vanevski F et al (2008) Distinct role of long 3′ UTR BDNF mRNA in spine morphology and synaptic plasticity in hippocampal neurons. Cell 134(1):175–187.  https://doi.org/10.1016/j.cell.2008.05.045 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Aso E, Ozaita A, Valdizan EM, Ledent C, Pazos A, Maldonado R, Valverde O (2008) BDNF impairment in the hippocampus is related to enhanced despair behavior in CB1 knockout mice. J Neurochem 105(2):565–572.  https://doi.org/10.1111/j.1471-4159.2007.05149.x CrossRefPubMedGoogle Scholar
  10. Attwood BK, Bourgognon JM, Patel S, Mucha M, Schiavon E, Skrzypiec AE et al (2011) Neuropsin cleaves EphB2 in the amygdala to control anxiety. Nature 473(7347):372–375.  https://doi.org/10.1038/nature09938 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bachmann AW, Sedgley TL, Jackson RV, Gibson JN, Young RM, Torpy DJ (2005) Glucocorticoid receptor polymorphisms and post-traumatic stress disorder. Psychoneuroendocrinology 30(3):297–306.  https://doi.org/10.1016/j.psyneuen.2004.08.006 CrossRefPubMedGoogle Scholar
  12. Bahi A, Dreyer JL (2012) Hippocampus-specific deletion of tissue plasminogen activator “tPA” in adult mice impairs depression- and anxiety-like behaviors. Eur Neuropsychopharmacol 22(9):672–682.  https://doi.org/10.1016/j.euroneuro.2012.01.008 CrossRefPubMedGoogle Scholar
  13. Bariohay B, Tardivel C, Pio J, Jean A, Felix B (2008) BDNF-TrkB signaling interacts with the GABAergic system to inhibit rhythmic swallowing in the rat. Am J Physiol Regul Integr Comp Physiol 295(4):R1050–R1059.  https://doi.org/10.1152/ajpregu.90407.2008 CrossRefPubMedGoogle Scholar
  14. Bath KG, Jing DQ, Dincheva I, Neeb CC, Pattwell SS, Chao MV et al (2012) BDNF Val66Met impairs fluoxetine-induced enhancement of adult hippocampus plasticity. Neuropsychopharmacology 37(5):1297–1304.  https://doi.org/10.1038/npp.2011.318 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bennett M (2009) Positive and negative symptoms in schizophrenia: the NMDA receptor hypofunction hypothesis, neuregulin/ErbB4 and synapse regression. Aust N Z J Psychiatry 43(8):711–721.  https://doi.org/10.1080/00048670903001943 CrossRefPubMedGoogle Scholar
  16. Bennett MR, Farnell L, Gibson WG (2011) A model of NMDA receptor control of F-actin treadmilling in synaptic spines and their growth. Bull Math Biol 73(9):2109–2131.  https://doi.org/10.1007/s11538-010-9614-4 CrossRefPubMedGoogle Scholar
  17. Bennett MR, Lagopoulos J (2014) Stress and trauma: BDNF control of dendritic-spine formation and regression. Prog Neurobiol 112:80–99.  https://doi.org/10.1016/j.pneurobio.2013.10.005 CrossRefPubMedGoogle Scholar
  18. Bennur S, Shankaranarayana Rao BS, Pawlak R, Strickland S, McEwen BS, Chattarji S (2007) Stress-induced spine loss in the medial amygdala is mediated by tissue-plasminogen activator. Neuroscience 144(1):8–16.  https://doi.org/10.1016/j.neuroscience.2006.08.075 CrossRefPubMedGoogle Scholar
  19. Binder EB (2009) The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders. Psychoneuroendocrinology 34(Suppl 1):S186–S195.  https://doi.org/10.1016/j.psyneuen.2009.05.021 CrossRefPubMedGoogle Scholar
  20. Binder EB, Bradley RG, Liu W, Epstein MP, Deveau TC, Mercer KB et al (2008) Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. JAMA 299(11):1291–1305.  https://doi.org/10.1001/jama.299.11.1291 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Bishop JF, Mueller GP, Mouradian MM (1994) Alternate 5′ exons in the rat brain-derived neurotrophic factor gene: differential patterns of expression across brain regions. Brain Res Mol Brain Res 26(1–2):225–232CrossRefGoogle Scholar
  22. Boscarino JA, Erlich PM, Hoffman SN, Rukstalis M, Stewart WF (2011) Association of FKBP5, COMT and CHRNA5 polymorphisms with PTSD among outpatients at risk for PTSD. Psychiatry Res 188(1):173–174.  https://doi.org/10.1016/j.psychres.2011.03.002 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Boulle F, van den Hove DL, Jakob SB, Rutten BP, Hamon M, van Os J et al (2012) Epigenetic regulation of the BDNF gene: implications for psychiatric disorders. Mol Psychiatry 17(6):584–596.  https://doi.org/10.1038/mp.2011.107 CrossRefPubMedGoogle Scholar
  24. Bramham CR, Wells DG (2007) Dendritic mRNA: transport, translation and function. Nat Rev Neurosci 8(10):776–789.  https://doi.org/10.1038/nrn2150 CrossRefPubMedGoogle Scholar
  25. Branchi I, Karpova NN, D’Andrea I, Castren E, Alleva E (2011) Epigenetic modifications induced by early enrichment are associated with changes in timing of induction of BDNF expression. Neurosci Lett 495(3):168–172.  https://doi.org/10.1016/j.neulet.2011.03.038 CrossRefPubMedGoogle Scholar
  26. Bredy TW, Wu H, Crego C, Zellhoefer J, Sun YE, Barad M (2007) Histone modifications around individual BDNF gene promoters in prefrontal cortex are associated with extinction of conditioned fear. Learn Mem 14(4):268–276.  https://doi.org/10.1101/lm.500907 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Brunson KL, Khan N, Eghbal-Ahmadi M, Baram TZ (2001) Corticotropin (ACTH) acts directly on amygdala neurons to down-regulate corticotropin-releasing hormone gene expression. Ann Neurol 49(3):304–312CrossRefGoogle Scholar
  28. Carvalho AL, Caldeira MV, Santos SD, Duarte CB (2008) Role of the brain-derived neurotrophic factor at glutamatergic synapses. Br J Pharmacol 153(Suppl 1):S310–S324.  https://doi.org/10.1038/sj.bjp.0707509 CrossRefPubMedGoogle Scholar
  29. Chen Y, Bender RA, Brunson KL, Pomper JK, Grigoriadis DE, Wurst W, Baram TZ (2004) Modulation of dendritic differentiation by corticotropin-releasing factor in the developing hippocampus. Proc Natl Acad Sci USA 101(44):15782–15787.  https://doi.org/10.1073/pnas.0403975101 CrossRefPubMedGoogle Scholar
