Advertisement

Electrodes Based on Carbon Nanomaterials: Structure, Properties, and Application to Capacitive Deionization in Static Cells

  • Yurii Volfkovich
  • Daniil Bograchev
  • Alexey Mikhalin
  • Alexey Rychagov
  • Valentin Sosenkin
  • Vitaly Milyutin
  • Daewook Park
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 210)

Abstract

Both fibrous- and corpuscular-like materials based on activated carbon, which are considered as electrodes for capacitive deionization, were investigated with a method of standard contact porosimetry. Nanosized pores as well as micro- and macropores have been recognized for the investigated materials. It was found that the hydrophilic specific surface area that is provided by the smallest mesopores and micropores has been found to reach 520–850 m2 g−1; total surface area is 940–1520 m2 g−1. Galvanostatic measurements of dependences of cell voltage on time were performed in a static cell; capacitance of the electrodes was determined from the plateau of the curves. The capacitance of electric double layer was calculated. For the CH900 material, which is characterized by the highest volume of hydrophilic micropores and nanosized voids, this value achieves 63 F g−1. The model for capacitive deionization in a static cell has been developed; the approach allows one to calculate the process using only experimental parameters (surface conductivity and capacitance of electric double layer).

References

  1. 1.
    Nath K (2017) Membrane separation processes, 2nd edn. PHI Learning Private Limited, DelhiGoogle Scholar
  2. 2.
    Alvarado L, Chen A (2014) Electrodeionization: principles, strategies and applications. Electrochim Acta 132:583–597CrossRefGoogle Scholar
  3. 3.
    Dzyazko YS, Ponomareva LN, Volfkovich YM et al (2013) Conducting properties of a gel ionite modified with zirconium hydrophosphate nanoparticles. Russ J Electrochem 49(3):209–215CrossRefGoogle Scholar
  4. 4.
    Dzyaz’ko YS, Rozhdestvenskaya LM, Pal’chik AV (2005) Recovery of nickel ions from dilute solutions by electrodialysis combined with ion exchange. Russ J Appl Chem 75:414–421CrossRefGoogle Scholar
  5. 5.
    Dzyazko YS, Volfkovich YM, Ponomaryova LN et al (2016) Composite ion-exchangers based on flexible resin containing zirconium hydrophosphate for electromembrane separation. J Nanosci Technol 2(1):43–49Google Scholar
  6. 6.
    Oren Y (2008) Capacitive deionization (CDI) for desalination and water treatment—past, present and future (a review). Desalination 228:10–29CrossRefGoogle Scholar
  7. 7.
    Avraham E, Noked M, Bouhadana Y et al (2009) Limitations of charge efficiency in capacitive deionization II. On the behavior of cdi cells comprising two activated carbon electrodes. J Electrochem Soc 156(10):157–162CrossRefGoogle Scholar
  8. 8.
    Suss ME, Baumann TF, Bourcier WL et al (2012) Capacitive desalination with flow-through electrodes. Energy Environ Sci 5:9511–9519CrossRefGoogle Scholar
  9. 9.
    Rica RA, Ziano R, Salerno D et al (2012) Thermodynamic relation between voltage-concentration dependence and salt adsorption in electrochemical cells. Phys Rev Lett 109:156103. https://doi.org/10.1103/PhysRevLett.109.156103 CrossRefADSGoogle Scholar
  10. 10.
    Porada S, Zhao R, van der Wal A et al (2013) Review on the science and technology of water desalination by capacitive deionization. Prog Mater Sci 58(8):1388–1442CrossRefGoogle Scholar
  11. 11.
