Advertisement

T1 Mapping in Cardiac Hypertrophy

  • Michael Salerno
  • Christopher M. Kramer
Chapter

Abstract

Cardiac hypertrophy is defined as an increase in left ventricular mass and can result from a number of underlying pathologies including hypertensive heart disease, physiological hypertrophy in athletic heart, hypertrophic cardiomyopathy and infiltrative cardiac processes such as cardiac amyloidosis or storage diseases such as Fabry’s Disease. The end process of an increased LV mass can result from changes in both the intracellular space due to myocyte hypertrophy and/or due to expansion of the interstitial space by fibrosis, inflammation or protein deposition. While some changes in myocardial architecture manifest as focal scar, which can be detected by conventional late-gadolinium enhanced imaging (LGE), more diffuse processes cannot readily be detected, using conventional LGE techniques. It is in this situation where techniques based on T1 mapping, such as assessment of native T1 or extra-cellular volume (ECV), can provide unique insights into diffuse changes in the myocardial structure of a thickened heart muscle. This chapter will first review the relationship between T1 parameters of native T1 and ECV with the intracellular and extracellular spaces. Then we will review the current state of the art for using these T1 mapping techniques in cardiac pathologies characterized by left ventricular hypertrophy.

References

  1. 1.
    Bull S, White SK, Piechnik SK, Flett AS, Ferreira VM, Loudon M, et al. Human non-contrast T1 values and correlation with histology in diffuse fibrosis. Heart. 2013;99:932–7.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Taylor AJ, Salerno M, Dharmakumar R, Jerosch-Herold M. T1 mapping: basic techniques and clinical applications. JACC Cardiovasc Imaging. 2016;9:67–81.CrossRefPubMedGoogle Scholar
  3. 3.
    Mahmod M, Piechnik SK, Levelt E, Ferreira VM, Francis JM, Lewis A, et al. Adenosine stress native T1 mapping in severe aortic stenosis: evidence for a role of the intravascular compartment on myocardial T1 values. J Cardiovasc Magn Reson. 2014;16:92.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Liu A, Wijesurendra RS, Francis JM, Robson MD, Neubauer S, Piechnik SK, et al. Adenosine stress and rest T1 mapping can differentiate between ischemic, infarcted, remote, and normal myocardium without the need for gadolinium contrast agents. JACC Cardiovasc Imaging. 2016;9:27–36.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Li W, Grgac K, Huang A, Yadav N, Qin Q, van Zijl PC. Quantitative theory for the longitudinal relaxation time of blood water. Magn Reson Med. 2016;76:270–81.CrossRefPubMedGoogle Scholar
  6. 6.
    Treibel TA, Fontana M, Maestrini V, Castelletti S, Rosmini S, Simpson J, et al. Automatic measurement of the myocardial interstitium: synthetic extracellular volume quantification without hematocrit sampling. JACC Cardiovasc Imaging. 2016;9:54–63.CrossRefPubMedGoogle Scholar
  7. 7.
    Piechnik SK, Ferreira VM, Lewandowski AJ, Ntusi NA, Banerjee R, Holloway C, et al. Normal variation of magnetic resonance T1 relaxation times in the human population at 1.5 T using ShMOLLI. J Cardiovasc Magn Reson. 2013;15:13.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Arheden H, Saeed M, Higgins CB, Gao DW, Bremerich J, Wyttenbach R, et al. Measurement of the distribution volume of gadopentetate dimeglumine at echo-planar MR imaging to quantify myocardial infarction: comparison with 99mTc-DTPA autoradiography in rats. Radiology. 1999;211:698–708.CrossRefPubMedGoogle Scholar
  9. 9.