  30. Chen TJ, Gehler S, Shaw AE, Bamburg JR, Letourneau PC (2006) Cdc42 participates in the regulation of ADF/cofilin and retinal growth cone filopodia by brain derived neurotrophic factor. J Neurobiol 66(2):103–114.  https://doi.org/10.1002/neu.20204 CrossRefPubMedGoogle Scholar
  31. Chen Y, Dube CM, Rice CJ, Baram TZ (2008) Rapid loss of dendritic spines after stress involves derangement of spine dynamics by corticotropin-releasing hormone. J Neurosci 28(11):2903–2911.  https://doi.org/10.1523/JNEUROSCI.0225-08.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Chen DY, Bambah-Mukku D, Pollonini G, Alberini CM (2012a) Glucocorticoid receptors recruit the CaMKIIalpha-BDNF-CREB pathways to mediate memory consolidation. Nat Neurosci 15(12):1707–1714.  https://doi.org/10.1038/nn.3266 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Chen X, Li Y, Li S, Kirouac GJ (2012b) Early fear as a predictor of avoidance in a rat model of post-traumatic stress disorder. Behav Brain Res 226(1):112–117.  https://doi.org/10.1016/j.bbr.2011.09.004 CrossRefPubMedGoogle Scholar
  34. Chen Y, Kramar EA, Chen LY, Babayan AH, Andres AL, Gall CM et al (2013) Impairment of synaptic plasticity by the stress mediator CRH involves selective destruction of thin dendritic spines via RhoA signaling. Mol Psychiatry 18(4):485–496.  https://doi.org/10.1038/mp.2012.17 CrossRefPubMedGoogle Scholar
  35. Chiba S, Numakawa T, Ninomiya M, Richards MC, Wakabayashi C, Kunugi H (2012) Chronic restraint stress causes anxiety- and depression-like behaviors, downregulates glucocorticoid receptor expression, and attenuates glutamate release induced by brain-derived neurotrophic factor in the prefrontal cortex. Prog Neuro-Psychopharmacol Biol Psychiatry 39(1):112–119.  https://doi.org/10.1016/j.pnpbp.2012.05.018 CrossRefGoogle Scholar
  36. Ciani L, Salinas PC (2008) From neuronal activity to the actin cytoskeleton: a role for CaMKKs and betaPIX in spine morphogenesis. Neuron 57(1):3–4.  https://doi.org/10.1016/j.neuron.2007.12.017 CrossRefPubMedPubMedCentralGoogle Scholar
  37. D’Amore DE, Tracy BA, Parikh V (2013) Exogenous BDNF facilitates strategy set-shifting by modulating glutamate dynamics in the dorsal striatum. Neuropharmacology 75:312–323.  https://doi.org/10.1016/j.neuropharm.2013.07.033 CrossRefPubMedGoogle Scholar
  38. Daniel PB, Lux W, Samson AL, Schleuning WD, Niego B, Weiss TW et al (2007) Two conserved regions within the tissue-type plasminogen activator gene promoter mediate regulation by brain-derived neurotrophic factor. FEBS J 274(9):2411–2423.  https://doi.org/10.1111/j.1742-4658.2007.05777.x CrossRefPubMedGoogle Scholar
  39. de Quervain DJ, Kolassa IT, Ackermann S, Aerni A, Boesiger P, Demougin P et al (2012) PKCalpha is genetically linked to memory capacity in healthy subjects and to risk for posttraumatic stress disorder in genocide survivors. Proc Natl Acad Sci USA 109(22):8746–8751.  https://doi.org/10.1073/pnas.1200857109 CrossRefPubMedGoogle Scholar
  40. Djordjevic A, Adzic M, Djordjevic J, Radojcic MB (2009) Stress type dependence of expression and cytoplasmic-nuclear partitioning of glucocorticoid receptor, hsp90 and hsp70 in Wistar rat brain. Neuropsychobiology 59(4):213–221.  https://doi.org/10.1159/000223733 CrossRefPubMedGoogle Scholar
  41. Dwivedi Y (2009) Brain-derived neurotrophic factor: role in depression and suicide. Neuropsychiatr Dis Treat 5:433–449CrossRefGoogle Scholar
  42. Dwivedi Y, Rizavi HS, Conley RR, Roberts RC, Tamminga CA, Pandey GN (2003) Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Arch Gen Psychiatry 60(8):804–815.  https://doi.org/10.1001/archpsyc.60.8.804 CrossRefPubMedGoogle Scholar
  43. Dwivedi Y, Rizavi HS, Pandey GN (2006) Antidepressants reverse corticosterone-mediated decrease in brain-derived neurotrophic factor expression: differential regulation of specific exons by antidepressants and corticosterone. Neuroscience 139(3):1017–1029.  https://doi.org/10.1016/j.neuroscience.2005.12.058 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Elia LP, Yamamoto M, Zang K, Reichardt LF (2006) p120 catenin regulates dendritic spine and synapse development through Rho-family GTPases and cadherins. Neuron 51(1):43–56.  https://doi.org/10.1016/j.neuron.2006.05.018 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Fuchikami M, Morinobu S, Segawa M, Okamoto Y, Yamawaki S, Ozaki N et al (2011) DNA methylation profiles of the brain-derived neurotrophic factor (BDNF) gene as a potent diagnostic biomarker in major depression. PLoS One 6(8):e23881.  https://doi.org/10.1371/journal.pone.0023881 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Fung SJ, Xi M, Zhang J, Torterolo P, Sampogna S, Morales FR, Chase MH (2011) Projection neurons from the central nucleus of the amygdala to the nucleus pontis oralis. J Neurosci Res 89(3):429–436.  https://doi.org/10.1002/jnr.22554 CrossRefPubMedGoogle Scholar
  47. Gillespie CF, Phifer J, Bradley B, Ressler KJ (2009) Risk and resilience: genetic and environmental influences on development of the stress response. Depress Anxiety 26(11):984–992.  https://doi.org/10.1002/da.20605 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Gounko NV, Swinny JD, Kalicharan D, Jafari S, Corteen N, Seifi M (2013) Corticotropin-releasing factor and urocortin regulate spine and synapse formation: structural basis for stress-induced neuronal remodeling and pathology. Mol Psychiatry 18(1):86–92.  https://doi.org/10.1038/mp.2012.43 CrossRefPubMedGoogle Scholar
