Advertisement

Identification of the Core Neural Network Subserving PTSD in Animal Models and Their Modulation

  • Maxwell Bennett
  • Jim Lagopoulos
Chapter

Abstract

It is not possible to develop a full animal model of PTSD, given the human elements required to be satisfied according to DSM-IV, such as the traumatic event which should be accompanied by ‘intense fear, helplessness or horror’. It is, however, possible to interpret the behaviour of animals in these terms without of course knowing that such interpretations are correct rather than being simply anthropomorphic. DSM-IV sets out six sets of criteria (listed A to F) that must be met before a diagnosis of PTSD can be specified for a patient. Within each of these sets, it is possible to discern behaviours that might be interpreted across mammalian species, so allowing the possibility of developing animal models of PTSD. Such diagnostic criteria for PTSD are the following, taken from DSM-IV (American Psychiatric Association 1994; Table 309.81; following their numbering):

References

  1. Abe O, Yamasue H, Kasai K, Yamada H, Aoki S, Iwanami A et al (2006) Voxel-based diffusion tensor analysis reveals aberrant anterior cingulum integrity in posttraumatic stress disorder due to terrorism. Psychiatry Res 146(3):231–242.  https://doi.org/10.1016/j.pscychresns.2006.01.004 CrossRefPubMedGoogle Scholar
  2. Adamec RE (1998) Evidence that NMDA-dependent limbic neural plasticity in the right hemisphere mediates pharmacological stressor (FG-7142)-induced lasting increases in anxiety-like behavior. Study 1—role of NMDA receptors in efferent transmission from the cat amygdala. J Psychopharmacol 12(2):122–128.  https://doi.org/10.1177/026988119801200202 CrossRefPubMedGoogle Scholar
  3. Adamec R, Burton P, Blundell J, Murphy DL, Holmes A (2006) Vulnerability to mild predator stress in serotonin transporter knockout mice. Behav Brain Res 170(1):126–140.  https://doi.org/10.1016/j.bbr.2006.02.012 CrossRefPubMedGoogle Scholar
  4. Admon R, Leykin D, Lubin G, Engert V, Andrews J, Pruessner J, Hendler T (2013) Stress-induced reduction in hippocampal volume and connectivity with the ventromedial prefrontal cortex are related to maladaptive responses to stressful military service. Hum Brain Mapp 34(11):2808–2816.  https://doi.org/10.1002/hbm.22100 CrossRefPubMedGoogle Scholar
  5. Amano T, Unal CT, Pare D (2010) Synaptic correlates of fear extinction in the amygdala. Nat Neurosci 13(4):489–494.  https://doi.org/10.1038/nn.2499 CrossRefPubMedPubMedCentralGoogle Scholar
  6. American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Association, Arlington, VAGoogle Scholar
  7. Andero R, Ressler KJ (2012) Fear extinction and BDNF: translating animal models of PTSD to the clinic. Genes Brain Behav 11(5):503–512.  https://doi.org/10.1111/j.1601-183X.2012.00801.x CrossRefPubMedPubMedCentralGoogle Scholar
  8. Apfel BA, Ross J, Hlavin J, Meyerhoff DJ, Metzler TJ, Marmar CR et al (2011) Hippocampal volume differences in Gulf War veterans with current versus lifetime posttraumatic stress disorder symptoms. Biol Psychiatry 69(6):541–548.  https://doi.org/10.1016/j.biopsych.2010.09.044 CrossRefPubMedGoogle Scholar
  9. Araki T, Kasai K, Yamasue H, Kato N, Kudo N, Ohtani T et al (2005) Association between lower P300 amplitude and smaller anterior cingulate cortex volume in patients with posttraumatic stress disorder: a study of victims of Tokyo subway sarin attack. NeuroImage 25(1):43–50.  https://doi.org/10.1016/j.neuroimage.2004.11.039 CrossRefPubMedGoogle Scholar
  10. Baker-Andresen D, Flavell CR, Li X, Bredy TW (2013) Activation of BDNF signaling prevents the return of fear in female mice. Learn Mem 20(5):237–240.  https://doi.org/10.1101/lm.029520.112 CrossRefPubMedGoogle Scholar
  11. Behbehani MM (1995) Functional characteristics of the midbrain periaqueductal gray. Prog Neurobiol 46(6):575–605CrossRefGoogle Scholar
  12. Bekinschtein P, Cammarota M, Igaz LM, Bevilaqua LR, Izquierdo I, Medina JH (2007) Persistence of long-term memory storage requires a late protein synthesis- and BDNF- dependent phase in the hippocampus. Neuron 53(2):261–277.  https://doi.org/10.1016/j.neuron.2006.11.025 CrossRefPubMedGoogle Scholar
  13. Bekinschtein P, Cammarota M, Medina JH (2014) BDNF and memory processing. Neuropharmacology 76 Pt C:677–683.  https://doi.org/10.1016/j.neuropharm.2013.04.024 CrossRefPubMedGoogle Scholar
  14. Bennett MR, Farnell L, Gibson WG (2013) Fiber pathway pathology, synapse loss and decline of cortical function in schizophrenia. PLoS One 8(4):e60518.  https://doi.org/10.1371/journal.pone.0060518 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bennett MR, Hatton SN, Lagopoulos J (2016) Stress, trauma and PTSD: translational insights into the core synaptic circuitry and its modulation. Brain Struct Funct 221(5):2401–2426.  https://doi.org/10.1007/s00429-015-1056-1 CrossRefPubMedGoogle Scholar
  16. Berton O, McClung CA, Dileone RJ, Krishnan V, Renthal W, Russo SJ et al (2006) Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 311(5762):864–868.  https://doi.org/10.1126/science.1120972 CrossRefPubMedGoogle Scholar
  17. Bonne O, Brandes D, Gilboa A, Gomori JM, Shenton ME, Pitman RK, Shalev AY (2001) Longitudinal MRI study of hippocampal volume in trauma survivors with PTSD. Am J Psychiatry 158(8):1248–1251.  https://doi.org/10.1176/appi.ajp.158.8.1248 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Bonne O, Vythilingam M, Inagaki M, Wood S, Neumeister A, Nugent AC et al (2008) Reduced posterior hippocampal volume in posttraumatic stress disorder. J Clin Psychiatry 69(7):1087–1091CrossRefGoogle Scholar
  19. Brand L, Groenewald I, Stein DJ, Wegener G, Harvey BH (2008) Stress and re-stress increases conditioned taste aversion learning in rats: possible frontal cortical and hippocampal muscarinic receptor involvement. Eur J Pharmacol 586(1–3):205–211.  https://doi.org/10.1016/j.ejphar.2008.03.004 CrossRefPubMedGoogle Scholar
  20. Bredy TW, Wu H, Crego C, Zellhoefer J, Sun YE, Barad M (2007) Histone modifications around individual BDNF gene promoters in prefrontal cortex are associated with extinction of conditioned fear. Learn Mem 14(4):268–276.  https://doi.org/10.1101/lm.500907 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Bremner JD, Randall P, Scott TM, Bronen RA, Seibyl JP, Southwick SM et al (1995) MRI-based measurement of hippocampal volume in patients with combat-related posttraumatic stress disorder. Am J Psychiatry 152(7):973–981.  https://doi.org/10.1176/ajp.152.7.973 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Bremner JD, Randall P, Vermetten E, Staib L, Bronen RA, Mazure C et al (1997) Magnetic resonance imaging-based measurement of hippocampal volume in posttraumatic stress disorder related to childhood physical and sexual abuse—a preliminary report. Biol Psychiatry 41(1):23–32CrossRefGoogle Scholar
