Fundamentals of Cardiac T1 Mapping

  • Joëlle K. Barral
  • Matthias G. Friedrich
  • Nikola StikovEmail author


In the first chapter, entitled Fundamentals of Cardiac T1 Mapping, we present an overview of the scientific principles, technical choices and challenges associated with cardiac T1 mapping. This chapter reminds the reader that T1 mapping relies on a physical model of the MR signal, and shows the ways in which this model breaks down when the underlying assumptions are not met.

We start from first principles and introduce the basics of body T1 mapping before moving onto the most widely used cardiac sequences: MOLLI and ShMOLLI (which are based on a Look-Locker sequence) and SASHA (based on a saturation recovery sequence). We take a particularly close look at the confounding factors that might impact T1 mapping results in practice.

Next, we give key insights into the T1 mapping post-processing techniques, which are often used to communicate T1 mapping results to radiologists and cardiologists. Finally, we emphasize the need for proper validation, provide suggestions for standardizing the field, and end the chapter with recommendations for the clinical application of cardiac T1 mapping.


Pulse sequences Quantitative MRI T1 mapping (Sh)MOLLI SASHA 



The authors would like to thank Pascale Beliveau and Tarik Hafyane for their help with preparing the figures, and Reeve Ingle for insightful discussions.


  1. 1.
    Levitt MH. Spin dynamics: basics of nuclear magnetic resonance. Chichester, UK: Wiley; 2001.Google Scholar
  2. 2.
    Tofts P. Quantitative MRI of the brain: measuring changes caused by disease. Chichester: Wiley; 2003.CrossRefGoogle Scholar
  3. 3.
    Frank JS. The myocardial interstitium: its structure and its role in ionic exchange. J Cell Biol. 1974;60(3):586–601.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Rienks M, Papageorgiou A-P, Frangogiannis NG, Heymans S. Myocardial extracellular matrix: an ever-changing and diverse entity. Circ Res. 2014;114(5):872–88.CrossRefPubMedGoogle Scholar
  5. 5.
    Scholz TD, Fleagle SR, Burns TL, Skorton DJ. Nuclear magnetic resonance relaxometry of the normal heart: relationship between collagen content and relaxation times of the four chambers. Magn Reson Imaging. 1989;7(6):643–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Hinojar R, Foote L, Ucar EA, Jackson T, Jabbour A, Chung-Yao Y, et al. Native T1 in discrimination of acute and convalescent stages in patients with clinical diagnosis of myocarditis: a proposed diagnostic algorithm using CMR. JACC Cardiovasc Imaging. 2015;8(1):37–46.CrossRefPubMedGoogle Scholar
  7. 7.
    Kali A, Avinash K, Eui-Young C, Behzad S, Kim YJ, Bi X, et al. Native T1 mapping by 3-T CMR imaging for characterization of chronic myocardial infarctions. JACC Cardiovasc Imaging. 2015;8(9):1019–30.CrossRefPubMedGoogle Scholar
  8. 8.
    Kim RJ, Fieno DS, Parrish TB, Harris K, Chen EL, Simonetti O, et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation. 1999;100(19):1992–2002.CrossRefGoogle Scholar
  9. 9.
    Pennell DJ, Sechtem UP, Higgins CB, Manning WJ, Pohost GM, Rademakers FE, et al. Clinical indications for cardiovascular magnetic resonance (CMR): consensus panel report. Eur Heart J. 2004;25(21):1940–65.CrossRefPubMedGoogle Scholar
  10. 10.
    Wesbey GE, Higgins CB, McNamara MT, Engelstad BL, Lipton MJ, Sievers R, et al. Effect of gadolinium-DTPA on the magnetic relaxation times of normal and infarcted myocardium. Radiology. 1984;153(1):165–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Arheden H, Saeed M, Higgins CB, Gao DW, Bremerich J, Wyttenbach R, et al. Measurement of the distribution volume of gadopentetate dimeglumine at echo-planar MR imaging to quantify myocardial infarction: comparison with 99mTc-DTPA autoradiography in rats. Radiology. 1999;211(3):698–708.CrossRefPubMedGoogle Scholar
