Sintering Methods of Inkjet-Printed Silver Nanoparticle Layers

  • O. Kravchuk
  • R. Lesyuk
  • Ya. Bobitski
  • M. Reichenberger
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 210)


The technologies of printed electronics have a huge potential to replace some of the technologies of traditional microelectronics, production of printed circuit boards, optoelectronic devices and provide the opportunity to massive and low-cost production with completely new qualities. There is also a growing interest in producing flexible electronic devices by digital printing – in particular, displays, photovoltaic cells, batteries, sensors etc. Inkjet printing technology is promising for the rapid production of prototypes and parties of specialized devices, although it is suitable for mass production of printed electronics. The advantages of inkjet printing include a sufficiently high resolution, flexibility, relatively low cost and compatibility with almost any type of substrates. This review analyzes the scientific literature on the use of alternative to thermal sintering methods of metal nanoparticles deposited by inkjet printing for application in electronics. Principles, advantages and disadvantages of sintering technologies are reviewed; applicability of different metal nanoparticles, as well as examples of substrate materials is highlighted.


Inkjet printing Nanoparticles Sintering Photonic sintering 



The financial support of Ministry of Education and Science of Ukraine should be acknowledged (grant DB/Fotonika № 0117U007176).


  1. 1.
    Kawahara J, Ersman PA, Nilsson D et al (2013) Flexible active matrix addressed displays manufactured by printing and coating techniques. J Polym Sci B Polym Phys 4:265–271CrossRefADSGoogle Scholar
  2. 2.
    Lin Q, Huang H, Jing Y, Fu H et al (2014) Flexible photovoltaic technologies. J Mater Chem C 2:1233–1247CrossRefGoogle Scholar
  3. 3.
    Gaikwad AM, Steingart DA, Ng TN, Schwartz DE, Whiting GL (2013) A flexible high potential printed battery for powering printed electronics. Appl Phys Lett 102:233302CrossRefADSGoogle Scholar
  4. 4.
    Kravchuk O, Reichenberger M (2016) Properties and long-term behavior of nanoparticle based inkjet printed strain gauges. J Mater Sci Mater Electron 27(10):10934–10940CrossRefGoogle Scholar
  5. 5.
    Perelaer J, Smith PJ, Mager D, Soltman D, Volkman SK, Subramanian V (2010) Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials. J Mater Chem 20(39):8446–8453CrossRefGoogle Scholar
  6. 6.
    Zhang Z, Zhang X, Xin Z, Deng M, Wen Y, Song Y (2011) Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics. Nanotechnology 22(42):425601CrossRefADSGoogle Scholar
  7. 7.
    Castro T, Reifenberger R, Choi E (1990) Size-dependent melting temperature of individual nanometer-sized metallic clusters. Phys Rev B 42(13):8548CrossRefADSGoogle Scholar
  8. 8.
    Troitskii VN, Rakhmatullina AZ, Berestenko VI, Gurov SV (1983) Initial sintering temperature of ultrafine powders. Soviet Powder Metallurgy Metal Ceramics 22:12–14CrossRefGoogle Scholar
  9. 9.
    Lesyuk R (2008) Ink-jet formation of switching elements of chips using silver nanoparticles / R. Lesyuk, Ya. Bobitsky, V. Yillek. New technologies. – Vol. 2 (20). – P. 30Google Scholar
  10. 10.
    Kravchuk O, Grunewald K, Bahr J et al (2014) Production of miniaturized sensor structures on polymer substrates using inkjet printing. Adv Mater Res 1038:49–55CrossRefGoogle Scholar
  11. 11.
    Hwang HJ, Oh KH, Kim HS (2016) All-photonic drying and sintering process via flash white light combined with deep-UV and near-infrared irradiation for highly conductive copper nano-ink. Sci Rep 6:19696. CrossRefADSGoogle Scholar
  12. 12.
    Galagan Y, Coenen EWC, Abbel R et al (2013) Photonic sintering of inkjet printed current collecting grids for organic solar cell applications. Org Electron 14:38–46CrossRefGoogle Scholar
  13. 13.
    Schuetz K, Hoerber J, Franke J (2014) Selective light sintering of aerosol-jet printed silver nanoparticle inks on polymer substrates. AIP Conf Proc 1593:732–735CrossRefADSGoogle Scholar
  14. 14.
