Advertisement

Numerical Study on Biological Tissue Freezing Using Dual Phase Lag Bio-Heat Equation

  • Sushil KumarEmail author
  • Sonalika Singh
Chapter

Abstract

The most widely used Fourier’s law of heat conduction leads to an unphysical infinite heat propagation speed within the medium, which is clearly in contradiction with the theory of relativity, further CV (Cattaneo and Vernotte) constitutive relation does not describe the microstructural interactions. In present study, dual phase lag model of bio-heat equation is proposed to study the freezing process in biological tissue using temperature dependent enthalpy formulation. Finite difference method is used to solve the mathematical model. Temperature profiles and interface position in tissue are obtained. It is observed that the phase-lag of the heat flux, the phase-lag of the temperature gradient and blood perfusion have significant effect on the transient temperature and phase change interfaces positions. Comparison of DPL model with parabolic and hyperbolic model of heat transport is also made in the study.

Notes

Acknowledgements

The authors Sushil Kumar and Sonalika Singh are thankful to S. V. National Institute of Technology, Surat, India for providing CPDA grant and Senior Research Fellowship, (SRF) respectively, for the research work presented in this manuscript. Sushil Kumar thanks to the International Union of Biological Sciences (IUBS) for partial support of living expenses in Moscow, during the 17th BIOMAT International Symposium, October 29-November 04, 2017.