  12. 12.
    Fontana M, White SK, Banypersad SM, Sado DM, Maestrini V, Flett AS, et al. Comparison of T1 mapping techniques for ECV quantification. histological validation and reproducibility of ShMOLLI versus multibreath-hold T1 quantification equilibrium contrast CMR. J Cardiovasc Magn Reson. 2012;14:88.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Treibel TA, Fontana M, Maestrini V, Castelletti S, Rosmini S, Simpson J, et al. Automatic measurement of the myocardial interstitium: synthetic extracellular volume quantification without hematocrit sampling. JACC Cardiovasc Imaging. 2016;9(1):54–63.CrossRefPubMedGoogle Scholar
  14. 14.
    Schelbert EB, Piehler KM, Zareba KM, Moon JC, Martin U, Messroghli DR, et al. Myocardial fibrosis quantified by extracellular volume is associated with subsequent hospitalization for heart failure, death, or both across the spectrum of ejection fraction and heart failure stage. J Am Heart Assoc. 2015;4(12):e002613.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Moon JC, Messroghli DR. Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson. 2013;15:92. Scholar
  16. 16.
    Kellman P, Wilson JR, Xue H, Patricia Bandettini W, Shanbhag SM, Druey KM, et al. Extracellular volume fraction mapping in the myocardium, part 2: initial clinical experience. J Cardiovasc Magn Reson. 2012a;14:64.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Barral JK, Gudmundson E, Stikov N, Etezadi-Amoli M, Stoica P, Nishimura DG. A Robust methodology for in vivo T1 mapping. Magn Reson Med. 2010;64(4):1057–67.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Donoho DL. An invitation to reproducible computational research. Biostatistics. 2010;11(3):385–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Tannús A, Alberto T, Michael G. Adiabatic pulses. NMR Biomed. 1997;10(8):423–34.CrossRefPubMedGoogle Scholar
  20. 20.
    Gold GE, Eric H, Jeff S, Graham W, Jean B, Christopher B. Musculoskeletal MRI at 3.0 T: relaxation times and image contrast. Am J Roentgenol. 2004;183(2):343–51.CrossRefGoogle Scholar
  21. 21.
    Bevington PR, Keith Robinson D, Morris Blair J, John Mallinckrodt A, Susan M. Data reduction and error analysis for the physical sciences. Comput Phys. 1993;7(4):415.CrossRefGoogle Scholar
  22. 22.
    Lustig M, Michael L, David D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58(6):1182–95.CrossRefGoogle Scholar
  23. 23.
    Weingärtner S, Akçakaya M, Roujol S, Basha T, Stehning C, Kissinger KV, et al. Free-breathing post-contrast three-dimensional T1 mapping: volumetric assessment of myocardial T1 values. Magn Reson Med. 2015;73(1):214–22.CrossRefPubMedGoogle Scholar
  24. 24.
    Brix G, Schad LR, Deimling M, Lorenz WJ. Fast and precise T1 imaging using a TOMROP sequence. Magn Reson Imaging. 1990;8(4):351–6.CrossRefPubMedGoogle Scholar
  25. 25.
    Look DC, Locker DR. Nuclear spin-lattice relaxation measurements by tone-burst modulation. Phys Rev Lett. 1968;20(21):1222.CrossRefGoogle Scholar
  26. 26.
    Deichmann R, Haase A. Quantification of T1 values by SNAPSHOT-FLASH NMR imaging. J Magn Reson. 1992;96(3):608–12.Google Scholar
  27. 27.
    Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP. Modified look-locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med. 2004;52(1):141–6.CrossRefPubMedGoogle Scholar
  28. 28.
    Piechnik SK, Ferreira VM, Dall’Armellina E, Cochlin LE, Andreas G, Stefan N, et al. Shortened modified look-locker inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold. J Cardiovasc Magn Reson. 2010;12(1):69.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kellman P, Peter K, Hansen MS. T1-mapping in the heart: accuracy and precision. J Cardiovasc Magn Reson. 2014;16(1):2.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Slavin GS. On the use of the ‘look-locker correction’ for calculating T1 values from MOLLI. J Cardiovasc Magn Reson. 2014;16(Suppl 1):P55.CrossRefPubMedCentralGoogle Scholar