  23. Bremner JD, Narayan M, Staib LH, Southwick SM, McGlashan T, Charney DS (1999) Neural correlates of memories of childhood sexual abuse in women with and without posttraumatic stress disorder. Am J Psychiatry 156(11):1787–1795.  https://doi.org/10.1176/ajp.156.11.1787 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Britton JC, Phan KL, Taylor SF, Fig LM, Liberzon I (2005) Corticolimbic blood flow in posttraumatic stress disorder during script-driven imagery. Biol Psychiatry 57(8):832–840.  https://doi.org/10.1016/j.biopsych.2004.12.025 CrossRefPubMedGoogle Scholar
  25. Bruchey AK, Shumake J, Gonzalez-Lima F (2007) Network model of fear extinction and renewal functional pathways. Neuroscience 145(2):423–437.  https://doi.org/10.1016/j.neuroscience.2006.12.014 CrossRefPubMedGoogle Scholar
  26. Burgos-Robles A, Vidal-Gonzalez I, Santini E, Quirk GJ (2007) Consolidation of fear extinction requires NMDA receptor-dependent bursting in the ventromedial prefrontal cortex. Neuron 53(6):871–880.  https://doi.org/10.1016/j.neuron.2007.02.021 CrossRefGoogle Scholar
  27. Carrion VG, Wong SS (2012) Can traumatic stress alter the brain? Understanding the implications of early trauma on brain development and learning. J Adolesc Health 51(2 Suppl):S23–S28.  https://doi.org/10.1016/j.jadohealth.2012.04.010 CrossRefPubMedGoogle Scholar
  28. Cerqueira JJ, Catania C, Sotiropoulos I, Schubert M, Kalisch R, Almeida OF et al (2005a) Corticosteroid status influences the volume of the rat cingulate cortex—a magnetic resonance imaging study. J Psychiatr Res 39(5):451–460.  https://doi.org/10.1016/j.jpsychires.2005.01.003 CrossRefPubMedGoogle Scholar
  29. Cerqueira JJ, Pego JM, Taipa R, Bessa JM, Almeida OF, Sousa N (2005b) Morphological correlates of corticosteroid-induced changes in prefrontal cortex-dependent behaviors. J Neurosci 25(34):7792–7800.  https://doi.org/10.1523/JNEUROSCI.1598-05.2005 CrossRefPubMedGoogle Scholar
  30. Chen DY, Bambah-Mukku D, Pollonini G, Alberini CM (2012a) Glucocorticoid receptors recruit the CaMKIIalpha-BDNF-CREB pathways to mediate memory consolidation. Nat Neurosci 15(12):1707–1714.  https://doi.org/10.1038/nn.3266 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Chen X, Li Y, Li S, Kirouac GJ (2012b) Early fear as a predictor of avoidance in a rat model of post-traumatic stress disorder. Behav Brain Res 226(1):112–117.  https://doi.org/10.1016/j.bbr.2011.09.004 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Chhatwal JP, Stanek-Rattiner L, Davis M, Ressler KJ (2006) Amygdala BDNF signaling is required for consolidation but not encoding of extinction. Nat Neurosci 9(7):870–872.  https://doi.org/10.1038/nn1718 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Choi DC, Maguschak KA, Ye K, Jang SW, Myers KM, Ressler KJ (2010) Prelimbic cortical BDNF is required for memory of learned fear but not extinction or innate fear. Proc Natl Acad Sci USA 107(6):2675–2680.  https://doi.org/10.1073/pnas.0909359107 CrossRefPubMedGoogle Scholar
  34. Choi P, Ren M, Phan TG, Callisaya M, Ly JV, Beare R et al (2012) Silent infarcts and cerebral microbleeds modify the associations of white matter lesions with gait and postural stability: population-based study. Stroke 43(6):1505–1510.  https://doi.org/10.1161/STROKEAHA.111.647271 CrossRefPubMedGoogle Scholar
  35. Cohen H, Zohar J (2004) An animal model of posttraumatic stress disorder: the use of cut-off behavioral criteria. Ann N Y Acad Sci 1032:167–178.  https://doi.org/10.1196/annals.1314.014 CrossRefPubMedGoogle Scholar
  36. Comings DE, Comings BG, Muhleman D, Dietz G, Shahbahrami B, Tast D et al (1991) The dopamine D2 receptor locus as a modifying gene in neuropsychiatric disorders. JAMA 266(13):1793–1800CrossRefGoogle Scholar
  37. Corley MJ, Caruso MJ, Takahashi LK (2012) Stress-induced enhancement of fear conditioning and sensitization facilitates extinction-resistant and habituation-resistant fear behaviors in a novel animal model of posttraumatic stress disorder. Physiol Behav 105(2):408–416.  https://doi.org/10.1016/j.physbeh.2011.08.037 CrossRefPubMedGoogle Scholar
  38. Czeh B, Michaelis T, Watanabe T, Frahm J, de Biurrun G, van Kampen M et al (2001) Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc Natl Acad Sci USA 98(22):12796–12801.  https://doi.org/10.1073/pnas.211427898 CrossRefPubMedGoogle Scholar
  39. Ding AY, Li Q, Zhou IY, Ma SJ, Tong G, McAlonan GM, Wu EX (2013) MR diffusion tensor imaging detects rapid microstructural changes in amygdala and hippocampus following fear conditioning in mice. PLoS One 8(1):e51704.  https://doi.org/10.1371/journal.pone.0051704 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Dragan WL, Oniszczenko W (2009) The association between dopamine D4 receptor exon III polymorphism and intensity of PTSD symptoms among flood survivors. Anxiety Stress Coping 22(5):483–495.  https://doi.org/10.1080/10615800802419407 CrossRefPubMedGoogle Scholar
  41. Drury SS, Theall KP, Keats BJ, Scheeringa M (2009) The role of the dopamine transporter (DAT) in the development of PTSD in preschool children. J Trauma Stress 22(6):534–539.  https://doi.org/10.1002/jts.20475 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Duclot F, Kabbaj M (2013) Individual differences in novelty seeking predict subsequent vulnerability to social defeat through a differential epigenetic regulation of brain-derived neurotrophic factor expression. J Neurosci 33(27):11048–11060.  https://doi.org/10.1523/jneurosci.0199-13.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Ehrlich I, Humeau Y, Grenier F, Ciocchi S, Herry C, Luthi A (2009) Amygdala inhibitory circuits and the control of fear memory. Neuron 62(6):757–771.  https://doi.org/10.1016/j.neuron.2009.05.026 CrossRefPubMedGoogle Scholar
  44. El-Ghundi M, Fletcher PJ, Drago J, Sibley DR, O’Dowd BF, George SR (1999) Spatial learning deficit in dopamine D(1) receptor knockout mice. Eur J Pharmacol 383(2):95–106CrossRefGoogle Scholar
  45. El-Ghundi M, O’Dowd BF, George SR (2001) Prolonged fear responses in mice lacking dopamine D1 receptor. Brain Res 892(1):86–93CrossRefGoogle Scholar