  49. Gourley SL, Swanson AM, Jacobs AM, Howell JL, Mo M, Dileone RJ (2012) Action control is mediated by prefrontal BDNF and glucocorticoid receptor binding. Proc Natl Acad Sci USA 109(50):20714–20719.  https://doi.org/10.1073/pnas.1208342109 CrossRefPubMedGoogle Scholar
  50. Govek EE, Newey SE, Van Aelst L (2005) The role of the Rho GTPases in neuronal development. Genes Dev 19(1):1–49.  https://doi.org/10.1101/gad.1256405 CrossRefPubMedGoogle Scholar
  51. Grande I, Fries GR, Kunz M, Kapczinski F (2010) The role of BDNF as a mediator of neuroplasticity in bipolar disorder. Psychiatry Investig 7(4):243–250.  https://doi.org/10.4306/pi.2010.7.4.243 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Guidotti G, Calabrese F, Anacker C, Racagni G, Pariante CM, Riva MA (2013) Glucocorticoid receptor and FKBP5 expression is altered following exposure to chronic stress: modulation by antidepressant treatment. Neuropsychopharmacology 38(4):616–627.  https://doi.org/10.1038/npp.2012.225 CrossRefPubMedGoogle Scholar
  53. Gupta-Agarwal S, Franklin AV, Deramus T, Wheelock M, Davis RL, McMahon LL, Lubin FD (2012) G9a/GLP histone lysine dimethyltransferase complex activity in the hippocampus and the entorhinal cortex is required for gene activation and silencing during memory consolidation. J Neurosci 32(16):5440–5453.  https://doi.org/10.1523/JNEUROSCI.0147-12.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Hale CF, Dietz KC, Varela JA, Wood CB, Zirlin BC, Leverich LS et al (2011) Essential role for vav Guanine nucleotide exchange factors in brain-derived neurotrophic factor-induced dendritic spine growth and synapse plasticity. J Neurosci 31(35):12426–12436.  https://doi.org/10.1523/JNEUROSCI.0685-11.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Hansson AC, Sommer WH, Metsis M, Stromberg I, Agnati LF, Fuxe K (2006) Corticosterone actions on the hippocampal brain-derived neurotrophic factor expression are mediated by exon IV promoter. J Neuroendocrinol 18(2):104–114.  https://doi.org/10.1111/j.1365-2826.2005.01390.x CrossRefPubMedGoogle Scholar
  56. Haring M, Guggenhuber S, Lutz B (2012) Neuronal populations mediating the effects of endocannabinoids on stress and emotionality. Neuroscience 204:145–158.  https://doi.org/10.1016/j.neuroscience.2011.12.035 CrossRefPubMedGoogle Scholar
  57. Harvey RJ, Morando L, Rasetti R, Strata P (2005) Spontaneous electrical activity and dendritic spine size in mature cerebellar Purkinje cells. Eur J Neurosci 21(7):1777–1784.  https://doi.org/10.1111/j.1460-9568.2005.04010.x CrossRefPubMedGoogle Scholar
  58. Hauer D, Weis F, Papassotiropoulos A, Schmoeckel M, Beiras-Fernandez A, Lieke J et al (2011) Relationship of a common polymorphism of the glucocorticoid receptor gene to traumatic memories and posttraumatic stress disorder in patients after intensive care therapy. Crit Care Med 39(4):643–650.  https://doi.org/10.1097/CCM.0b013e318206bae6 CrossRefPubMedGoogle Scholar
  59. Hill MN, Hillard CJ, McEwen BS (2011) Alterations in corticolimbic dendritic morphology and emotional behavior in cannabinoid CB1 receptor-deficient mice parallel the effects of chronic stress. Cereb Cortex 21(9):2056–2064.  https://doi.org/10.1093/cercor/bhq280 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Hill MN, Bierer LM, Makotkine I, Golier JA, Galea S, McEwen BS et al (2013) Reductions in circulating endocannabinoid levels in individuals with post-traumatic stress disorder following exposure to the World Trade Center attacks. Psychoneuroendocrinology 38(12):2952–2961.  https://doi.org/10.1016/j.psyneuen.2013.08.004 CrossRefPubMedGoogle Scholar
  61. Honkura N, Matsuzaki M, Noguchi J, Ellis-Davies GC, Kasai H (2008) The subspine organization of actin fibers regulates the structure and plasticity of dendritic spines. Neuron 57(5):719–729.  https://doi.org/10.1016/j.neuron.2008.01.013 CrossRefPubMedGoogle Scholar
  62. Huang F, Chotiner JK, Steward O (2007) Actin polymerization and ERK phosphorylation are required for Arc/Arg3.1 mRNA targeting to activated synaptic sites on dendrites. J Neurosci 27(34):9054–9067.  https://doi.org/10.1523/JNEUROSCI.2410-07.2007 CrossRefPubMedGoogle Scholar
  63. Huang Y, Ko H, Cheung ZH, Yung KK, Yao T, Wang JJ et al (2012) Dual actions of brain-derived neurotrophic factor on GABAergic transmission in cerebellar Purkinje neurons. Exp Neurol 233(2):791–798.  https://doi.org/10.1016/j.expneurol.2011.11.043 CrossRefPubMedGoogle Scholar
  64. Jaaskelainen T, Makkonen H, Palvimo JJ (2011) Steroid up-regulation of FKBP51 and its role in hormone signaling. Curr Opin Pharmacol 11(4):326–331.  https://doi.org/10.1016/j.coph.2011.04.006 CrossRefPubMedGoogle Scholar
  65. Johnson LR, Farb C, Morrison JH, McEwen BS, LeDoux JE (2005) Localization of glucocorticoid receptors at postsynaptic membranes in the lateral amygdala. Neuroscience 136(1):289–299.  https://doi.org/10.1016/j.neuroscience.2005.06.050 CrossRefPubMedGoogle Scholar
  66. Johnson SA, Wang JF, Sun X, McEwen BS, Chattarji S, Young LT (2009) Lithium treatment prevents stress-induced dendritic remodeling in the rodent amygdala. Neuroscience 163(1):34–39.  https://doi.org/10.1016/j.neuroscience.2009.06.005 CrossRefPubMedGoogle Scholar
  67. Kang H, Schuman EM (1996) A requirement for local protein synthesis in neurotrophin-induced hippocampal synaptic plasticity. Science 273(5280):1402–1406CrossRefGoogle Scholar
  68. Kaplan GB, Moore KA (2011) The use of cognitive enhancers in animal models of fear extinction. Pharmacol Biochem Behav 99(2):217–228.  https://doi.org/10.1016/j.pbb.2011.01.009 CrossRefPubMedGoogle Scholar