    Kuruvilla S, Janardhanan R, Antkowiak P, Keeley EC, Adenaw N, Brooks J, et al. Increased extracellular volume and altered mechanics are associated with LVH in hypertensive heart disease, not hypertension alone. JACC Cardiovasc Imaging. 2015;8:172–80.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Brooks J, Kramer CM, Salerno M. Markedly increased volume of distribution of gadolinium in cardiac amyloidosis demonstrated by T1 mapping. J Magn Reson Imaging. 2013;38(6):1591–5.CrossRefPubMedGoogle Scholar
  11. 11.
    Robbers LF, Baars EN, Brouwer WP, Beek AM, Hofman MB, Niessen HW, et al. T1 mapping shows increased extracellular matrix size in the myocardium due to amyloid depositions. Circ Cardiovasc Imaging. 2012;5:423–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Flett AS, Sado DM, Quarta G, Mirabel M, Pellerin D, Herrey AS, et al. Diffuse myocardial fibrosis in severe aortic stenosis: an equilibrium contrast cardiovascular magnetic resonance study. Eur Heart J Cardiovasc Imaging. 2012;13:819–26.CrossRefPubMedGoogle Scholar
  13. 13.
    Hinojar R, Varma N, Child N, Goodman B, Jabbour A, Yu CY, et al. T1 mapping in discrimination of hypertrophic phenotypes: hypertensive heart disease and hypertrophic cardiomyopathy: findings from the international T1 multicenter cardiovascular magnetic resonance study. Circ Cardiovasc Imaging. 2015;8(12)Google Scholar
  14. 14.
    Yankeelov TE, Rooney WD, Li X, Springer CS Jr. Variation of the relaxographic “shutter-speed” for transcytolemmal water exchange affects the CR bolus-tracking curve shape. Magn Reson Med. 2003;50:1151–69.CrossRefPubMedGoogle Scholar
  15. 15.
    Coelho-Filho OR, Shah RV, Mitchell R, Neilan TG, Moreno H Jr, Simonson B, et al. Quantification of cardiomyocyte hypertrophy by cardiac magnetic resonance: implications for early cardiac remodeling. Circulation. 2013;128:1225–33.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Coelho-Filho OR, Shah RV, Neilan TG, Mitchell R, Moreno H Jr, Kwong R, et al. Cardiac magnetic resonance assessment of interstitial myocardial fibrosis and cardiomyocyte hypertrophy in hypertensive mice treated with spironolactone. J Am Heart Assoc. 2014;3:e000790.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Writing Group M, Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133:e38–360.CrossRefGoogle Scholar
  18. 18.
    Slama M, Susic D, Varagic J, Frohlich ED. Diastolic dysfunction in hypertension. Curr Opin Cardiol. 2002;17:368–73.CrossRefPubMedGoogle Scholar
  19. 19.
    Kannel WB, Cobb J. Left ventricular hypertrophy and mortality—results from the Framingham Study. Cardiology. 1992;81:291–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Weber KT, Brilla CG. Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation. 1991;83:1849–65.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Querejeta R, Lopez B, Gonzalez A, Sanchez E, Larman M, Martinez Ubago JL, et al. Increased collagen type I synthesis in patients with heart failure of hypertensive origin: relation to myocardial fibrosis. Circulation. 2004;110:1263–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Lam CS, Donal E, Kraigher-Krainer E, Vasan RS. Epidemiology and clinical course of heart failure with preserved ejection fraction. Eur J Heart Fail. 2011;13:18–28.CrossRefPubMedGoogle Scholar
  23. 23.