  46. Eluvathingal TJ, Chugani HT, Behen ME, Juhasz C, Muzik O, Maqbool M et al (2006) Abnormal brain connectivity in children after early severe socioemotional deprivation: a diffusion tensor imaging study. Pediatrics 117(6):2093–2100.  https://doi.org/10.1542/peds.2005-1727 CrossRefPubMedGoogle Scholar
  47. Esmaeili A, Lynch JW, Sah P (2009) GABAA receptors containing gamma1 subunits contribute to inhibitory transmission in the central amygdala. J Neurophysiol 101(1):341–349.  https://doi.org/10.1152/jn.90991.2008 CrossRefPubMedGoogle Scholar
  48. Fadok JP, Dickerson TM, Palmiter RD (2009) Dopamine is necessary for cue-dependent fear conditioning. J Neurosci 29(36):11089–11097.  https://doi.org/10.1523/JNEUROSCI.1616-09.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Falzone TL, Gelman DM, Young JI, Grandy DK, Low MJ, Rubinstein M (2002) Absence of dopamine D4 receptors results in enhanced reactivity to unconditioned, but not conditioned, fear. Eur J Neurosci 15(1):158–164CrossRefGoogle Scholar
  50. Fani N, King TZ, Jovanovic T, Glover EM, Bradley B, Choi K et al (2012) White matter integrity in highly traumatized adults with and without post-traumatic stress disorder. Neuropsychopharmacology 37(12):2740–2746.  https://doi.org/10.1038/npp.2012.146 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Felmingham K, Williams LM, Whitford TJ, Falconer E, Kemp AH, Peduto A, Bryant RA (2009) Duration of posttraumatic stress disorder predicts hippocampal grey matter loss. Neuroreport 20(16):1402–1406.  https://doi.org/10.1097/WNR.0b013e3283300fbc CrossRefPubMedGoogle Scholar
  52. Frodl T, Skokauskas N, Frey EM, Morris D, Gill M, Carballedo A (2014) BDNF Val66Met genotype interacts with childhood adversity and influences the formation of hippocampal subfields. Hum Brain Mapp 35(12):5776–5783.  https://doi.org/10.1002/hbm.22584 CrossRefPubMedGoogle Scholar
  53. Garrick T, Morrow N, Shalev AY, Eth S (2001) Stress-induced enhancement of auditory startle: an animal model of posttraumatic stress disorder. Psychiatry 64(4):346–354CrossRefGoogle Scholar
  54. Gelernter J, Southwick S, Goodson S, Morgan A, Nagy L, Charney DS (1999) No association between D2 dopamine receptor (DRD2) “A” system alleles, or DRD2 haplotypes, and posttraumatic stress disorder. Biol Psychiatry 45(5):620–625CrossRefGoogle Scholar
  55. Gilbertson MW, Shenton ME, Ciszewski A, Kasai K, Lasko NB, Orr SP, Pitman RK (2002) Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma. Nat Neurosci 5(11):1242–1247.  https://doi.org/10.1038/nn958 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Gold AL, Shin LM, Orr SP, Carson MA, Rauch SL, Macklin ML et al (2011) Decreased regional cerebral blood flow in medial prefrontal cortex during trauma-unrelated stressful imagery in Vietnam veterans with post-traumatic stress disorder. Psychol Med 41(12):2563–2572.  https://doi.org/10.1017/S0033291711000730 CrossRefPubMedGoogle Scholar
  57. Golub Y, Kaltwasser SF, Mauch CP, Herrmann L, Schmidt U, Holsboer F (2011) Reduced hippocampus volume in the mouse model of Posttraumatic Stress Disorder. J Psychiatr Res 45(5):650–659.  https://doi.org/10.1016/j.jpsychires.2010.10.014 CrossRefPubMedGoogle Scholar
  58. Goswami S, Samuel S, Sierra OR, Cascardi M, Pare D (2012) A rat model of post-traumatic stress disorder reproduces the hippocampal deficits seen in the human syndrome. Front Behav Neurosci 6:26.  https://doi.org/10.3389/fnbeh.2012.00026 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Grabe HJ, Spitzer C, Schwahn C, Marcinek A, Frahnow A, Barnow S (2009) Serotonin transporter gene (SLC6A4) promoter polymorphisms and the susceptibility to posttraumatic stress disorder in the general population. Am J Psychiatry 166(8):926–933.  https://doi.org/10.1176/appi.ajp.2009.08101542 CrossRefPubMedGoogle Scholar
  60. Gurvits TV, Shenton ME, Hokama H, Ohta H, Lasko NB, Gilbertson MW et al (1996) Magnetic resonance imaging study of hippocampal volume in chronic, combat-related posttraumatic stress disorder. Biol Psychiatry 40(11):1091–1099.  https://doi.org/10.1016/S0006-3223(96)00229-6 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Guthrie RM, Bryant RA (2006) Extinction learning before trauma and subsequent posttraumatic stress. Psychosom Med 68(2):307–311CrossRefGoogle Scholar
  62. Hammack SE, Cooper MA, Lezak KR (2012) Overlapping neurobiology of learned helplessness and conditioned defeat: implications for PTSD and mood disorders. Neuropharmacology 62(2):565–575.  https://doi.org/10.1016/j.neuropharm.2011.02.024 CrossRefPubMedGoogle Scholar
  63. Hawley WR, Grissom EM, Belkin MN, James TF, Dohanich GP (2013) Decreased sexual motivation and heightened anxiety in male Long-Evans rats are correlated with the memory for a traumatic event. Arch Sex Behav 42(4):659–668.  https://doi.org/10.1007/s10508-012-0017-5 CrossRefPubMedGoogle Scholar
  64. Heldt SA, Stanek L, Chhatwal JP, Ressler KJ (2007) Hippocampus-specific deletion of BDNF in adult mice impairs spatial memory and extinction of aversive memories. Mol Psychiatry 12(7):656–670.  https://doi.org/10.1038/sj.mp.4001957 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Herringa R, Phillips M, Almeida J, Insana S, Germain A (2012) Post-traumatic stress symptoms correlate with smaller subgenual cingulate, caudate, and insula volumes in unmedicated combat veterans. Psychiatry Res 203(2–3):139–145.  https://doi.org/10.1016/j.pscychresns.2012.02.005 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Hironaka N, Ikeda K, Sora I, Uhl GR, Niki H (2004) Food-reinforced operant behavior in dopamine transporter knockout mice: enhanced resistance to extinction. Ann N Y Acad Sci 1025:140–145.  https://doi.org/10.1196/annals.1316.018 CrossRefPubMedGoogle Scholar
  67. Holmes A, Hariri AR (2003) The serotonin transporter gene-linked polymorphism and negative emotionality: placing single gene effects in the context of genetic background and environment. Genes Brain Behav 2(6):332–335CrossRefGoogle Scholar
  68. Holtzman-Assif O, Laurent V, Westbrook RF (2010) Blockade of dopamine activity in the nucleus accumbens impairs learning extinction of conditioned fear. Learn Mem 17(2):71–75CrossRefGoogle Scholar
  69. Jang DP, Lee SH, Park CW, Lee SY, Kim YB, Cho ZH (2009) Effects of fluoxetine on the rat brain in the forced swimming test: a [F-18]FDG micro-PET imaging study. Neurosci Lett 451(1):60–64.  https://doi.org/10.1016/j.neulet.2008.12.024 CrossRefPubMedGoogle Scholar