  69. Karpova NN, Pickenhagen A, Lindholm J, Tiraboschi E, Kulesskaya N, Agustsdottir A et al (2011) Fear erasure in mice requires synergy between antidepressant drugs and extinction training. Science 334(6063):1731–1734.  https://doi.org/10.1126/science.1214592 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Kawashima H, Numakawa T, Kumamaru E, Adachi N, Mizuno H, Ninomiya M et al (2010) Glucocorticoid attenuates brain-derived neurotrophic factor-dependent upregulation of glutamate receptors via the suppression of microRNA-132 expression. Neuroscience 165(4):1301–1311.  https://doi.org/10.1016/j.neuroscience.2009.11.057 CrossRefPubMedGoogle Scholar
  71. Keller S, Sarchiapone M, Zarrilli F, Videtic A, Ferraro A, Carli V et al (2010) Increased BDNF promoter methylation in the Wernicke area of suicide subjects. Arch Gen Psychiatry 67(3):258–267.  https://doi.org/10.1001/archgenpsychiatry.2010.9 CrossRefPubMedGoogle Scholar
  72. Klein ME, Lioy DT, Ma L, Impey S, Mandel G, Goodman RH (2007) Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA. Nat Neurosci 10(12):1513–1514.  https://doi.org/10.1038/nn2010 CrossRefPubMedGoogle Scholar
  73. Klengel T, Mehta D, Anacker C, Rex-Haffner M, Pruessner JC, Pariante CM et al (2013) Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nat Neurosci 16(1):33–41.  https://doi.org/10.1038/nn.3275 CrossRefPubMedGoogle Scholar
  74. Koenen KC, Saxe G, Purcell S, Smoller JW, Bartholomew D, Miller A et al (2005) Polymorphisms in FKBP5 are associated with peritraumatic dissociation in medically injured children. Mol Psychiatry 10(12):1058–1059.  https://doi.org/10.1038/sj.mp.4001727 CrossRefPubMedGoogle Scholar
  75. Koenen KC, Fu QJ, Ertel K, Lyons MJ, Eisen SA, True WR et al (2008) Common genetic liability to major depression and posttraumatic stress disorder in men. J Affect Disord 105(1–3):109–115.  https://doi.org/10.1016/j.jad.2007.04.021 CrossRefPubMedGoogle Scholar
  76. Komatsuzaki Y, Hatanaka Y, Murakami G, Mukai H, Hojo Y, Saito M et al (2012) Corticosterone induces rapid spinogenesis via synaptic glucocorticoid receptors and kinase networks in hippocampus. PLoS One 7(4):e34124.  https://doi.org/10.1371/journal.pone.0034124 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Kozlovsky N, Matar MA, Kaplan Z, Kotler M, Zohar J, Cohen H (2007) Long-term down-regulation of BDNF mRNA in rat hippocampal CA1 subregion correlates with PTSD-like behavioural stress response. Int J Neuropsychopharmacol 10(6):741–758.  https://doi.org/10.1017/S1461145707007560 CrossRefPubMedGoogle Scholar
  78. Kumamaru E, Numakawa T, Adachi N, Yagasaki Y, Izumi A, Niyaz M et al (2008) Glucocorticoid prevents brain-derived neurotrophic factor-mediated maturation of synaptic function in developing hippocampal neurons through reduction in the activity of mitogen-activated protein kinase. Mol Endocrinol 22(3):546–558.  https://doi.org/10.1210/me.2007-0264 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Kumamaru E, Numakawa T, Adachi N, Kunugi H (2011) Glucocorticoid suppresses BDNF-stimulated MAPK/ERK pathway via inhibiting interaction of Shp2 with TrkB. FEBS Lett 585(20):3224–3228.  https://doi.org/10.1016/j.febslet.2011.09.010 CrossRefPubMedGoogle Scholar
  80. Lakshminarasimhan H, Chattarji S (2012) Stress leads to contrasting effects on the levels of brain derived neurotrophic factor in the hippocampus and amygdala. PLoS One 7(1):e30481.  https://doi.org/10.1371/journal.pone.0030481 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Lebow M, Neufeld-Cohen A, Kuperman Y, Tsoory M, Gil S, Chen A (2012) Susceptibility to PTSD-like behavior is mediated by corticotropin-releasing factor receptor type 2 levels in the bed nucleus of the stria terminalis. J Neurosci 32(20):6906–6916.  https://doi.org/10.1523/JNEUROSCI.4012-11.2012 CrossRefPubMedGoogle Scholar
  82. Li HS, Xu XZ, Montell C (1999) Activation of a TRPC3-dependent cation current through the neurotrophin BDNF. Neuron 24(1):261–273CrossRefGoogle Scholar
  83. Li Y, Calfa G, Inoue T, Amaral MD, Pozzo-Miller L (2010) Activity-dependent release of endogenous BDNF from mossy fibers evokes a TRPC3 current and Ca2+ elevations in CA3 pyramidal neurons. J Neurophysiol 103(5):2846–2856.  https://doi.org/10.1152/jn.01140.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Lightman SL (2008) The neuroendocrinology of stress: a never ending story. J Neuroendocrinol 20(6):880–884.  https://doi.org/10.1111/j.1365-2826.2008.01711.x CrossRefPubMedGoogle Scholar
  85. Liston C, Gan WB (2011) Glucocorticoids are critical regulators of dendritic spine development and plasticity in vivo. Proc Natl Acad Sci USA 108(38):16074–16079.  https://doi.org/10.1073/pnas.1110444108 CrossRefPubMedGoogle Scholar
  86. Liu J, Yu B, Neugebauer V, Grigoriadis DE, Rivier J, Vale WW et al (2004) Corticotropin-releasing factor and Urocortin I modulate excitatory glutamatergic synaptic transmission. J Neurosci 24(16):4020–4029.  https://doi.org/10.1523/JNEUROSCI.5531-03.2004 CrossRefPubMedGoogle Scholar
  87. Liu L, Wang C, Ni X, Sun J (2007) A rapid inhibition of NMDA receptor current by corticosterone in cultured hippocampal neurons. Neurosci Lett 420(3):245–250.  https://doi.org/10.1016/j.neulet.2007.05.003 CrossRefPubMedGoogle Scholar