    Guillot MJ, McCool SC, Schroder KA (2012) Simulating the thermal response of thin films during photonic curing. ASME 2012 international mechanical engineering congress and exposition, vol 2, pp 9–15Google Scholar
  15. 15.
    Schroder KA (2013) Mechanisms of photonic curing: processing high temperature films on low temperature substrates. NCC Nano, LLC. 200-B(14):78728Google Scholar
  16. 16.
    Schroder KA, McCool SC, Furlan WR (2006) Broadcast photonic curing of metallic nanoparticle films. Technical proceedings of the 2006 NSTI nanotechnology conference and trade show, vol 3, pp 198–201Google Scholar
  17. 17.
    Carter M, Sears J (2007) Photonic curing for sintering of nano-particulate material. Advances in powder metallurgy & particulate materials. In: Proceedings of the 2007 international conference on powder metallurgy & particulate materials, vol 2, pp 210–213Google Scholar
  18. 18.
    Farnsworth S, Schroder K (2012) Photonic curing for millisecond-drying of thin films. Specialist Printing Worldwide 4:34–35Google Scholar
  19. 19.
    Akhavan V, Farnsworth K, Schroder D et al (2013) Processing thick-film screen printed metalon CuO reduction ink with pulseforge tools. Coating 46:14–17Google Scholar
  20. 20.
    Ando B, Baglio S, LaMalfa S et al (2011) All inkjet printed system for strain measurement. Sensors: Proceedings of the IEEE Sensors Conference, pp 215–217Google Scholar
  21. 21.
    Marjanovic N, Hammerschmidt J, Perelaer J et al (2011) Inkjet printing and low temperature sintering of CuO and CdS as functional electronic layers and Schottky diodes. J Mater Chem 21:13634CrossRefGoogle Scholar
  22. 22.
    Tetznera K, Schroderb KA, Bock K (2014) Photonic curing of sol–gel derived HfO2 dielectrics fororganic field-effect transistors. Ceram Int 140:15753–15761CrossRefGoogle Scholar
  23. 23.
    Schroder KA, McCool SC, Furlan WR (2006) Broadcast photonic curing of metallic nanoparticle films. Nanotechnologies, Inc. 3:198–201Google Scholar
  24. 24.
    Yung KC, Gu X, Lee CP et al (2010) Ink-jet printing and camera flash sintering of silver tracks on different substrates. J Mater Process Technol 210:2268–2272CrossRefGoogle Scholar
  25. 25.
    Tobjörk D, Aarnio H, Pulkkinen P et al (2012) IR-sintering of ink-jet printed metal-nanoparticles on paper. Thin Solid Films 520:2949–2955CrossRefADSGoogle Scholar
  26. 26.
    Sowade E, Kang H, Mitra KY, Weiß OJ, Weber J, Baumann RR (2015) Roll-to-roll infrared (IR) drying and sintering of an inkjet-printed silver nanoparticle ink within 1 second. J Mater Chem C 3:11815–11826CrossRefGoogle Scholar
  27. 27.
    Denneulin A, Blayo A, Neuman C (2011) Infra-red assisted sintering of inkjet printed silver tracks on paper substrates. Bras, J. In. J Nanopart Res 13(9):3815–3823CrossRefGoogle Scholar
  28. 28.
    Tobjörk D, Aarnio H, Pulkkinen P, Bollström R, Määttänen A, Ihalainen P, Mäkelä T, Peltonen J, Toivakka M, Tenhu H, Österbacka R (2012) IR-sintering of ink-jet printed metal-nanoparticles on paper. Thin Solid Films 520:2949–2955CrossRefADSGoogle Scholar
  29. 29.
    Määttänen A, Ihalainen P, Pulkkinen P, Wang S, Tenhu H, Peltonen J (2012) Inkjet-printed gold electrodes on paper: characterization and functionalization. ACS Appl Mater Interfaces 4:955–964CrossRefGoogle Scholar
  30. 30.
    Cherrington M, Claypole TC, Deganello D, Mabbett I, Watson T, Worsley D (2011) Ultrafast near-infrared sintering of a slot-die coated nano-silver conducting ink. J Mater Chem 21:7562–7564CrossRefGoogle Scholar
  31. 31.
    Kumpulainen T, Pekkanen J, Valkama J et al (2011) Low temperature nanoparticle sintering with continuous wave and pulse lasers. Opt Laser Technol 43:570–576CrossRefADSGoogle Scholar
  32. 32.
    Laakso P, Kemppainen S, Ruotsalainen E et al (2009) Sintering of printed nanoparticle structures using laser treatment. ICALEO 2009 – 28th international congress on applications of lasers and electro-optics, congress proceedings, vol 102, pp 1360–1366Google Scholar
  33. 33.
    Seung HK, Pan H, Grigoropoulos CP et al (2007) All inkjet printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles. Nanotechnology 18:345202–345210CrossRefGoogle Scholar