  70. Ji J, Maren S (2008) Differential roles for hippocampal areas CA1 and CA3 in the contextual encoding and retrieval of extinguished fear. Learn Mem 15(4):244–251.  https://doi.org/10.1101/lm.794808 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Jones JL, Day JJ, Wheeler RA, Carelli RM (2010) The basolateral amygdala differentially regulates conditioned neural responses within the nucleus accumbens core and shell. Neuroscience 169(3):1186–1198.  https://doi.org/10.1016/j.neuroscience.2010.05.073 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Kassem MS, Lagopoulos J, Stait-Gardner T, Price WS, Chohan TW, Arnold JC et al (2013) Stress-induced grey matter loss determined by MRI Is primarily due to loss of dendrites and their synapses. Mol Neurobiol 47(2):645–661.  https://doi.org/10.1007/s12035-012-8365-7 CrossRefPubMedGoogle Scholar
  73. Kilpatrick DG, Koenen KC, Ruggiero KJ, Acierno R, Galea S, Resnick HS et al (2007) The serotonin transporter genotype and social support and moderation of posttraumatic stress disorder and depression in hurricane-exposed adults. Am J Psychiatry 164(11):1693–1699.  https://doi.org/10.1176/appi.ajp.2007.06122007 CrossRefPubMedGoogle Scholar
  74. Kim JH, Budde MD, Liang HF, Klein RS, Russell JH, Cross AH, Song SK (2006a) Detecting axon damage in spinal cord from a mouse model of multiple sclerosis. Neurobiol Dis 21(3):626–632.  https://doi.org/10.1016/j.nbd.2005.09.009 CrossRefPubMedGoogle Scholar
  75. Kim SJ, Jeong DU, Sim ME, Bae SC, Chung A, Kim MJ et al (2006b) Asymmetrically altered integrity of cingulum bundle in posttraumatic stress disorder. Neuropsychobiology 54(2):120–125.  https://doi.org/10.1159/000098262 CrossRefPubMedGoogle Scholar
  76. Kim Y, Teylan MA, Baron M, Sands A, Nairn AC, Greengard P (2009) Methylphenidate-induced dendritic spine formation and DeltaFosB expression in nucleus accumbens. Proc Natl Acad Sci USA 106(8):2915–2920.  https://doi.org/10.1073/pnas.0813179106 CrossRefPubMedGoogle Scholar
  77. Kim SY, Chung YK, Kim BS, Lee SJ, Yoon JK, An YS (2012) Resting cerebral glucose metabolism and perfusion patterns in women with posttraumatic stress disorder related to sexual assault. Psychiatry Res 201(3):214–217.  https://doi.org/10.1016/j.pscychresns.2011.08.007 CrossRefPubMedGoogle Scholar
  78. Kindt M, Soeter M, Vervliet B (2009) Beyond extinction: erasing human fear responses and preventing the return of fear. Nat Neurosci 12(3):256–258CrossRefGoogle Scholar
  79. King AP, Abelson JL, Britton JC, Phan KL, Taylor SF, Liberzon I (2009) Medial prefrontal cortex and right insula activity predict plasma ACTH response to trauma recall. NeuroImage 47(3):872–880.  https://doi.org/10.1016/j.neuroimage.2009.05.088 CrossRefPubMedGoogle Scholar
  80. Kirtley A, Thomas KL (2010) The exclusive induction of extinction is gated by BDNF. Learn Mem 17(12):612–619.  https://doi.org/10.1101/lm.1877010 CrossRefPubMedGoogle Scholar
  81. Knapska E, Maren S (2009) Reciprocal patterns of c-Fos expression in the medial prefrontal cortex and amygdala after extinction and renewal of conditioned fear. Learn Mem 16(8):486–493.  https://doi.org/10.1101/lm.1463909 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Knapska E, Macias M, Mikosz M, Nowak A, Owczarek D, Wawrzyniak M et al (2012) Functional anatomy of neural circuits regulating fear and extinction. Proc Natl Acad Sci USA 109(42):17093–17098.  https://doi.org/10.1073/pnas.1202087109 CrossRefPubMedGoogle Scholar
  83. Knowles JK, Simmons DA, Nguyen TV, Vander Griend L, Xie Y, Zhang H et al (2013) Small molecule p75NTR ligand prevents cognitive deficits and neurite degeneration in an Alzheimer’s mouse model. Neurobiol Aging 34(8):2052–2063.  https://doi.org/10.1016/j.neurobiolaging.2013.02.015 CrossRefPubMedGoogle Scholar
  84. Koba T, Kodama Y, Shimizu K, Nomura S, Sugawara M, Kobayashi Y, Ogasawara T (2001) Persistent behavioural changes in rats following inescapable shock stress: a potential model of posttraumatic stress disorder. World J Biol Psychiatry 2(1):34–37CrossRefGoogle Scholar
  85. Koenen KC, Aiello AE, Bakshis E, Amstadter AB, Ruggiero KJ, Acierno R et al (2009) Modification of the association between serotonin transporter genotype and risk of posttraumatic stress disorder in adults by county-level social environment. Am J Epidemiol 169(6):704–711.  https://doi.org/10.1093/aje/kwn397 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Kolassa IT, Ertl V, Eckart C, Glockner F, Kolassa S, Papassotiropoulos A et al (2010) Association study of trauma load and SLC6A4 promoter polymorphism in posttraumatic stress disorder: evidence from survivors of the Rwandan genocide. J Clin Psychiatry 71(5):543–547.  https://doi.org/10.4088/JCP.08m04787blu CrossRefPubMedGoogle Scholar
  87. Kozlovsky N, Matar MA, Kaplan Z, Kotler M, Zohar J, Cohen H (2007) Long-term down-regulation of BDNF mRNA in rat hippocampal CA1 subregion correlates with PTSD-like behavioural stress response. Int J Neuropsychopharmacol 10(6):741–758.  https://doi.org/10.1017/S1461145707007560 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Kuo JR, Kaloupek DG, Woodward SH (2012) Amygdala volume in combat-exposed veterans with and without posttraumatic stress disorder a cross-sectional study. Arch Gen Psychiatry 69(10):1080–1086CrossRefGoogle Scholar
  89. Lau T, Zochowski M (2011) Interaction between connectivity and oscillatory currents in a heterogeneous neuronal network. Phys Rev E Stat Nonlinear Soft Matter Phys 83(5 Pt 1):051908.  https://doi.org/10.1103/PhysRevE.83.051908 CrossRefGoogle Scholar
  90. Lee HJ, Lee MS, Kang RH, Kim H, Kim SD, Kee BS et al (2005) Influence of the serotonin transporter promoter gene polymorphism on susceptibility to posttraumatic stress disorder. Depress Anxiety 21(3):135–139.  https://doi.org/10.1002/da.20064 CrossRefPubMedGoogle Scholar
  91. Lee T, Jarome T, Li SJ, Kim JJ, Helmstetter FJ (2009) Chronic stress selectively reduces hippocampal volume in rats: a longitudinal magnetic resonance imaging study. Neuroreport 20(17):1554–1558.  https://doi.org/10.1097/WNR.0b013e328332bb09 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Lemon N, Manahan-Vaughan D (2006) Dopamine D1/D5 receptors gate the acquisition of novel information through hippocampal long-term potentiation and long-term depression. J Neurosci 26(29):7723–7729.  https://doi.org/10.1523/JNEUROSCI.1454-06.2006 CrossRefPubMedGoogle Scholar
  93. Lesting J, Geiger M, Narayanan RT, Pape HC, Seidenbecher T (2011a) Impaired extinction of fear and maintained amygdala-hippocampal theta synchrony in a mouse model of temporal lobe epilepsy. Epilepsia 52(2):337–346.  https://doi.org/10.1111/j.1528-1167.2010.02758.x CrossRefPubMedGoogle Scholar