  88. Lubin FD (2011) Epigenetic gene regulation in the adult mammalian brain: multiple roles in memory formation. Neurobiol Learn Mem 96(1):68–78.  https://doi.org/10.1016/j.nlm.2011.03.001 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Lubin FD, Roth TL, Sweatt JD (2008) Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. J Neurosci 28(42):10576–10586.  https://doi.org/10.1523/JNEUROSCI.1786-08.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Maddox SA, Schafe GE (2011) Epigenetic alterations in the lateral amygdala are required for reconsolidation of a Pavlovian fear memory. Learn Mem 18(9):579–593.  https://doi.org/10.1101/lm.2243411 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Magarinos AM, Li CJ, Gal Toth J, Bath KG, Jing D, Lee FS, McEwen BS (2011) Effect of brain-derived neurotrophic factor haploinsufficiency on stress-induced remodeling of hippocampal neurons. Hippocampus 21(3):253–264.  https://doi.org/10.1002/hipo.20744 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Matys T, Pawlak R, Matys E, Pavlides C, McEwen BS, Strickland S (2004) Tissue plasminogen activator promotes the effects of corticotropin-releasing factor on the amygdala and anxiety-like behavior. Proc Natl Acad Sci USA 101(46):16345–16350.  https://doi.org/10.1073/pnas.0407355101 CrossRefPubMedGoogle Scholar
  93. McGowan PO, Sasaki A, D’Alessio AC, Dymov S, Labonte B, Szyf M et al (2009) Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci 12(3):342–348.  https://doi.org/10.1038/nn.2270 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Mehta D, Gonik M, Klengel T, Rex-Haffner M, Menke A, Rubel J et al (2011) Using polymorphisms in FKBP5 to define biologically distinct subtypes of posttraumatic stress disorder: evidence from endocrine and gene expression studies. Arch Gen Psychiatry 68(9):901–910.  https://doi.org/10.1001/archgenpsychiatry.2011.50 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Meijer OC (2002) Coregulator proteins and corticosteroid action in the brain. J Neuroendocrinol 14(6):499–505CrossRefGoogle Scholar
  96. Merighi A, Bardoni R, Salio C, Lossi L, Ferrini F, Prandini M et al (2008) Presynaptic functional trkB receptors mediate the release of excitatory neurotransmitters from primary afferent terminals in lamina II (substantia gelatinosa) of postnatal rat spinal cord. Dev Neurobiol 68(4):457–475.  https://doi.org/10.1002/dneu.20605 CrossRefPubMedGoogle Scholar
  97. Mitra R, Ferguson D, Sapolsky RM (2009) Mineralocorticoid receptor overexpression in basolateral amygdala reduces corticosterone secretion and anxiety. Biol Psychiatry 66(7):686–690.  https://doi.org/10.1016/j.biopsych.2009.04.016 CrossRefPubMedGoogle Scholar
  98. Molteni R, Calabrese F, Chourbaji S, Brandwein C, Racagni G, Gass P, Riva MA (2010) Depression-prone mice with reduced glucocorticoid receptor expression display an altered stress-dependent regulation of brain-derived neurotrophic factor and activity-regulated cytoskeleton-associated protein. J Psychopharmacol 24(4):595–603.  https://doi.org/10.1177/0269881108099815 CrossRefPubMedGoogle Scholar
  99. Nagappan G, Zaitsev E, Senatorov VV Jr, Yang J, Hempstead BL, Lu B (2009) Control of extracellular cleavage of ProBDNF by high frequency neuronal activity. Proc Natl Acad Sci USA 106(4):1267–1272.  https://doi.org/10.1073/pnas.0807322106 CrossRefPubMedGoogle Scholar
  100. Nair A, Vadodaria KC, Banerjee SB, Benekareddy M, Dias BG, Duman RS, Vaidya VA (2007) Stressor-specific regulation of distinct brain-derived neurotrophic factor transcripts and cyclic AMP response element-binding protein expression in the postnatal and adult rat hippocampus. Neuropsychopharmacology 32(7):1504–1519.  https://doi.org/10.1038/sj.npp.1301276 CrossRefPubMedGoogle Scholar
  101. Nakayama AY, Harms MB, Luo L (2000) Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons. J Neurosci 20(14):5329–5338CrossRefGoogle Scholar
  102. Numakawa T, Suzuki S, Kumamaru E, Adachi N, Richards M, Kunugi H (2010) BDNF function and intracellular signaling in neurons. Histol Histopathol 25(2):237–258.  https://doi.org/10.14670/HH-25.237 CrossRefPubMedGoogle Scholar
  103. Numakawa T, Adachi N, Richards M, Chiba S, Kunugi H (2013) Brain-derived neurotrophic factor and glucocorticoids: reciprocal influence on the central nervous system. Neuroscience 239:157–172.  https://doi.org/10.1016/j.neuroscience.2012.09.073 CrossRefPubMedGoogle Scholar
  104. Ohbuchi T, Yokoyama T, Saito T, Hashimoto H, Suzuki H, Otsubo H et al (2009) Brain-derived neurotrophic factor inhibits spontaneous inhibitory postsynaptic currents in the rat supraoptic nucleus. Brain Res 1258:34–42.  https://doi.org/10.1016/j.brainres.2008.12.057 CrossRefPubMedGoogle Scholar
  105. Ou LC, Gean PW (2007) Transcriptional regulation of brain-derived neurotrophic factor in the amygdala during consolidation of fear memory. Mol Pharmacol 72(2):350–358.  https://doi.org/10.1124/mol.107.034934 CrossRefPubMedGoogle Scholar
  106. Oztan O, Aydin C, Isgor C (2011) Chronic variable physical stress during the peripubertal-juvenile period causes differential depressive and anxiogenic effects in the novelty-seeking phenotype: functional implications for hippocampal and amygdalar brain-derived neurotrophic factor and the mossy fibre plasticity. Neuroscience 192:334–344.  https://doi.org/10.1016/j.neuroscience.2011.06.077 CrossRefPubMedPubMedCentralGoogle Scholar
  107. Pang PT, Teng HK, Zaitsev E, Woo NT, Sakata K, Zhen S et al (2004) Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science 306(5695):487–491.  https://doi.org/10.1126/science.1100135 CrossRefPubMedGoogle Scholar
  108. Pawlak R, Magarinos AM, Melchor J, McEwen B, Strickland S (2003) Tissue plasminogen activator in the amygdala is critical for stress-induced anxiety-like behavior. Nat Neurosci 6(2):168–174.  https://doi.org/10.1038/nn998 CrossRefPubMedGoogle Scholar
  109. Pitman RK, Rasmusson AM, Koenen KC, Shin LM, Orr SP, Gilbertson MW et al (2012) Biological studies of post-traumatic stress disorder. Nat Rev Neurosci 13(11):769–787.  https://doi.org/10.1038/nrn3339 CrossRefPubMedPubMedCentralGoogle Scholar