References

  1. 1.
    J.C. Bischof, J. Bastack, B. Rubinsky, ASME J. Biomech. Eng. 114, 467 (1992)CrossRefGoogle Scholar
  2. 2.
    K.J. Chua, S.K. Chou, J.C. Ho, J. Biomech. 40, 100 (2007)CrossRefGoogle Scholar
  3. 3.
    H.H. Pennes, J. Appl. Physiol. 1, 93 (1948)CrossRefGoogle Scholar
  4. 4.
    M.M. Chen, K.R. Holmes, Ann. N. Y. Acad. Sci. 335, 137 (1980)CrossRefGoogle Scholar
  5. 5.
    L.M. Jiji, S. Weinbaum, D.E. Lemons, ASME J. Biomech. Eng. 106, 331 (1984)CrossRefGoogle Scholar
  6. 6.
    S. Weinbaum, L.M. Jiji, D.E. Lemons, ASME J. Biomech. Eng. 106, 321 (1984)CrossRefGoogle Scholar
  7. 7.
    S. Weinbaum, L.M. Jiji, ASME J. Biomech. Eng. 107, 131 (1985)CrossRefGoogle Scholar
  8. 8.
    L. Wang, J. Fan, ASME J. Heat Transfer 133, 011010-1 (2011)CrossRefGoogle Scholar
  9. 9.
    C. Cattaneo, C. R. Acad. Sci. 247, 431 (1958)Google Scholar
  10. 10.
    P. Vernotte, C. R. Acad. Sci. 246, 3154 (1958)Google Scholar
  11. 11.
    S. Singh, S. Kumar, Math. Model. Anal. 20(4), 443 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    S. Singh, S. Kumar, J. Mech. Med. Biol. 16(2), 1650017 (2016)CrossRefGoogle Scholar
  13. 13.
    D.Y. Tzou, ASME J. Heat Transfer 117, 8 (1995)CrossRefGoogle Scholar
  14. 14.
    D.Y. Tzou, Macro-to Microscale Heat Transfer: The Lagging Behavior (Taylor and Francis, Washington, 1997)Google Scholar
  15. 15.
    L.Q. Wang, Int. J. Heat Mass Transfer 37, 2627 (1994)CrossRefGoogle Scholar
  16. 16.
    D.Y. Tzou, M.N. Ozisik, R.J. Chiffelle, J. Heat Transfer 116, 1034 (1994)CrossRefGoogle Scholar
  17. 17.
    M.N. Ozisik, D.Y. Tzou, ASME J. Heat Transfer 116, 526 (1994)CrossRefGoogle Scholar
  18. 18.
    K.C. Liu, H. Chen, Int. J. Heat Mass Transfer 52, 1185 (2009)CrossRefGoogle Scholar
  19. 19.
    K.C. Liu, H. Chen, Int. J. Therm. Sci. 49, 1138 (2010)CrossRefGoogle Scholar
  20. 20.
    E. Majchrzak, Comput. Model. Eng. Sci. 69(1), 43 (2010)MathSciNetGoogle Scholar
  21. 21.
    E. Majchrzak, T. Lukasz, in 19th International Conference on Computer Methods in Mechanics CMM (2011), p. 337Google Scholar
  22. 22.
    N. Afrin , N. Y. Zhang , J. K. Chen, Int. J. Heat Mass Transfer 54, 2419 (2011)CrossRefGoogle Scholar
  23. 23.
    Y. Zhang, Int. J. Heat Mass Transfer 52, 4829 (2009)CrossRefGoogle Scholar
  24. 24.
    J. Zhou, J.K. Chen, Y. Zhang, Comput. Biol. Med. 39, 286 (2009)CrossRefGoogle Scholar
  25. 25.
    J. Zhou, Y. Zhang, J.K. Chen, Int. J. Therm. Sci. 48, 1477 (2009)CrossRefGoogle Scholar
  26. 26.
    S. Singh, S. Kumar, Int. J. Therm. Sci. 86, 12 (2014)CrossRefGoogle Scholar
  27. 27.
    J. Crank, Free and Moving Boundary Problems (University Press, New York, 1984)zbMATHGoogle Scholar
  28. 28.
    Z.S. Deng, J. Liu, Numer. Heat Transfer Part A 46, 487 (2004)CrossRefGoogle Scholar
  29. 29.
    Z.S. Deng, J. Liu, Eng. Anal. Bound. Elem. 28(2), 97 (2004)CrossRefGoogle Scholar
  30. 30.
    Y. Rabin, A. Shitzer, J. Biomech. Eng. 120(1), 32 (1998)CrossRefGoogle Scholar
  31. 31.
    S. Kumar, V.K. Katiyar, Int. J. Appl. Math. Mech. 3(3), 1 (2007)Google Scholar
  32. 32.
    R.I. Andrushkiw, Math. Comput. Model. 13, 1 (1990)CrossRefGoogle Scholar
  33. 33.
    M. Zerroukat, C.R. Chatwin, Computational Moving Boundary Problem (Wiley, New York, 1993)zbMATHGoogle Scholar
  34. 34.
    J.C. Rewcastle, G.A. Sandison, K. Muldrew, J.C. Saliken, B.J. Donnelly, Med. Phys. 28, 1125 (2001)CrossRefGoogle Scholar
  35. 35.
    S. Kumar, V.K. Katiyar, Int. J. Appl. Mech. 2(3), 617 (2010)CrossRefGoogle Scholar
  36. 36.
    G. Comini, D.S. Giudice, ASME J. Heat Transfer 98, 543 (1976)CrossRefGoogle Scholar
  37. 37.
    A. Weill, A. Shitzer, P.B. Yoseph, J. Biomech. Eng. 115, 374 (1993)CrossRefGoogle Scholar
  38. 38.
    J.Y. Zhang, G.A. Sadison, J.Y. Murthy, L.X. Xu, J. Biomech. Eng. 127, 279 (2005)CrossRefGoogle Scholar
  39. 39.
    C. Bonacina, G. Comini, Int. J. Heat Mass Transfer 16, 1825 (1973)CrossRefGoogle Scholar
  40. 40.
    N.E. Hoffmann, J.C. Bischof, ASME J. Biomech. Eng. 123, 301 (2001)CrossRefGoogle Scholar
  41. 41.
    Y. Rabin, A. Shitzer, J. Heat Transfer 117, 425 (1995)CrossRefGoogle Scholar
  42. 42.
    Y. Rabin, A. Shitzer, ASME J. Heat Biomech. Eng. 119, 146 (1997)CrossRefGoogle Scholar
  43. 43.
    Z.S. Deng, J. Liu, J. Therm. Stresses 26, 779 (2003)CrossRefGoogle Scholar
  44. 44.
    A. Moradi, H. Ahamdikia, J. Eng. Med. 226(5), 406 (2012)CrossRefGoogle Scholar
  45. 45.
    H. Ahamdikia, A. Moradi, R. Fazlali, B. Parsa, J. Mech. Sci. Technol. 26(6), 1937 (2012)CrossRefGoogle Scholar
  46. 46.
    L. Jing, C. Xu, L.X. Xu, IEEE Trans. Biomed. Eng. 46(4), 420 (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied Mathematics and HumanitiesS. V. National Institute of TechnologySuratIndia

Personalised recommendations