  94. Lesting J, Narayanan RT, Kluge C, Sangha S, Seidenbecher T, Pape HC (2011b) Patterns of coupled theta activity in amygdala-hippocampal-prefrontal cortical circuits during fear extinction. PLoS One 6(6):e21714.  https://doi.org/10.1371/journal.pone.0021714 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Letzkus JJ, Wolff SB, Meyer EM, Tovote P, Courtin J, Herry C, Luthi A (2011) A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature 480(7377):331–335.  https://doi.org/10.1038/nature10674 CrossRefPubMedGoogle Scholar
  96. Lindauer RJ, Vlieger EJ, Jalink M, Olff M, Carlier IV, Majoie CB et al (2004) Smaller hippocampal volume in Dutch police officers with posttraumatic stress disorder. Biol Psychiatry 56(5):356–363.  https://doi.org/10.1016/j.biopsych.2004.05.021 CrossRefPubMedGoogle Scholar
  97. Lisman JE, Grace AA (2005) The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46(5):703–713.  https://doi.org/10.1016/j.neuron.2005.05.002 CrossRefPubMedGoogle Scholar
  98. Longo FM, Massa SM (2013) Small-molecule modulation of neurotrophin receptors: a strategy for the treatment of neurological disease. Nat Rev Drug Discov 12(7):507–525CrossRefGoogle Scholar
  99. Lonsdorf TB, Ruck C, Bergstrom J, Andersson G, Ohman A, Lindefors N, Schalling M (2010) The COMTval158met polymorphism is associated with symptom relief during exposure-based cognitive-behavioral treatment in panic disorder. BMC Psychiatry 10:99.  https://doi.org/10.1186/1471-244X-10-99 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Louvart H, Maccari S, Ducrocq F, Thomas P, Darnaudery M (2005) Long-term behavioural alterations in female rats after a single intense footshock followed by situational reminders. Psychoneuroendocrinology 30(4):316–324.  https://doi.org/10.1016/j.psyneuen.2004.09.003 CrossRefPubMedGoogle Scholar
  101. Lu Y, Christian K, Lu B (2008) BDNF: a key regulator for protein synthesis-dependent LTP and long-term memory? Neurobiol Learn Mem 89(3):312–323.  https://doi.org/10.1016/j.nlm.2007.08.018 CrossRefPubMedGoogle Scholar
  102. Lu B, Nagappan G, Guan X, Nathan PJ, Wren P (2013) BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases. Nat Rev Neurosci 14(6):401–416.  https://doi.org/10.1038/nrn3505 CrossRefPubMedGoogle Scholar
  103. Lubin FD, Roth TL, Sweatt JD (2008) Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. J Neurosci 28(42):10576–10586.  https://doi.org/10.1523/JNEUROSCI.1786-08.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Lyons DM, Yang C, Sawyer-Glover AM, Moseley ME, Schatzberg AF (2001) Early life stress and inherited variation in monkey hippocampal volumes. Arch Gen Psychiatry 58(12):1145–1151CrossRefGoogle Scholar
  105. Mackenzie L, Nalivaiko E, Beig MI, Day TA, Walker FR (2010) Ability of predator odour exposure to elicit conditioned versus sensitised post traumatic stress disorder-like behaviours, and forebrain deltaFosB expression, in rats. Neuroscience 169(2):733–742.  https://doi.org/10.1016/j.neuroscience.2010.05.005 CrossRefPubMedGoogle Scholar
  106. Maddox SA, Schafe GE (2011) Epigenetic alterations in the lateral amygdala are required for reconsolidation of a Pavlovian fear memory. Learn Mem 18(9):579–593.  https://doi.org/10.1101/lm.2243411 CrossRefPubMedPubMedCentralGoogle Scholar
  107. Marek R, Strobel C, Bredy TW, Sah P (2013) The amygdala and medial prefrontal cortex: partners in the fear circuit. J Physiol 591(10):2381–2391.  https://doi.org/10.1113/jphysiol.2012.248575 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Maren S (2011) Seeking a spotless mind: extinction, deconsolidation, and erasure of fear memory. Neuron 70(5):830–845.  https://doi.org/10.1016/j.neuron.2011.04.023 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Matsuoka Y, Yamawaki S, Inagaki M, Akechi T, Uchitomi Y (2003) A volumetric study of amygdala in cancer survivors with intrusive recollections. Biol Psychiatry 54(7):736–743CrossRefGoogle Scholar
  110. McGuire J, Herman JP, Horn PS, Sallee FR, Sah R (2010) Enhanced fear recall and emotional arousal in rats recovering from chronic variable stress. Physiol Behav 101(4):474–482.  https://doi.org/10.1016/j.physbeh.2010.07.013 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Mellman TA, Alim T, Brown DD, Gorodetsky E, Buzas B, Lawson WB et al (2009) Serotonin polymorphisms and posttraumatic stress disorder in a trauma exposed African American population. Depress Anxiety 26(11):993–997.  https://doi.org/10.1002/da.20627 CrossRefPubMedPubMedCentralGoogle Scholar
  112. Meyer D, Bonhoeffer T, Scheuss V (2014) Balance and stability of synaptic structures during synaptic plasticity. Neuron 82(2):430–443CrossRefGoogle Scholar
  113. Mikics E, Toth M, Varju P, Gereben B, Liposits Z, Ashaber M et al (2008) Lasting changes in social behavior and amygdala function following traumatic experience induced by a single series of foot-shocks. Psychoneuroendocrinology 33(9):1198–1210.  https://doi.org/10.1016/j.psyneuen.2008.06.006 CrossRefPubMedGoogle Scholar
  114. Molina ME, Isoardi R, Prado MN, Bentolila S (2010) Basal cerebral glucose distribution in long-term post-traumatic stress disorder. World J Biol Psychiatry 11(2 Pt 2):493–501.  https://doi.org/10.3109/15622970701472094 CrossRefPubMedGoogle Scholar
  115. Monfils MH, Cowansage KK, Klann E, LeDoux JE (2009) Extinction-reconsolidation boundaries: key to persistent attenuation of fear memories. Science 324(5929):951–955CrossRefGoogle Scholar
  116. Munoz-Abellan C, Armario A, Nadal R (2010) Do odors from different cats induce equivalent unconditioned and conditioned responses in rats? Physiol Behav 99(3):388–394.  https://doi.org/10.1016/j.physbeh.2009.12.008 CrossRefPubMedGoogle Scholar
  117. Muravieva EV, Alberini CM (2010) Limited efficacy of propranolol on the reconsolidation of fear memories. Learn Mem 17(6):306–313CrossRefGoogle Scholar
  118. Myers B, Greenwood-Van Meerveld B (2007) Corticosteroid receptor-mediated mechanisms in the amygdala regulate anxiety and colonic sensitivity. Am J Physiol Gastrointest Liver Physiol 292(6):G1622–G1629CrossRefGoogle Scholar
  119. Nader K, Schafe GE, Le Doux JE (2000) Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406(6797):722–726CrossRefGoogle Scholar
  120. Nalloor R, Bunting K, Vazdarjanova A (2011) Predicting impaired extinction of traumatic memory and elevated startle. PLoS One 6(5):e19760.  https://doi.org/10.1371/journal.pone.0019760 CrossRefPubMedPubMedCentralGoogle Scholar