  110. Pollard TD, Blanchoin L, Mullins RD (2000) Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu Rev Biophys Biomol Struct 29:545–576.  https://doi.org/10.1146/annurev.biophys.29.1.545 CrossRefPubMedGoogle Scholar
  111. Porcher C, Hatchett C, Longbottom RE, McAinch K, Sihra TS, Moss SJ et al (2011) Positive feedback regulation between gamma-aminobutyric acid type A (GABA(A)) receptor signaling and brain-derived neurotrophic factor (BDNF) release in developing neurons. J Biol Chem 286(24):21667–21677.  https://doi.org/10.1074/jbc.M110.201582 CrossRefPubMedPubMedCentralGoogle Scholar
  112. Rabiner CA, Mains RE, Eipper BA (2005) Kalirin: a dual Rho guanine nucleotide exchange factor that is so much more than the sum of its many parts. Neuroscientist 11(2):148–160.  https://doi.org/10.1177/1073858404271250 CrossRefPubMedGoogle Scholar
  113. Rattiner LM, Davis M, Ressler KJ (2004) Differential regulation of brain-derived neurotrophic factor transcripts during the consolidation of fear learning. Learn Mem 11(6):727–731CrossRefGoogle Scholar
  114. Reich CG, Taylor ME, McCarthy MM (2009) Differential effects of chronic unpredictable stress on hippocampal CB1 receptors in male and female rats. Behav Brain Res 203(2):264–269.  https://doi.org/10.1016/j.bbr.2009.05.013 CrossRefPubMedPubMedCentralGoogle Scholar
  115. Reul JM, Chandramohan Y (2007) Epigenetic mechanisms in stress-related memory formation. Psychoneuroendocrinology 32(Suppl 1):S21–S25.  https://doi.org/10.1016/j.psyneuen.2007.03.016 CrossRefPubMedGoogle Scholar
  116. Reul JM, Gesing A, Droste S, Stec IS, Weber A, Bachmann C et al (2000) The brain mineralocorticoid receptor: greedy for ligand, mysterious in function. Eur J Pharmacol 405(1–3):235–249CrossRefGoogle Scholar
  117. Riegel AC, Williams JT (2008) CRF facilitates calcium release from intracellular stores in midbrain dopamine neurons. Neuron 57(4):559–570.  https://doi.org/10.1016/j.neuron.2007.12.029 CrossRefPubMedPubMedCentralGoogle Scholar
  118. Rodenas-Ruano A, Chavez AE, Cossio MJ, Castillo PE, Zukin RS (2012) REST-dependent epigenetic remodeling promotes the developmental switch in synaptic NMDA receptors. Nat Neurosci 15(10):1382–1390.  https://doi.org/10.1038/nn.3214 CrossRefPubMedPubMedCentralGoogle Scholar
  119. Roth TL, Sweatt JD (2011) Epigenetic marking of the BDNF gene by early-life adverse experiences. Horm Behav 59(3):315–320.  https://doi.org/10.1016/j.yhbeh.2010.05.005 CrossRefPubMedGoogle Scholar
  120. Roth TL, Lubin FD, Funk AJ, Sweatt JD (2009) Lasting epigenetic influence of early-life adversity on the BDNF gene. Biol Psychiatry 65(9):760–769.  https://doi.org/10.1016/j.biopsych.2008.11.028 CrossRefPubMedPubMedCentralGoogle Scholar
  121. Roth TL, Zoladz PR, Sweatt JD, Diamond DM (2011) Epigenetic modification of hippocampal Bdnf DNA in adult rats in an animal model of post-traumatic stress disorder. J Psychiatr Res 45(7):919–926.  https://doi.org/10.1016/j.jpsychires.2011.01.013 CrossRefPubMedPubMedCentralGoogle Scholar
  122. Rothman SM, Mattson MP (2013) Activity-dependent, stress-responsive BDNF signaling and the quest for optimal brain health and resilience throughout the lifespan. Neuroscience 239:228–240.  https://doi.org/10.1016/j.neuroscience.2012.10.014 CrossRefPubMedGoogle Scholar
  123. Sala C, Piech V, Wilson NR, Passafaro M, Liu G, Sheng M (2001) Regulation of dendritic spine morphology and synaptic function by Shank and Homer. Neuron 31(1):115–130CrossRefGoogle Scholar
  124. Saneyoshi T, Wayman G, Fortin D, Davare M, Hoshi N, Nozaki N et al (2008) Activity-dependent synaptogenesis: regulation by a CaM-kinase kinase/CaM-kinase I/betaPIX signaling complex. Neuron 57(1):94–107.  https://doi.org/10.1016/j.neuron.2007.11.016 CrossRefPubMedPubMedCentralGoogle Scholar
  125. Santos AR, Comprido D, Duarte CB (2010) Regulation of local translation at the synapse by BDNF. Prog Neurobiol 92(4):505–516.  https://doi.org/10.1016/j.pneurobio.2010.08.004 CrossRefPubMedGoogle Scholar
  126. Sartor CE, McCutcheon VV, Pommer NE, Nelson EC, Grant JD, Duncan AE et al (2011) Common genetic and environmental contributions to post-traumatic stress disorder and alcohol dependence in young women. Psychol Med 41(7):1497–1505.  https://doi.org/10.1017/S0033291710002072 CrossRefPubMedGoogle Scholar
  127. Sato S, Osanai H, Monma T, Harada T, Hirano A, Saito M, Kawato S (2004) Acute effect of corticosterone on N-methyl-D-aspartate receptor-mediated Ca2+ elevation in mouse hippocampal slices. Biochem Biophys Res Commun 321(2):510–513.  https://doi.org/10.1016/j.bbrc.2004.06.168 CrossRefPubMedGoogle Scholar
  128. Schaaf MJ, De Kloet ER, Vreugdenhil E (2000) Corticosterone effects on BDNF expression in the hippocampus. Implications for memory formation. Stress 3(3):201–208CrossRefGoogle Scholar
  129. Scharf SH, Liebl C, Binder EB, Schmidt MV, Muller MB (2011) Expression and regulation of the Fkbp5 gene in the adult mouse brain. PLoS One 6(2):e16883.  https://doi.org/10.1371/journal.pone.0016883 CrossRefPubMedPubMedCentralGoogle Scholar
  130. Schiefer J, Kampe K, Dodt HU, Zieglgansberger W, Kreutzberg GW (1999) Microglial motility in the rat facial nucleus following peripheral axotomy. J Neurocytol 28(6):439–453CrossRefGoogle Scholar
  131. Schratt GM, Nigh EA, Chen WG, Hu L, Greenberg ME (2004) BDNF regulates the translation of a select group of mRNAs by a mammalian target of rapamycin-phosphatidylinositol 3-kinase-dependent pathway during neuronal development. J Neurosci 24(33):7366–7377.  https://doi.org/10.1523/JNEUROSCI.1739-04.2004 CrossRefPubMedGoogle Scholar
