Modeling the Endophytic Fungus Epicoccum nigrum Action to Fight the “Olive Knot” Disease Caused by Pseudomonas savastanoi pv. savastanoi (Psv) Bacteria in Olea europaea L. Trees

  • Cecilia Berardo
  • Iulia Martina Bulai
  • Ezio VenturinoEmail author
  • Paula Baptista
  • Teresa Gomes


In this paper, a four-populations’ nonlinear mathematical model is introduced to analyze the interactions between two different microorganisms and the olive tree on which they reside. One such microorganism infects and ultimately kills the branches while the other one has a beneficial effect on the plant. We aim at devising a control strategy of the action of the pathogenic microorganism on the plant. To this end, the equilibrium points of the ecosystem are investigated. Feasibility and stability conditions of the equilibria are derived analytically. The numerical simulations show that the infection transmission rate and the disease-related mortality can deeply affect the spread of the disease. Some conditions for the disease eradication are investigated and suggestions are given for the implementation of suitable biological controls, such as pruning of the infected leaves.



This research has been partially supported by The European COST Action: FA 1405—Food and Agriculture: Using three-way interactions between plants, microbes, and arthropods to enhance crop protection and production. The research of Ezio Venturino has been partially supported by the project “Metodi numerici nelle scienze applicate” of the Dipartimento di Matematica “Giuseppe Peano.”


  1. 1.
    E. Caccherano, S. Chatterjee, L. Costa Giani, L. Il Grande, T. Romano, G. Visconti, E. Venturino, Models of symbiotic associations in food chains, in Symbiosis: Evolution, Biology and Ecological Effects, ed. by A.F. Camisão, C.C. Pedroso (Nova Science Publishers, Hauppauge, 2012), pp. 189–234Google Scholar
  2. 2.
    G.F. Gause, Experimental studies on the struggle for existence. J. Exp. Biol. 9, 389–402 (1932)Google Scholar
  3. 3.
    M. Haque, E. Venturino, Mathematical models of diseases spreading in symbiotic communities, in Wildlife: Destruction, Conservation and Biodiversity, ed. by J.D. Harris, P.L. Brown (Nova Science Publishers, New York, 2009), pp. 135–179Google Scholar
  4. 4.
    A.J. Lotka, Elements of Mathematical Biology (Dover, New York, 1956)zbMATHGoogle Scholar
  5. 5.
    C. Malavolta, D. Perdikis, IOBC technical guidelines III. Guidelines for Integrated Production of Olives. IOBC/WPRS Bulletin 77, pp. 1–19 (2012)Google Scholar
  6. 6.
    G. Marchi, A. Sisto, A. Cimmino, A. Andolfi, M. G. Cipriani, A. Evidente, G. Surico. Interaction between Pseudomonas savastanoi pv. savastanoi and Pantoea agglomerans in olive knots. Plant Pathol. 55, 614–624 (2006)Google Scholar
  7. 7.
    G. Marchi, B. Mori, P. Pollacci, M. Mencuccini, G. Surico Systemic spread of Pseudomonas savastanoi pv. savastanoi in olive explants. Plant Pathol. 58, 152–158 (2009)Google Scholar
  8. 8.
    H. Ouzari, A. Khsairi, N. Raddadi, L. Jaoua, A. Hassen, M. Zarrouk, D. Daffonchio, A. Boudabous, Diversity of auxin-producing bacteria associated to Pseudomonas savastanoi-induced olive knots. J. Basic Microbiol. 48, 370–377 (2008)CrossRefGoogle Scholar
  9. 9.
    J. M. Quesada, A. García, E. Bertolini, M.M. López, R. Penyalver, Recovery of Pseudomonas savastanoi pv. savastanoi from symptomless shoots of naturally infected olive trees. Int. Microbiol. 10, 77–84 (2007)Google Scholar
  10. 10.
    J.M. Quesada, R. Penyalver, J. Pérez-Panadés, C.I. Salcedo, E.A. Carbonell, M.M. López, Dissemination of Pseudomonas savastanoi pv. savastanoi populations and subsequent appearance of olive knot disease. Plant Pathol. 59, 262–269 (2010)Google Scholar
  11. 11.
    J.M. Quesada, R. Penyalver, M.M. López, Epidemiology and control of plant diseases caused by phytopathogenic bacteria: the case of olive knot disease caused by Pseudomonas savastanoi pv. savastanoi, in Plant Pathology, ed. by C.J. Cumagun (InTech, 2012). ISBN: 978-953-51-0489-6
  12. 12.
    E. Venturino, How diseases affect symbiotic communities. Math. Biosci. 206, 11–30 (2007)MathSciNetCrossRefGoogle Scholar
  13. 13.
    V. Volterra, U. D’Ancona, La concorrenza vitale tra le specie dell’ambiente marino, VIIe Congr. Int. acquicult et de pêche, Paris 1–14 (1931)Google Scholar
  14. 14.
    P. Waltman, Competition Models in Population Biology. SIAM CBMS-NSF Regional Conference Series in Applied Mathematics (SIAM, Philadelphia, 1983)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Cecilia Berardo
    • 1
  • Iulia Martina Bulai
    • 1
  • Ezio Venturino
    • 1
    Email author
  • Paula Baptista
    • 2
  • Teresa Gomes
    • 2
  1. 1.Dipartimento di Matematica “Giuseppe Peano”Università di TorinoTorinoItaly
  2. 2.CIMOSchool of Agriculture, Polytechnic Institute of BragançaBragançaPortugal

Personalised recommendations