  121. Navakkode S, Sajikumar S, Frey JU (2007) Synergistic requirements for the induction of dopaminergic D1/D5-receptor-mediated LTP in hippocampal slices of rat CA1 in vitro. Neuropharmacology 52(7):1547–1554.  https://doi.org/10.1016/j.neuropharm.2007.02.010 CrossRefPubMedGoogle Scholar
  122. Nyhus E, Curran T (2010) Functional role of gamma and theta oscillations in episodic memory. Neurosci Biobehav Rev 34(7):1023–1035.  https://doi.org/10.1016/j.neubiorev.2009.12.014 CrossRefPubMedPubMedCentralGoogle Scholar
  123. O’Carroll CM, Martin SJ, Sandin J, Frenguelli B, Morris RG (2006) Dopaminergic modulation of the persistence of one-trial hippocampus-dependent memory. Learn Mem 13(6):760–769.  https://doi.org/10.1101/lm.321006 CrossRefPubMedPubMedCentralGoogle Scholar
  124. Orefice LL, Waterhouse EG, Partridge JG, Lalchandani RR, Vicini S, Xu B (2013) Distinct roles for somatically and dendritically synthesized brain-derived neurotrophic factor in morphogenesis of dendritic spines. J Neurosci 33(28):11618–11632.  https://doi.org/10.1523/JNEUROSCI.0012-13.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  125. Osuch EA, Willis MW, Bluhm R, CSTS Neuroimaging Study Group, Ursano RJ, Drevets WC (2008) Neurophysiological responses to traumatic reminders in the acute aftermath of serious motor vehicle collisions using [15O]-H2O positron emission tomography. Biol Psychiatry 64(4):327–335.  https://doi.org/10.1016/j.biopsych.2008.03.010 CrossRefPubMedPubMedCentralGoogle Scholar
  126. Paré WP (1996) Enhanced retrieval of unpleasant memories influenced by shock controllability, shock sequence, and rat strain. Biol Psychiatry 39(9):808–813CrossRefGoogle Scholar
  127. Pare D, Duvarci S (2012) Amygdala microcircuits mediating fear expression and extinction. Curr Opin Neurobiol 22(4):717–723.  https://doi.org/10.1016/j.conb.2012.02.014 CrossRefPubMedPubMedCentralGoogle Scholar
  128. Parent MA, Wang L, Su J, Netoff T, Yuan LL (2010) Identification of the hippocampal input to medial prefrontal cortex in vitro. Cereb Cortex 20(2):393–403.  https://doi.org/10.1093/cercor/bhp108 CrossRefPubMedGoogle Scholar
  129. Park CR, Zoladz PR, Conrad CD, Fleshner M, Diamond DM (2008) Acute predator stress impairs the consolidation and retrieval of hippocampus-dependent memory in male and female rats. Learn Mem 15(4):271–280.  https://doi.org/10.1101/lm.721108 CrossRefPubMedPubMedCentralGoogle Scholar
  130. Pattwell SS, Bath KG, Perez-Castro R, Lee FS, Chao MV, Ninan I (2012) The BDNF Val66Met polymorphism impairs synaptic transmission and plasticity in the infralimbic medial prefrontal cortex. J Neurosci 32(7):2410–2421.  https://doi.org/10.1523/JNEUROSCI.5205-11.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  131. Pavlov IP (1927) Conditioned reflexes: an investigation of the physiological activity of the Cerebral Cortex. Oxford University Press, LondonGoogle Scholar
  132. Paz R, Bauer EP, Pare D (2008) Theta synchronizes the activity of medial prefrontal neurons during learning. Learn Mem 15(7):524–531.  https://doi.org/10.1101/lm.932408 CrossRefPubMedPubMedCentralGoogle Scholar
  133. Pego JM, Morgado P, Pinto LG, Cerqueira JJ, Almeida OF, Sousa N (2008) Dissociation of the morphological correlates of stress-induced anxiety and fear. Eur J Neurosci 27(6):1503–1516.  https://doi.org/10.1111/j.1460-9568.2008.06112.x CrossRefPubMedGoogle Scholar
  134. Peters J, Dieppa-Perea LM, Melendez LM, Quirk GJ (2010) Induction of fear extinction with hippocampal-infralimbic BDNF. Science 328(5983):1288–1290.  https://doi.org/10.1126/science.1186909 CrossRefPubMedPubMedCentralGoogle Scholar
  135. Pezawas L, Meyer-Lindenberg A, Goldman AL, Verchinski BA, Chen G, Kolachana BS et al (2008) Evidence of biologic epistasis between BDNF and SLC6A4 and implications for depression. Mol Psychiatry 13(7):709–716.  https://doi.org/10.1038/mp.2008.32 CrossRefPubMedGoogle Scholar
  136. Phan KL, Britton JC, Taylor SF, Fig LM, Liberzon I (2006) Corticolimbic blood flow during nontraumatic emotional processing in posttraumatic stress disorder. Arch Gen Psychiatry 63(2):184–192.  https://doi.org/10.1001/archpsyc.63.2.184 CrossRefPubMedGoogle Scholar
  137. Pitkanen A, Savander V, LeDoux JE (1997) Organization of intra-amygdaloid circuitries in the rat: an emerging framework for understanding functions of the amygdala. Trends Neurosci 20(11):517–523CrossRefGoogle Scholar
  138. Plendl W, Wotjak CT (2010) Dissociation of within- and between-session extinction of conditioned fear. J Neurosci 30(14):4990–4998.  https://doi.org/10.1523/JNEUROSCI.6038-09.2010 CrossRefGoogle Scholar
  139. Psotta L, Lessmann V, Endres T (2013) Impaired fear extinction learning in adult heterozygous BDNF knock-out mice. Neurobiol Learn Mem 103:34–38.  https://doi.org/10.1016/j.nlm.2013.03.003 CrossRefPubMedGoogle Scholar
  140. Rattiner LM, Davis M, French CT, Ressler KJ (2004a) Brain-derived neurotrophic factor and tyrosine kinase receptor B involvement in amygdala-dependent fear conditioning. J Neurosci 24(20):4796–4806.  https://doi.org/10.1523/JNEUROSCI.5654-03.2004 CrossRefPubMedGoogle Scholar
  141. Rattiner LM, Davis M, Ressler KJ (2004b) Differential regulation of brain-derived neurotrophic factor transcripts during the consolidation of fear learning. Learn Mem 11(6):727–731.  https://doi.org/10.1101/lm.83304 CrossRefPubMedPubMedCentralGoogle Scholar
  142. Rauch SL, Shin LM, Segal E, Pitman RK, Carson MA, McMullin K et al (2003) Selectively reduced regional cortical volumes in post-traumatic stress disorder. Neuroreport 14(7):913–916.  https://doi.org/10.1097/01.wnr.0000071767.24455.10 CrossRefPubMedGoogle Scholar
  143. Rogers MA, Yamasue H, Abe O, Yamada H, Ohtani T, Iwanami A et al (2009) Smaller amygdala volume and reduced anterior cingulate gray matter density associated with history of post-traumatic stress disorder. Psychiatry Res 174(3):210–216.  https://doi.org/10.1016/j.pscychresns.2009.06.001 CrossRefPubMedGoogle Scholar
  144. Rossato JI, Bevilaqua LR, Izquierdo I, Medina JH, Cammarota M (2009) Dopamine controls persistence of long-term memory storage. Science 325(5943):1017–1020.  https://doi.org/10.1126/science.1172545 CrossRefPubMedGoogle Scholar
  145. Roth MK, Bingham B, Shah A, Joshi A, Frazer A, Strong R, Morilak DA (2012) Effects of chronic plus acute prolonged stress on measures of coping style, anxiety, and evoked HPA-axis reactivity. Neuropharmacology 63(6):1118–1126.  https://doi.org/10.1016/j.neuropharm.2012.07.034 CrossRefPubMedPubMedCentralGoogle Scholar