  31. 31.
    Chow K, Flewitt JA, Green JD, Pagano JJ, Friedrich MG, Thompson RB. Saturation recovery single-shot acquisition (SASHA) for myocardial T(1) mapping. Magn Reson Med. 2014;71(6):2082–95.CrossRefPubMedGoogle Scholar
  32. 32.
    Captur G, Gaby C, Peter G, Peter K, Heslinga FG, Katy K, et al. A T1 and ECV phantom for global T1 mapping quality assurance: the T1 mapping and ECV standardisation in CMR (T1MES) program. J Cardiovasc Magn Reson. 2016;18(Suppl 1):W14.CrossRefPubMedCentralGoogle Scholar
  33. 33.
    Teixeira T, Hafyane T, Stikov N, Akdeniz C, Greiser A, Friedrich MG. Comparison of different cardiovascular magnetic resonance sequences for native myocardial T1 mapping at 3T. J Cardiovasc Magn Reson. 2016;18(1):65.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Robson MD, Piechnik SK, Tunnicliffe EM, Neubauer S. T1 measurements in the human myocardium: the effects of magnetization transfer on the SASHA and MOLLI sequences. Magn Reson Med. 2013;70(3):664–70.CrossRefPubMedGoogle Scholar
  35. 35.
    Schelbert EB, Messroghli DR. State of the art: clinical applications of cardiac T1 mapping. Radiology. 2016;278(3):658–76.CrossRefPubMedGoogle Scholar
  36. 36.
    Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the cardiac imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105(4):539–42. Scholar
  37. 37.
    Avendi MR, Kheradvar A, Jafarkhani H. Fully automatic segmentation of heart chambers in cardiac MRI using deep learning. J Cardiovasc Magn Reson. 2016;18(Suppl 1):P351.CrossRefPubMedCentralGoogle Scholar
  38. 38.
    Luo G, An R, Wang K, Dong S, Zhang H. A deep learning network for right ventricle segmentation in short: axis MRI. In 2016 Computing in Cardiology Conference (CinC). 2016.
  39. 39.
    Kellman P, Wilson JR, Xue H, Ugander M, Arai AE. Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method. J Cardiovasc Magn Reson. 2012b;14:63.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Keenan K, Katy K, Stupic KF, Boss MA, Russek SE. Standardized phantoms for quantitative cardiac MRI. J Cardiovasc Magn Reson. 2015;17(Suppl 1):W36.CrossRefPubMedCentralGoogle Scholar
  41. 41.
    Stikov N, Boudreau M, Levesque IR, Tardif CL, Barral JK, Bruce Pike G. On the accuracy of T1 mapping: searching for common ground. Magn Reson Med. 2015;73(2):514–22.CrossRefPubMedGoogle Scholar
  42. 42.
    Kellman P, Arai AE, Xue H. T1 and extracellular volume mapping in the heart: estimation of error maps and the influence of noise on precision. J Cardiovasc Magn Reson. 2013;15:56.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Bull S, White SK, Piechnik SK, Flett AS, Ferreira VM, Loudon M, et al. Human non-contrast T1 values and correlation with histology in diffuse fibrosis. Heart. 2013;99(13):932–7.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Flett AS, Hayward MP, Ashworth MT, Hansen MS, Taylor AM, Elliott PM, et al. Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: preliminary validation in humans. Circulation. 2010;122(2):138–44.CrossRefPubMedGoogle Scholar
  45. 45.
    White SK, Sado DM, Fontana M, Banypersad SM, Maestrini V, Flett AS, et al. T1 mapping for myocardial extracellular volume measurement by CMR: bolus only versus primed infusion technique. JACC Cardiovasc Imaging. 2013;6(9):955–62.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Joëlle K. Barral
    • 1
  • Matthias G. Friedrich
    • 2
  • Nikola Stikov
    • 3
    • 4
    Email author
  1. 1.Verily Life SciencesSouth San FranciscoUSA
  2. 2.Departments of Cardiology and Diagnostic RadiologyMcGill University Health Centre, McGill UniversityMontrealCanada
  3. 3.NeuroPoly LabInstitute of Biomedical Engineering, Polytechnique MontrealMontrealCanada
  4. 4.Montreal Heart Institute, University of MontrealMontrealCanada

Personalised recommendations