    Jande YAC, Kim WS (2013) Desalination using capacitive deionization at constant current. Desalination 329:29–34CrossRefGoogle Scholar
  12. 12.
    Soffer A, Folman M (1972) The electrical double layer of high surface porous on carbon electrode. Electroanal Chem 38(1):25–43CrossRefGoogle Scholar
  13. 13.
    Jande YAC, Kim WS (2013) Predicting the lowest effluent concentration in capacitive deionization. Sep Purif Technol 115:224–230CrossRefGoogle Scholar
  14. 14.
    Li H, Pan L, Lu T et al (2011) A comparative study on electrosorptive behavior of carbon nanotubes and graphene for capacitive deionization. J Electroanal Chem 653(1–2):40–44CrossRefGoogle Scholar
  15. 15.
    Gabelich CJ, Tran TD, Suffet IH (2002) Electrosorption of inorganic salts from aqueous solution using carbon aerogels. Environ Sci Technol 36(13):3010–3019CrossRefADSGoogle Scholar
  16. 16.
    Li H, Lu T, Pan L et al (2009) Electrosorption behavior of graphene in NaCl solutions. J Mater Chem 19:6773–6779CrossRefGoogle Scholar
  17. 17.
    Wang G, Dong Q, Ling Z (2012) Hierarchical activated carbon nanofiber webs with tuned structure fabricated by electrospinning for capacitive deionization. J Mater Chem 22:21819–21823CrossRefGoogle Scholar
  18. 18.
    Gaikwad MS, Balomajumder C (2016) Polymer coated capacitive deionization electrode for desalination: a mini review. Electrochem Energy Technol 2(1). https://doi.org/10.1515/eetech-2016-0001
  19. 19.
    Liu Y, Nie C, Liu X et al (2015) Review on carbon-based composite materials for capacitive deionization. RSC Adv 5:15205–15225CrossRefGoogle Scholar
  20. 20.
    Zhang D, Wen X, Shi L et al (2012) Enhanced capacitive deionization of graphene/mesoporous carbon composites. Nanoscale 4:5440–5446CrossRefADSGoogle Scholar
  21. 21.
    Myint MTZ, Dutta J (2012) Fabrication of zinc oxide nanorods modified activated carbon cloth electrode for desalination of brackish water using capacitive deionization approach. Desalination 305:24–30CrossRefGoogle Scholar
  22. 22.
    Vol’fkovich YM, Sosenkin VE, Nikol’skaya NF et al (2008) Porous structure and hydrophilic-hydrophobic properties of gas diffusion layers of the electrodes in proton-exchange membrane fuel cells. Russ J Electrochem 44(3):278–285CrossRefGoogle Scholar
  23. 23.
    Bagotzky VS, Kazarinov VE, Vol’fkovich YM et al (1989) Macrokinetic study of thionyl chloride reduction on porous carbon electrodes. J Power Sources 26(3–4):427–433CrossRefGoogle Scholar
  24. 24.
    Volfkovich YM, Bagotzky VS (1994) The method of standard porosimetry 2. Investigation of the formation of porous structures. J Power Sources 48(3):339–348CrossRefGoogle Scholar
  25. 25.
    Newman J, Thomas-Alyea KE (2004) Electrochemical systems, 3rd edn. Wiley, HobokenGoogle Scholar
  26. 26.
    Newman J, Tiedemann W (1975) Porous electrode theory with battery applications. AICHE J 21:25–41CrossRefGoogle Scholar
  27. 27.
    Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic Publishers-Plenum Publishers, New YorkCrossRefGoogle Scholar
  28. 28.
    De Levie R (1963) On porous electrodes in electrolyte solutions. I. Capacitance effects. Electrochim Acta 8(10):751–780CrossRefGoogle Scholar
  29. 29.
    De Levie R (1964) On porous electrodes in electrolyte solutions—IV. Electrochim Acta 9(9):1231–1245CrossRefGoogle Scholar
  30. 30.
    Srinivasan V, Weidner JW (1999) Mathematical modeling of electrochemical capacitors. J Electrochem Soc 146:1650–1658CrossRefGoogle Scholar
  31. 31.