  146. Schuff N, Zhang Y, Zhan W, Lenoci M, Ching C, Boreta L et al (2011) Patterns of altered cortical perfusion and diminished subcortical integrity in posttraumatic stress disorder: an MRI study. NeuroImage 54(Suppl 1):S62–S68.  https://doi.org/10.1016/j.neuroimage.2010.05.024 CrossRefPubMedGoogle Scholar
  147. Schiller D, Monfils MH, Raio CM, Johnson DC, Ledoux JE, Phelps EA (2010) Preventing the return of fear in humans using reconsolidation update mechanisms. Nature 463(7277):49–53.  https://doi.org/10.1038/nature08637 CrossRefPubMedGoogle Scholar
  148. Schwegler H, Lipp HP (1983) Hereditary covariations of neuronal circuitry and behavior: correlations between the proportions of hippocampal synaptic fields in the regio inferior and two-way avoidance in mice and rats. Behav Brain Res 7(1):1–38CrossRefGoogle Scholar
  149. Segman RH, Cooper-Kazaz R, Macciardi F, Goltser T, Halfon Y, Dobroborski T, Shalev AY (2002) Association between the dopamine transporter gene and posttraumatic stress disorder. Mol Psychiatry 7(8):903–907.  https://doi.org/10.1038/sj.mp.4001085 CrossRefPubMedGoogle Scholar
  150. Servatius RJ, Ottenweller JE, Natelson BH (1995) Delayed startle sensitization distinguishes rats exposed to one or three stress sessions: further evidence toward an animal model of PTSD. Biol Psychiatry 38(8):539–546.  https://doi.org/10.1016/0006-3223(94)00369-E CrossRefPubMedGoogle Scholar
  151. Shin LM, McNally RJ, Kosslyn SM, Thompson WL, Rauch SL, Alpert NM et al (1999) Regional cerebral blood flow during script-driven imagery in childhood sexual abuse-related PTSD: a PET investigation. Am J Psychiatry 156(4):575–584.  https://doi.org/10.1176/ajp.156.4.575 CrossRefPubMedGoogle Scholar
  152. Shin LM, Orr SP, Carson MA, Rauch SL, Macklin ML, Lasko NB et al (2004a) Regional cerebral blood flow in the amygdala and medial prefrontal cortex during traumatic imagery in male and female Vietnam veterans with PTSD. Arch Gen Psychiatry 61(2):168–176.  https://doi.org/10.1001/archpsyc.61.2.168 CrossRefPubMedGoogle Scholar
  153. Shin LM, Shin PS, Heckers S, Krangel TS, Macklin ML, Orr SP et al (2004b) Hippocampal function in posttraumatic stress disorder. Hippocampus 14(3):292–300.  https://doi.org/10.1002/hipo.10183 CrossRefPubMedGoogle Scholar
  154. Shin LM, Wright CI, Cannistraro PA, Wedig MM, McMullin K, Martis B et al (2005) A functional magnetic resonance imaging study of amygdala and medial prefrontal cortex responses to overtly presented fearful faces in posttraumatic stress disorder. Arch Gen Psychiatry 62(3):273–281.  https://doi.org/10.1001/archpsyc.62.3.273 CrossRefPubMedGoogle Scholar
  155. Shin LM, Lasko NB, Macklin ML, Karpf RD, Milad MR, Orr SP et al (2009) Resting metabolic activity in the cingulate cortex and vulnerability to posttraumatic stress disorder. Arch Gen Psychiatry 66(10):1099–1107.  https://doi.org/10.1001/archgenpsychiatry.2009.138 CrossRefPubMedPubMedCentralGoogle Scholar
  156. Soliman F, Glatt CE, Bath KG, Levita L, Jones RM, Pattwell SS et al (2010) A genetic variant BDNF polymorphism alters extinction learning in both mouse and human. Science 327(5967):863–866.  https://doi.org/10.1126/science.1181886 CrossRefPubMedPubMedCentralGoogle Scholar
  157. Sotres-Bayon F, Quirk GJ (2010) Prefrontal control of fear: more than just extinction. Curr Opin Neurobiol 20(2):231–235.  https://doi.org/10.1016/j.conb.2010.02.005 CrossRefPubMedPubMedCentralGoogle Scholar
  158. Sotres-Bayon F, Sierra-Mercado D, Pardilla-Delgado E, Quirk GJ (2012) Gating of fear in prelimbic cortex by hippocampal and amygdala inputs. Neuron 76(4):804–812.  https://doi.org/10.1016/j.neuron.2012.09.028 CrossRefPubMedPubMedCentralGoogle Scholar
  159. Stein MB, Koverola C, Hanna C, Torchia MG, McClarty B (1997) Hippocampal volume in women victimized by childhood sexual abuse. Psychol Med 27(4):951–959CrossRefGoogle Scholar
  160. Sung KK, Jang DP, Lee S, Kim M, Lee SY, Kim YB et al (2009) Neural responses in rat brain during acute immobilization stress: a [F-18]FDG micro PET imaging study. NeuroImage 44(3):1074–1080.  https://doi.org/10.1016/j.neuroimage.2008.09.032 CrossRefPubMedGoogle Scholar
  161. Takei S, Morinobu S, Yamamoto S, Fuchikami M, Matsumoto T, Yamawaki S (2011) Enhanced hippocampal BDNF/TrkB signaling in response to fear conditioning in an animal model of posttraumatic stress disorder. J Psychiatr Res 45(4):460–468.  https://doi.org/10.1016/j.jpsychires.2010.08.009 CrossRefPubMedPubMedCentralGoogle Scholar
  162. Thakur GA, Joober R, Brunet A (2009) Development and persistence of posttraumatic stress disorder and the 5-HTTLPR polymorphism. J Trauma Stress 22(3):240–243.  https://doi.org/10.1002/jts.20405 CrossRefPubMedGoogle Scholar
  163. Thomaes K, Dorrepaal E, Draijer N, de Ruiter MB, van Balkom AJ, Smit JH, Veltman DJ (2010) Reduced anterior cingulate and orbitofrontal volumes in child abuse-related complex PTSD. J Clin Psychiatry 71(12):1636–1644.  https://doi.org/10.4088/JCP.08m04754blu CrossRefPubMedGoogle Scholar
  164. Vincent SL, Khan Y, Benes FM (1993) Cellular distribution of dopamine D1 and D2 receptors in rat medial prefrontal cortex. J Neurosci 13(6):2551–2564CrossRefGoogle Scholar
  165. Viviani D, Charlet A, van den Burg E, Robinet C, Hurni N, Abatis M et al (2011) Oxytocin selectively gates fear responses through distinct outputs from the central amygdala. Science 333(6038):104–107.  https://doi.org/10.1126/science.1201043 CrossRefPubMedGoogle Scholar
  166. Viviani D, Haegler P, Strasser DS, Steiner MA (2012) Sex comparison on long-lasting behavioral and physiological disturbances induced by single shock experience in rats. Physiol Behav 107(2):243–251.  https://doi.org/10.1016/j.physbeh.2012.06.018 CrossRefPubMedGoogle Scholar
  167. Voisey J, Swagell CD, Hughes IP, Morris CP, van Daal A, Noble EP et al (2009) The DRD2 gene 957C>T polymorphism is associated with posttraumatic stress disorder in war veterans. Depress Anxiety 26(1):28–33.  https://doi.org/10.1002/da.20517 CrossRefPubMedGoogle Scholar
  168. Wagner HR 2nd, Hall TL, Cote IL (1977) The applicability of inescapable shock as a source of animal depression. J Gen Psychol 96(2d Half):313–318.  https://doi.org/10.1080/00221309.1977.9920828 CrossRefPubMedGoogle Scholar
  169. Wakizono T, Sawamura T, Shimizu K, Nibuya M, Suzuki G, Toda H et al (2007) Stress vulnerabilities in an animal model of post-traumatic stress disorder. Physiol Behav 90(4):687–695.  https://doi.org/10.1016/j.physbeh.2006.12.008 CrossRefPubMedGoogle Scholar