  132. Sharma RP, Tun N, Grayson DR (2008) Depolarization induces downregulation of DNMT1 and DNMT3a in primary cortical cultures. Epigenetics 3(2):74–80CrossRefGoogle Scholar
  133. Shen W, Wu B, Zhang Z, Dou Y, Rao ZR, Chen YR, Duan S (2006) Activity-induced rapid synaptic maturation mediated by presynaptic cdc42 signaling. Neuron 50(3):401–414.  https://doi.org/10.1016/j.neuron.2006.03.017 CrossRefPubMedGoogle Scholar
  134. Sheng H, Zhang Y, Sun J, Gao L, Ma B, Lu J, Ni X (2008) Corticotropin-releasing hormone (CRH) depresses n-methyl-D-aspartate receptor-mediated current in cultured rat hippocampal neurons via CRH receptor type 1. Endocrinology 149(3):1389–1398.  https://doi.org/10.1210/en.2007-1378 CrossRefPubMedGoogle Scholar
  135. Skrzypiec AE, Buczko W, Pawlak R (2008) Tissue plasminogen activator in the amygdala: a new role for an old protease. J Physiol Pharmacol 59(Suppl 8):135–146PubMedGoogle Scholar
  136. Smith MA, Makino S, Kvetnansky R, Post RM (1995) Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci 15(3 Pt 1):1768–1777CrossRefGoogle Scholar
  137. So AY, Chaivorapol C, Bolton EC, Li H, Yamamoto KR (2007) Determinants of cell- and gene-specific transcriptional regulation by the glucocorticoid receptor. PLoS Genet 3(6):e94.  https://doi.org/10.1371/journal.pgen.0030094 CrossRefPubMedPubMedCentralGoogle Scholar
  138. Spijker AT, van Rossum EF (2012) Glucocorticoid sensitivity in mood disorders. Neuroendocrinology 95(3):179–186.  https://doi.org/10.1159/000329846 CrossRefPubMedGoogle Scholar
  139. Stranahan AM, Arumugam TV, Mattson MP (2011) Lowering corticosterone levels reinstates hippocampal brain-derived neurotropic factor and Trkb expression without influencing deficits in hypothalamic brain-derived neurotropic factor expression in leptin receptor-deficient mice. Neuroendocrinology 93(1):58–64.  https://doi.org/10.1159/000322808 CrossRefPubMedGoogle Scholar
  140. Suri D, Vaidya VA (2013) Glucocorticoid regulation of brain-derived neurotrophic factor: relevance to hippocampal structural and functional plasticity. Neuroscience 239:196–213.  https://doi.org/10.1016/j.neuroscience.2012.08.065 CrossRefPubMedGoogle Scholar
  141. Swinny JD, Valentino RJ (2006) Corticotropin-releasing factor promotes growth of brain norepinephrine neuronal processes through Rho GTPase regulators of the actin cytoskeleton in rat. Eur J Neurosci 24(9):2481–2490.  https://doi.org/10.1111/j.1460-9568.2006.05129.x CrossRefPubMedGoogle Scholar
  142. Takei S, Morinobu S, Yamamoto S, Fuchikami M, Matsumoto T, Yamawaki S (2011) Enhanced hippocampal BDNF/TrkB signaling in response to fear conditioning in an animal model of posttraumatic stress disorder. J Psychiatr Res 45(4):460–468.  https://doi.org/10.1016/j.jpsychires.2010.08.009 CrossRefPubMedGoogle Scholar
  143. Tanaka J, Horiike Y, Matsuzaki M, Miyazaki T, Ellis-Davies GC, Kasai H (2008) Protein synthesis and neurotrophin-dependent structural plasticity of single dendritic spines. Science 319(5870):1683–1687.  https://doi.org/10.1126/science.1152864 CrossRefPubMedPubMedCentralGoogle Scholar
  144. Tashiro A, Yuste R (2004) Regulation of dendritic spine motility and stability by Rac1 and Rho kinase: evidence for two forms of spine motility. Mol Cell Neurosci 26(3):429–440.  https://doi.org/10.1016/j.mcn.2004.04.001 CrossRefPubMedGoogle Scholar
  145. Tashiro A, Yuste R (2008) Role of Rho GTPases in the morphogenesis and motility of dendritic spines. Methods Enzymol 439:285–302.  https://doi.org/10.1016/S0076-6879(07)00421-1 CrossRefPubMedGoogle Scholar
  146. Tashiro A, Minden A, Yuste R (2000) Regulation of dendritic spine morphology by the rho family of small GTPases: antagonistic roles of Rac and Rho. Cereb Cortex 10(10):927–938CrossRefGoogle Scholar
  147. Taylor AH, Finney M, Lam PM, Konje JC (2011) Modulation of the endocannabinoid system in viable and non-viable first trimester pregnancies by pregnancy-related hormones. Reprod Biol Endocrinol 9:152.  https://doi.org/10.1186/1477-7827-9-152 CrossRefPubMedPubMedCentralGoogle Scholar
  148. Timmusk T, Palm K, Metsis M, Reintam T, Paalme V, Saarma M, Persson H (1993) Multiple promoters direct tissue-specific expression of the rat BDNF gene. Neuron 10(3):475–489CrossRefGoogle Scholar
  149. Treweek JB, Jaferi A, Colago EE, Zhou P, Pickel VM (2009) Electron microscopic localization of corticotropin-releasing factor (CRF) and CRF receptor in rat and mouse central nucleus of the amygdala. J Comp Neurol 512(3):323–335.  https://doi.org/10.1002/cne.21884 CrossRefPubMedPubMedCentralGoogle Scholar
  150. Trollope AF, Gutierrez-Mecinas M, Mifsud KR, Collins A, Saunderson EA, Reul JM (2012) Stress, epigenetic control of gene expression and memory formation. Exp Neurol 233(1):3–11.  https://doi.org/10.1016/j.expneurol.2011.03.022 CrossRefPubMedGoogle Scholar
  151. Tsai SJ, Hong CJ, Liou YJ (2011) Recent molecular genetic studies and methodological issues in suicide research. Prog Neuro-Psychopharmacol Biol Psychiatry 35(4):809–817.  https://doi.org/10.1016/j.pnpbp.2010.10.014 CrossRefGoogle Scholar
  152. Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ (2006) Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 9(4):519–525.  https://doi.org/10.1038/nn1659 CrossRefPubMedGoogle Scholar
  153. Turner JD, Alt SR, Cao L, Vernocchi S, Trifonova S, Battello N, Muller CP (2010) Transcriptional control of the glucocorticoid receptor: CpG islands, epigenetics and more. Biochem Pharmacol 80(12):1860–1868.  https://doi.org/10.1016/j.bcp.2010.06.037 CrossRefPubMedGoogle Scholar