    Treibel TA, Zemrak F, Sado DM, Banypersad SM, White SK, Maestrini V, et al. Extracellular volume quantification in isolated hypertension—changes at the detectable limits? J Cardiovasc Magn Reson. 2015;17:74.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Stuckey DJ, McSweeney SJ, Thin MZ, Habib J, Price AN, Fiedler LR, et al. T(1) mapping detects pharmacological retardation of diffuse cardiac fibrosis in mouse pressure-overload hypertrophy. Circ Cardiovasc Imaging. 2014;7:240–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Green JJ, Berger JS, Kramer CM, Salerno M. Prognostic value of late gadolinium enhancement in clinical outcomes for hypertrophic cardiomyopathy. JACC Cardiovasc Imaging. 2012;5:370–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Dass S, Suttie JJ, Piechnik SK, Ferreira VM, Holloway CJ, Banerjee R, et al. Myocardial tissue characterization using magnetic resonance noncontrast t1 mapping in hypertrophic and dilated cardiomyopathy. Circ Cardiovasc Imaging. 2012;5:726–33.CrossRefPubMedGoogle Scholar
  27. 27.
    Puntmann VO, Voigt T, Chen Z, Mayr M, Karim R, Rhode K, et al. Native T1 mapping in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated cardiomyopathy. JACC Cardiovasc Imaging. 2013;6:475–84.CrossRefPubMedGoogle Scholar
  28. 28.
    Ho CY, Abbasi SA, Neilan TG, Shah RV, Chen Y, Heydari B, et al. T1 measurements identify extracellular volume expansion in hypertrophic cardiomyopathy sarcomere mutation carriers with and without left ventricular hypertrophy. Circ Cardiovasc Imaging. 2013;6:415–22.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Swoboda PP, McDiarmid AK, Erhayiem B, Law GR, Garg P, Broadbent DA, et al. Effect of cellular and extracellular pathology assessed by T1 mapping on regional contractile function in hypertrophic cardiomyopathy. J Cardiovasc Magn Reson. 2017;19:16.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Fang L, Beale A, Ellims AH, Moore XL, Ling LH, Taylor AJ, et al. Associations between fibrocytes and postcontrast myocardial T1 times in hypertrophic cardiomyopathy. J Am Heart Assoc. 2013;2:e000270.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Flett AS, Hayward MP, Ashworth MT, Hansen MS, Taylor AM, Elliott PM, et al. Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: preliminary validation in humans. Circulation. 2010;122:138–44.CrossRefPubMedGoogle Scholar
  32. 32.
    Swoboda PP, McDiarmid AK, Erhayiem B, Broadbent DA, Dobson LE, Garg P, et al. Assessing myocardial extracellular volume by T1 mapping to distinguish hypertrophic cardiomyopathy from Athlete’s heart. J Am Coll Cardiol. 2016;67:2189–90.CrossRefPubMedGoogle Scholar
  33. 33.
    Karamitsos TD, Piechnik SK, Banypersad SM, Fontana M, Ntusi NB, Ferreira VM, et al. Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging. 2013;6:488–97.CrossRefPubMedGoogle Scholar
  34. 34.
    Thompson RB, Chow K, Khan A, Chan A, Shanks M, Paterson I, et al. T(1) mapping with cardiovascular MRI is highly sensitive for Fabry disease independent of hypertrophy and sex. Circ Cardiovasc Imaging. 2013;6:637–45.CrossRefPubMedGoogle Scholar
  35. 35.
    Abascal JF, Montesinos P, Marinetto E, Pascau J, Desco M. Comparison of total variation with a motion estimation based compressed sensing approach for self-gated cardiac cine MRI in small animal studies. PLoS One. 2014;9:e110594.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Mehta BB, Auger DA, Gonzalez JA, Workman V, Chen X, Chow K, et al. Detection of elevated right ventricular extracellular volume in pulmonary hypertension using Accelerated and Navigator-Gated Look-Locker Imaging for Cardiac T1 Estimation (ANGIE) cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2015;17:110.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MedicineUniversity of Virginia Health SystemCharlottesvilleUSA
  2. 2.Department of RadiologyUniversity of Virginia Health SystemCharlottesvilleUSA
  3. 3.Department of Biomedical EngineeringUniversity of Virginia Health SystemCharlottesvilleUSA
  4. 4.Cardiovascular Imaging CenterUniversity of Virginia Health SystemCharlottesvilleUSA
  5. 5.Cardiovascular Division University of Virginia Health SystemCharlottesvilleUSA

Personalised recommendations