  170. Walker DL, Miles LA, Davis M (2009) Selective participation of the bed nucleus of the stria terminalis and CRF in sustained anxiety-like versus phasic fear-like responses. Prog Neuro-Psychopharmacol Biol Psychiatry 33(8):1291–1308.  https://doi.org/10.1016/j.pnpbp.2009.06.022 CrossRefGoogle Scholar
  171. Wang Z, Neylan TC, Mueller SG, Lenoci M, Truran D, Marmar CR et al (2010) Magnetic resonance imaging of hippocampal subfields in posttraumatic stress disorder. Arch Gen Psychiatry 67(3):296–303.  https://doi.org/10.1001/archgenpsychiatry.2009.205 CrossRefPubMedPubMedCentralGoogle Scholar
  172. Wang Z, Baker DG, Harrer J, Hamner M, Price M, Amstadter A (2011) The relationship between combat-related posttraumatic stress disorder and the 5-HTTLPR/rs25531 polymorphism. Depress Anxiety 28(12):1067–1073.  https://doi.org/10.1002/da.20872 CrossRefPubMedPubMedCentralGoogle Scholar
  173. Wang WS, Kang S, Liu WT, Li M, Liu Y, Yu C et al (2012a) Extinction of aversive memories associated with morphine withdrawal requires ERK-mediated epigenetic regulation of brain-derived neurotrophic factor transcription in the rat ventromedial prefrontal cortex. J Neurosci 32(40):13763–13775.  https://doi.org/10.1523/JNEUROSCI.1991-12.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  174. Wang YC, Ho UC, Ko MC, Liao CC, Lee LJ (2012b) Differential neuronal changes in medial prefrontal cortex, basolateral amygdala and nucleus accumbens after postweaning social isolation. Brain Struct Funct 217(2):337–351.  https://doi.org/10.1007/s00429-011-0355-4 CrossRefPubMedGoogle Scholar
  175. Weinberger NM (2011) The medial geniculate, not the amygdala, as the root of auditory fear conditioning. Hear Res 274(1–2):61–74.  https://doi.org/10.1016/j.heares.2010.03.093 CrossRefPubMedGoogle Scholar
  176. Wimer CC, Wimer RE, Roderick TH (1971) Some behavioral differences associated with relative size of hippocampus in the mouse. J Comp Physiol Psychol 76(1):57–65CrossRefGoogle Scholar
  177. Winston CR, Leavell BJ, Ardayfio PA, Beard C, Commissaris RL (2001) A nonextinction procedure for long-term studies of classically conditioned enhancement of acoustic startle in the rat. Physiol Behav 73(1–2):9–17CrossRefGoogle Scholar
  178. Woodward SH, Schaer M, Kaloupek DG, Cediel L, Eliez S (2009) Smaller global and regional cortical volume in combat-related posttraumatic stress disorder. Arch Gen Psychiatry 66(12):1373–1382.  https://doi.org/10.1001/archgenpsychiatry.2009.160 CrossRefPubMedGoogle Scholar
  179. Woon FL, Hedges DW (2008) Hippocampal and amygdala volumes in children and adults with childhood maltreatment-related posttraumatic stress disorder: a meta-analysis. Hippocampus 18(8):729–736.  https://doi.org/10.1002/hipo.20437 CrossRefPubMedGoogle Scholar
  180. Woon F, Hedges DW (2011) Gender does not moderate hippocampal volume deficits in adults with posttraumatic stress disorder: a meta-analysis. Hippocampus 21(3):243–252.  https://doi.org/10.1002/hipo.20746 CrossRefPubMedGoogle Scholar
  181. Woon FL, Sood S, Hedges DW (2010) Hippocampal volume deficits associated with exposure to psychological trauma and posttraumatic stress disorder in adults: a meta-analysis. Prog Neuro-Psychopharmacol Biol Psychiatry 34(7):1181–1188.  https://doi.org/10.1016/j.pnpbp.2010.06.016 CrossRefGoogle Scholar
  182. Xie P, Kranzler HR, Poling J, Stein MB, Anton RF, Brady K et al (2009) Interactive effect of stressful life events and the serotonin transporter 5-HTTLPR genotype on posttraumatic stress disorder diagnosis in 2 independent populations. Arch Gen Psychiatry 66(11):1201–1209.  https://doi.org/10.1001/archgenpsychiatry.2009.153 CrossRefPubMedPubMedCentralGoogle Scholar
  183. Yamaguchi Y, Sato N, Wagatsuma H, Wu Z, Molter C, Aota Y (2007) A unified view of theta-phase coding in the entorhinal-hippocampal system. Curr Opin Neurobiol 17(2):197–204.  https://doi.org/10.1016/j.conb.2007.03.007 CrossRefPubMedGoogle Scholar
  184. Yamamoto S, Morinobu S, Takei S, Fuchikami M, Matsuki A, Yamawaki S, Liberzon I (2009) Single prolonged stress: toward an animal model of posttraumatic stress disorder. Depress Anxiety 26(12):1110–1117.  https://doi.org/10.1002/da.20629 CrossRefPubMedGoogle Scholar
  185. Yamasue H, Kasai K, Iwanami A, Ohtani T, Yamada H, Abe O et al (2003) Voxel-based analysis of MRI reveals anterior cingulate gray-matter volume reduction in posttraumatic stress disorder due to terrorism. Proc Natl Acad Sci USA 100(15):9039–9043.  https://doi.org/10.1073/pnas.1530467100 CrossRefPubMedGoogle Scholar
  186. Young RM, Lawford BR, Noble EP, Kann B, Wilkie A, Ritchie T et al (2002) Harmful drinking in military veterans with post-traumatic stress disorder: association with the D2 dopamine receptor A1 allele. Alcohol Alcohol 37(5):451–456CrossRefGoogle Scholar
  187. Yu H, Wang Y, Pattwell S, Jing D, Liu T, Zhang Y et al (2009) Variant BDNF Val66Met polymorphism affects extinction of conditioned aversive memory. J Neurosci 29(13):4056–4064.  https://doi.org/10.1523/JNEUROSCI.5539-08.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  188. Zhang J, Tan Q, Yin H, Zhang X, Huan Y, Tang L et al (2011a) Decreased gray matter volume in the left hippocampus and bilateral calcarine cortex in coal mine flood disaster survivors with recent onset PTSD. Psychiatry Res 192(2):84–90.  https://doi.org/10.1016/j.pscychresns.2010.09.001 CrossRefPubMedGoogle Scholar
  189. Zhang L, Zhang Y, Li L, Li Z, Li W, Ma N et al (2011b) Different white matter abnormalities between the first-episode, treatment-naive patients with posttraumatic stress disorder and generalized anxiety disorder without comorbid conditions. J Affect Disord 133(1–2):294–299.  https://doi.org/10.1016/j.jad.2011.03.040 CrossRefPubMedGoogle Scholar
  190. Zoladz PR, Conrad CD, Fleshner M, Diamond DM (2008) Acute episodes of predator exposure in conjunction with chronic social instability as an animal model of post-traumatic stress disorder. Stress 11(4):259–281.  https://doi.org/10.1080/10253890701768613 CrossRefPubMedPubMedCentralGoogle Scholar
  191. Zoladz PR, Fleshner M, Diamond DM (2012) Psychosocial animal model of PTSD produces a long-lasting traumatic memory, an increase in general anxiety and PTSD-like glucocorticoid abnormalities. Psychoneuroendocrinology 37(9):1531–1545.  https://doi.org/10.1016/j.psyneuen.2012.02.007 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Maxwell Bennett
    • 1
  • Jim Lagopoulos
    • 2
  1. 1.The University of SydneyBrain and Mind CentreCamperdown NSWAustralia
  2. 2.Sunshine Coast Mind and Neuroscience Thompson InstituteUniversity of Sunshine CoastBirtinyaAustralia

Personalised recommendations