  154. Tyler WJ, Pozzo-Miller L (2003) Miniature synaptic transmission and BDNF modulate dendritic spine growth and form in rat CA1 neurones. J Physiol 553(Pt 2):497–509.  https://doi.org/10.1113/jphysiol.2003.052639 CrossRefPubMedPubMedCentralGoogle Scholar
  155. Vadodaria KC, Brakebusch C, Suter U, Jessberger S (2013) Stage-specific functions of the small Rho GTPases Cdc42 and Rac1 for adult hippocampal neurogenesis. J Neurosci 33(3):1179–1189.  https://doi.org/10.1523/JNEUROSCI.2103-12.2013 CrossRefPubMedGoogle Scholar
  156. van der Laan S, Meijer OC (2008) Pharmacology of glucocorticoids: beyond receptors. Eur J Pharmacol 585(2–3):483–491.  https://doi.org/10.1016/j.ejphar.2008.01.060 CrossRefPubMedGoogle Scholar
  157. van Winkel R, van Nierop M, Myin-Germeys I, van Os J (2013) Childhood trauma as a cause of psychosis: linking genes, psychology, and biology. Can J Psychiatr 58(1):44–51.  https://doi.org/10.1177/070674371305800109 CrossRefGoogle Scholar
  158. van Zuiden M, Kavelaars A, Geuze E, Olff M, Heijnen CJ (2013) Predicting PTSD: pre-existing vulnerabilities in glucocorticoid-signaling and implications for preventive interventions. Brain Behav Immun 30:12–21.  https://doi.org/10.1016/j.bbi.2012.08.015 CrossRefPubMedGoogle Scholar
  159. Vigers AJ, Amin DS, Talley-Farnham T, Gorski JA, Xu B, Jones KR (2012) Sustained expression of brain-derived neurotrophic factor is required for maintenance of dendritic spines and normal behavior. Neuroscience 212:1–18.  https://doi.org/10.1016/j.neuroscience.2012.03.031 CrossRefPubMedPubMedCentralGoogle Scholar
  160. Vyas A, Mitra R, Shankaranarayana Rao BS, Chattarji S (2002) Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J Neurosci 22(15):6810–6818.  https://doi.org/10.1523/JNEUROSCI.22-15-06810.2002 CrossRefPubMedGoogle Scholar
  161. Vyas A, Bernal S, Chattarji S (2003) Effects of chronic stress on dendritic arborization in the central and extended amygdala. Brain Res 965(1–2):290–294CrossRefGoogle Scholar
  162. Wang JC, Derynck MK, Nonaka DF, Khodabakhsh DB, Haqq C, Yamamoto KR (2004) Chromatin immunoprecipitation (ChIP) scanning identifies primary glucocorticoid receptor target genes. Proc Natl Acad Sci USA 101(44):15603–15608.  https://doi.org/10.1073/pnas.0407008101 CrossRefPubMedGoogle Scholar
  163. Wang XD, Rammes G, Kraev I, Wolf M, Liebl C, Scharf SH et al (2011) Forebrain CRF(1) modulates early-life stress-programmed cognitive deficits. J Neurosci 31(38):13625–13634.  https://doi.org/10.1523/JNEUROSCI.2259-11.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  164. Wang WS, Kang S, Liu WT, Li M, Liu Y, Yu C et al (2012) Extinction of aversive memories associated with morphine withdrawal requires ERK-mediated epigenetic regulation of brain-derived neurotrophic factor transcription in the rat ventromedial prefrontal cortex. J Neurosci 32(40):13763–13775.  https://doi.org/10.1523/JNEUROSCI.1991-12.2012 CrossRefPubMedGoogle Scholar
  165. Waterhouse EG, Xu B (2009) New insights into the role of brain-derived neurotrophic factor in synaptic plasticity. Mol Cell Neurosci 42(2):81–89.  https://doi.org/10.1016/j.mcn.2009.06.009 CrossRefPubMedPubMedCentralGoogle Scholar
  166. Wayman GA, Davare M, Ando H, Fortin D, Varlamova O, Cheng HY et al (2008) An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proc Natl Acad Sci USA 105(26):9093–9098.  https://doi.org/10.1073/pnas.0803072105 CrossRefPubMedGoogle Scholar
  167. Xie Z, Cahill ME, Penzes P (2010) Kalirin loss results in cortical morphological alterations. Mol Cell Neurosci 43(1):81–89.  https://doi.org/10.1016/j.mcn.2009.09.006 CrossRefPubMedGoogle Scholar
  168. Yeh CM, Huang CC, Hsu KS (2012) Prenatal stress alters hippocampal synaptic plasticity in young rat offspring through preventing the proteolytic conversion of pro-brain-derived neurotrophic factor (BDNF) to mature BDNF. J Physiol 590(4):991–1010.  https://doi.org/10.1113/jphysiol.2011.222042 CrossRefPubMedGoogle Scholar
  169. Yehuda R, Flory JD, Pratchett LC, Buxbaum J, Ising M, Holsboer F (2010) Putative biological mechanisms for the association between early life adversity and the subsequent development of PTSD. Psychopharmacology 212(3):405–417.  https://doi.org/10.1007/s00213-010-1969-6 CrossRefPubMedGoogle Scholar
  170. Yin Y, Edelman GM, Vanderklish PW (2002) The brain-derived neurotrophic factor enhances synthesis of Arc in synaptoneurosomes. Proc Natl Acad Sci USA 99(4):2368–2373.  https://doi.org/10.1073/pnas.042693699 CrossRefPubMedGoogle Scholar
  171. Yudt MR, Cidlowski JA (2002) The glucocorticoid receptor: coding a diversity of proteins and responses through a single gene. Mol Endocrinol 16(8):1719–1726.  https://doi.org/10.1210/me.2002-0106 CrossRefPubMedGoogle Scholar
  172. Zai CC, Manchia M, De Luca V, Tiwari AK, Chowdhury NI, Zai GC et al (2012) The brain-derived neurotrophic factor gene in suicidal behaviour: a meta-analysis. Int J Neuropsychopharmacol 15(8):1037–1042.  https://doi.org/10.1017/S1461145711001313 CrossRefPubMedGoogle Scholar
  173. Zhang Z, Fan J, Ren Y, Zhou W, Yin G (2013) The release of glutamate from cortical neurons regulated by BDNF via the TrkB/Src/PLC-gamma1 pathway. J Cell Biochem 114(1):144–151.  https://doi.org/10.1002/jcb.24311 CrossRefPubMedGoogle Scholar
  174. Zocchi L, Sassone-Corsi P (2012) SIRT1-mediated deacetylation of MeCP2 contributes to BDNF expression. Epigenetics 7(7):695–700.  https://doi.org/10.4161/epi.20733 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Maxwell Bennett
    • 1
  • Jim Lagopoulos
    • 2
  1. 1.The University of SydneyBrain and Mind CentreCamperdown NSWAustralia
  2. 2.Sunshine Coast Mind and Neuroscience Thompson InstituteUniversity of Sunshine CoastBirtinyaAustralia

Personalised recommendations