Advertisement

Delay Induced Oscillations in a Dynamical Model for Infectious Disease

  • A. Kumar
  • P. K. SrivastavaEmail author
Chapter

Abstract

When a disease outbreaks in a population the information about disease prevalence induces behaviour changes in the susceptible population. This causes the susceptible individuals to adopt protective and precautionary measures. Thus this fraction of susceptible population may be virtually immune to the infection for some time. As the immunity degrades with passage of time, a time delay in waning of immunity is also accounted in the model. Thus, in this study, a delay differential equation model for the dynamics of infectious diseases is proposed and analysed which accounts for the effect of information on the susceptible population. The model analysis is carried out and it is found that the disease free equilibrium exists unconditionally, whereas a unique infected equilibrium is obtained when the basic reproduction number (R0) is greater than one. Also, the disease free equilibrium is locally stable independent of delay when R0 < 1. For R0 > 1, the model exhibits rich and complex dynamics in presence of time delay. The occurrence of oscillatory behaviour of the population around the infected equilibrium via Hopf bifurcation is observed analytically. Numerical simulation is performed to discuss and analyse the analytical results.

Notes

Acknowledgements

Anuj Kumar is thankful for the financial support of Council of Scientific and Industrial Research, India (Grant No.: 09∕1023(0009)∕2012–EMR–I). Prashant Srivastava thanks to the International Union of Biological Sciences (IUBS) for partial support of living expenses in Moscow, during the 17th BIOMAT International Symposium, October 29-November 04, 2017.

References

  1. 1.
    A. Ahituv, V.J. Hotz, T. Philipson, J. Hum. Resour. 31, 869 (1996)CrossRefGoogle Scholar
  2. 2.
    M. Banerjee, Y. Takeuchi, J. Theor. Biol. 412, 154 (2008)CrossRefGoogle Scholar
  3. 3.
    S. Collinson, J.M. Heffernan, BMC Public Health 14, 376 (2014)CrossRefGoogle Scholar
  4. 4.
    K. Cooke, P. Van den Driessche, X. Zou, J. Math. Biol. 39(4), 332 (1999)MathSciNetCrossRefGoogle Scholar
  5. 5.
    J. Cui, Y. Sun, H. Zhu, J. Dyn. Diff. Equa. 20(1), 31 (2008)CrossRefGoogle Scholar
  6. 6.
    A. d’Onofrio, P. Manfredi, J. Theor. Biol. 256(3), 473 (2009)CrossRefGoogle Scholar
  7. 7.
    A. d’Onofrio, P. Manfredi, E. Salinelli, Theor. Popul. Biol. 71(3), 301 (2007)CrossRefGoogle Scholar
  8. 8.
    H.I. Freedman, V. Sree Hari Rao, Bull. Math. Biol. 45(6), 991 (1983)Google Scholar
  9. 9.
    S. Funk, E. Gilad, V.A.A. Jansen, J. Theor. Biol. 264(2), 501 (2010)CrossRefGoogle Scholar
  10. 10.
    S. Funk, E. Gilad, C. Watkins, V.A.A. Jansen, Proc. Natl. Acad. Sci. U. S. A. 106(16), 6872 (2009)CrossRefGoogle Scholar
  11. 11.
    D. Greenhalgh, Q.J.A. Khan, F.I. Lewis, Nonlinear Anal. Real World Appl. 63(5), 779 (2005)CrossRefGoogle Scholar
  12. 12.
    D. Greenhalgh, S. Rana et al., Appl. Math. Comput. 251, 539 (2015)MathSciNetGoogle Scholar
  13. 13.
    J.K. Hale, Theory of Functional Differential Equations. Applied Mathematical Sciences (Springer, New York, 1977)Google Scholar
  14. 14.
    G. Huang, Y. Takeuchi, W. Ma, D. Wei, Bull. Math. Biol. 72(5), 1192 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    H. Joshi, S. Lenhart, K. Albright, K. Gipson, Math. Biosci. Eng. 5(4), 757 (2008)MathSciNetCrossRefGoogle Scholar
  16. 16.
    S.M. Kassa, A. Ouhinou, J. Math. Biol. 70(1–2), 213 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    I.Z. Kiss, J. Cassell, M. Recker, P.L. Simon, Math. Biosci. 225(1), 1 (2010)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Y. Kuang, Delay Differential Equations with Applications in Population Dynamics. Mathematical in Science and Engineering Series, vol. 191 (Cambridge, 1993)Google Scholar
  19. 19.
    A. Kumar, P.K. Srivastava, Y. Takeuchi, J. Theor. Biol. 414, 103 (2017)CrossRefGoogle Scholar
  20. 20.
    N. Kyrychko, K.B. Blyuss, Nonlinear Anal. Real World Appl. 6(3), 495 (2005)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Y. Li, C. Ma, J. Cui, Rocky Mountain J. Math. 38(5), 1437 (2008)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Y. Liu, J. Cui, Int. J. Biomath. 1(1), 65 (2008)MathSciNetCrossRefGoogle Scholar
  23. 23.
    R. Liu, J. Wu, H. Zhu, Comput. Math. Methods Med. 8(3), 153 (2007)MathSciNetCrossRefGoogle Scholar
  24. 24.
    M. Liu, E. Liz, G. Röst, SIAM J. Appl. Dyn. Syst. 75(1), 75 (2015)CrossRefGoogle Scholar
  25. 25.
    P. Manfredi, A. d’Onofrio, Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases (Springer, New York, 2013)CrossRefGoogle Scholar
  26. 26.
    A.K. Misra, A. Sharma, J.B. Shukla, Math. Comput. Model. 53(3), 1221 (2011)CrossRefGoogle Scholar
  27. 27.
    A.K. Misra, A. Sharma, V. Singh, J. Biol. Syst. 19(2), 389 (2011)CrossRefGoogle Scholar
  28. 28.
    T. Philipson, J. Hum. Resour. 31, 611 (1996)CrossRefGoogle Scholar
  29. 29.
    S. Ruan, J. Wei, Dyn. Contin. Discret. Impuls. Syst. Ser. A Math. Anal. 10, 863 (2003)Google Scholar
  30. 30.
    Y. Song, J. Wei, Chaos, Solitons Fractals 22(1), 75 (2004)Google Scholar
  31. 31.
    P.K. Srivastava, P. Chandra, Differ. Equ. Dyn. Syst. 16(1–2), 77 (2008)MathSciNetCrossRefGoogle Scholar
  32. 32.
    J.M. Tchuenche, C.T. Bauch, ISRN Biomath., 1–10, Article ID 581274 (2012)Google Scholar
  33. 33.
    L. Wen, X. Yang, Chaos, Solitons Fractals 38(1), 221 (2008)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of Technology PatnaPatnaIndia

Personalised recommendations