    Volfkovich YM, Bograchev DA, Mikhalin AA et al (2013) Supercapacitor carbon electrodes with high capacitance. J Solid State Electrochem 18(5):1351–1363CrossRefGoogle Scholar
  32. 32.
    Yang K-L, Ying T-Y, Yiacoumi S et al (2001) Electrosorption of ions from aqueous solutions by carbon aerogel: an electrical double-layer model. Langmuir 17(6):1961–1969CrossRefGoogle Scholar
  33. 33.
    Ying T-Y, Yang K-L, Yiacoumi S et al (2002) Electrosorption of ions from aqueous solutions by nanostructured carbon aerogel. J Colloid Interface Sci 250(1):18–27CrossRefADSGoogle Scholar
  34. 34.
    Johnson AM, Newman J (1971) Desalting by means of porous carbon electrodes. J Electrochem Soc 118(3):510–517CrossRefGoogle Scholar
  35. 35.
    Vol’fkovich YM, Mazin VM, Urisson NA (1998) Operation of double-layer capacitors based on carbon materials. Russ J Electrochem 34(8):740–746Google Scholar
  36. 36.
    Verbrugge MW, Liu P (2005) Microstructural analysis and mathematical modeling of electric double-layer supercapacitors. J Electrochem Soc 152(5):D79–D87CrossRefGoogle Scholar
  37. 37.
    Biesheuvel PM, Bazant MZ (2010) Nonlinear dynamics of capacitive charging and desalination by porous electrodes. Phys Rev E 81(3):031502CrossRefADSGoogle Scholar
  38. 38.
    Biesheuvel PM, Fu Y, Bazant MZ (2012) Electrochemistry and capacitive charging of porous electrodes in asymmetric multicomponent electrolytes. Russ J Electrochem 48(6):580–592CrossRefGoogle Scholar
  39. 39.
    Mani A, Bazant MZ (2011) Deionization shocks in microstructures. Phys Rev E 84(6):061504. https://doi.org/10.1103/PhysRevE.84.061504 CrossRefADSGoogle Scholar
  40. 40.
    Biesheuvel PM, Porada S, Levi M, Bazant MZ (2014) Attractive forces in microporous carbon electrodes for capacitive deionization. J Solid State Electrochem 18(5):1365–1376CrossRefGoogle Scholar
  41. 41.
    Volfkovich YM, Sosenkin VE (2012) Porous structure and wetting of fuel cell components as the factors determining their electrochemical characteristics. Russ Chem Rev 86(6):936–959CrossRefGoogle Scholar
  42. 42.
    Volfkovich YM, Bagotsky VS, Filippov AN (eds) (2014) Porous materials and powders used in different fields of science and technology. Springer-Verlag, London/Heidelberg/New York/DordrechtGoogle Scholar
  43. 43.
    Volfkovich YM, Sakars AV, Volinsky AA (2005) Application of the standard contact porosimetry for nanomaterials. Int J Nanotechnol 2(3):292–302CrossRefGoogle Scholar
  44. 44.
    Rouquerol J, Baron G, Denoyel R et al (2012) Liquid intrusion and alternative methods for the characterization of macroporous materials (IUPAC technical report). Pure Appl Chem 84(1):107–136CrossRefGoogle Scholar
  45. 45.
    Vol’fkovich YM, Sosenkin VE, Nikol’skaya NF (2010) Hydrophilic-hydrophobic and sorption properties of the catalyst layers of electrodes in a proton-exchange membrane fuel cell: a stage-by-stage study. Russ J Electrochem 46(4):438–449CrossRefGoogle Scholar
  46. 46.
    Gladysheva TD, Shkol’nikov EL, Vol’fkovich YM et al (1982) The porous structure of dispersed platinum. Elektrokhimiya 18(4):435–442Google Scholar
  47. 47.
    Kononenko N, Nikonenko V, Grande D et al (2017) Porous structure of ion exchange membranes investigated by various techniques. Adv Colloid Interface Sci 246:196–216CrossRefGoogle Scholar
  48. 48.
    Dzyazko YS, Perlova OV, Perlova NA et al (2017) Composite cation-exchange resins containing zirconium hydrophosphate for purification of water from U(VI) cations. Desalin Water Treat 69:142–152CrossRefGoogle Scholar
  49. 49.
    Jeffery JH, Bassett J, Menoham J et al (1989) Vogel’s textbook on quantitative chemical analysis, 5th edn. Longman Scientific and Technical – Wiley, Harlow/New YorkGoogle Scholar
  50. 50.
    Berezina NP, Kononenko NA, Dyomina OA et al (2008) Characterization of ion-exchange membrane materials: properties vs structure. Adv Colloid Interf Sci 139(1–2):3–28CrossRefGoogle Scholar
  51. 51.
    Dzyazko Y, Rozhdestvenska L, Palchik A, Lapicque F (2005) Ion-exchange properties and mobility of Cu2+ ions in zirconium hydrophosphate ion exchangers. Sep Purif Technol 45(2):141–146CrossRefGoogle Scholar
  52. 52.
    Vol’fkovich YM, Mikhalin AA, Rychagov AY (2013) Surface conductivity measurements for porous carbon electrodes. Russ J Electrochem 49(6):594–598CrossRefGoogle Scholar
  53. 53.
    Galama AH, Post JW, Cohen Stuart MA et al (2013) Validity of the Boltzmann equation to describe Donnan equilibrium at the membrane-solution interface. J Memb Sci 442:131–139CrossRefGoogle Scholar
  54. 54.
    Andersen MB, Van Soestbergen M, Mani A et al (2012) Current-induced membrane discharge. Phys Rev Lett 109(10):108301. https://doi.org/10.1103/PhysRevLett.109.108301 CrossRefADSGoogle Scholar
  55. 55.
    Chizmadzhev Y, Markin V, Tarasevich M et al (1971) Macrokinetics of processes in porous media. Nauka, MoscowGoogle Scholar
  56. 56.
    Archie GE (1952) Classification of carbonate reservoir rocks and petrophysical considerations. Am Assoc Pet Geol Bull 36(2):278–298Google Scholar
  57. 57.
    Skeel RD, Berzins M (1990) A method for the spatial discretization of parabolic equations in one space variable. SIAM J Sci Stat Comput 11(1):1–32MathSciNetCrossRefGoogle Scholar
  58. 58.
    Volfkovich YM, Rychagov АY, Mikhalin АА et al (2018) Capacitive deionization of water using mosaic membrane. Desalination 426:1–10CrossRefGoogle Scholar
  59. 59.
    Dzyaz’ko YS, Belyakov VN, Vasilyuk SL et al (2006) Anion-exchange properties of composite ceramic membranes containing hydrated zirconium dioxide. Russ J Appl Chem 79(5):769–773CrossRefGoogle Scholar
  60. 60.
    Dzyazko YS, Volfkovich YM, Sosenkin VE et al (2014) Composite inorganic membranes containing nanoparticles of hydrated zirconium dioxide for electrodialytic separation. Nanoscale Res Lett 9:271. https://doi.org/10.1186/1556-276X-9-271 CrossRefADSGoogle Scholar
  61. 61.
    Martı-Calatayud MC, Garcıa-Gabaldon M, Perez-Herranz V et al (2015) Ceramic anion-exchange membranes based on microporous supports infiltrated with hydrated zirconium dioxide. RSC Adv 5:46348–46358CrossRefGoogle Scholar
  62. 62.
    Pang R, Li X, Li J et al (2014) Preparation and characterization of ZrO2/PES hybrid ultrafiltration membrane with uniform ZrO2 nanoparticles. Desalination 332:60–66CrossRefGoogle Scholar
  63. 63.
    Myronchuk VG, Dzyazko YS, Zmievskii YG et al (2016) Organic-inorganic membranes for filtration of corn distillery. Acta Periodica Technologica 47:153–165CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Yurii Volfkovich
    • 1
  • Daniil Bograchev
    • 1
  • Alexey Mikhalin
    • 1
  • Alexey Rychagov
    • 1
  • Valentin Sosenkin
    • 1
  • Vitaly Milyutin
    • 1
  • Daewook Park
    • 2
  1. 1.A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of SciencesMoscowRussia
  2. 2.Samsung Electronics Co., LtdGyeonggi-doSouth Korea

Personalised recommendations