  34. 34.
    Chung J, Ko S, Bieri NR et al (2004) Conductor microstructures by laser curing of printed gold nanoparticle ink. Appl Phys Lett 84:801−803Google Scholar
  35. 35.
    Chungb J, Poulikakosa D et al (2004) Manufacturing of nanoscale thickness gold lines by laser curing of a discretely deposited nanoparticle suspension. Superlattice Microst 35:437–444CrossRefADSGoogle Scholar
  36. 36.
    Halonen E, Heinonen E, Mäntysalo M (2013) The effect of laser sintering process parameters on cu nanoparticle ink in room conditions. Optics Photonics J 3:40–44CrossRefADSGoogle Scholar
  37. 37.
    Zenou M, Ermak O, Saar A et al (2014) Laser sintering of copper nanoparticles. J Phys D Appl Phys 47:025501–025512CrossRefADSGoogle Scholar
  38. 38.
    Ko S, Chung J, Choi Y et al (2005) Fabrication of inkjet printed flexible electronics by low temperature subtractive laser processing. In: Proceedings of the international mechanical engineering congress and exposition, p 80535 (1–5)Google Scholar
  39. 39.
    Lesyuk R, Bobitski Y, Kotlyarchuk B, Jillek W (2010) Laser sintering for conductive traces fabrication for electronics needs. Electronics and Communication (in Ukrainian) 3(56):16–19Google Scholar
  40. 40.
    Bieri NR, Chung J, Haferl SE et al (2003) Microstructuring by printing and laser curing of nanoparticle solutions. Appl Phys Lett 82:3529–3531CrossRefADSGoogle Scholar
  41. 41.
    Chung J, Bieri NR, Ko S et al (2004) In-tandem deposition and sintering of printed gold nanoparticle inks induced by continuous Gaussian laser irradiation. Appl Phys A 79:1259–1261CrossRefADSGoogle Scholar
  42. 42.
    Choi TY, Poulikakos D, Grigoropoulos C (2004) Fountain-pen-based laser microstructuring with gold nanoparticle inks. Appl Phys Lett 85:13–15CrossRefADSGoogle Scholar
  43. 43.
    Chung J, Ko S, Grigoropoulos CP et al (2005) Damage-free low temperature pulsed laser printing of gold nanoinks on polymers. J Heat Transf 127:724–732CrossRefGoogle Scholar
  44. 44.
    Lesyuk R, Jillek W, Bobitski Y et al (2011) Low-energy pulsed laser treatment of silver nanoparticles for interconnects fabrication by ink-jet method. Microelectron Eng 88(3):318–321CrossRefGoogle Scholar
  45. 45.
    Laakso P, Ruotsalainen S, Halonen E et al (2009) Sintering of printed nanoparticles structures using laser treatment. In: Proceedings of the 5th international WLT conference on lasers in manufacturing, pp 527–532Google Scholar
  46. 46.
    Alemohammad H, Aminfar O, Toyserkani E (2008) Morphology and microstructure analysis of nano-silver thin films deposited by laser-assisted maskless microdeposition. J Micromech Microeng 18:115015 (1–12)CrossRefGoogle Scholar
  47. 47.
    Perelaer J, DeGans BJ, Schubert US (2006) Ink-jet printing and microwave sintering of conductive silver tracks. Adv Mater 18:2101–2104CrossRefGoogle Scholar
  48. 48.
    Perelaer J, Schubert US (2010) Inkjet printing and alternative sintering of narrow conductive tracks on flexible substrates for plastic electronic applications. Radio frequency identification fundamentals and applications, design methods and solutions, p 324Google Scholar
  49. 49.
    Cheng DK (1989) Field and wave electromagnetics. Addison-Wesley Co. Inc., Reading, p 155Google Scholar
  50. 50.
    Perelaer J, Klokkenburg M, Hendriks CE et al (2009) Microwave flash sintering of inkjet-printed silver tracks on polymer substrates. Adv Mater 21:4830–4834CrossRefGoogle Scholar
  51. 51.
    Cauchois R, Saadaoui M, Yakoub A et al (2012) Impact of variable frequency microwave and rapid thermal sintering on microstructure of inkjet-printed silver nanoparticles. J Mater Sci 47:7110–7116CrossRefADSGoogle Scholar
  52. 52.
    Reinhold I, Hendriks CE, Eckardt R et al (2009) Argon plasma sintering of inkjet printed silver tracks on polymer substrates. J Mater Chem 19:3384–3388CrossRefGoogle Scholar
  53. 53.
    Hegemann D, Brunner H, Oehr C (2003) Plasma treatment of polymers for surface and adhesion improvement. Nucl Instrum Methods Phys Res B 208:281–286CrossRefADSGoogle Scholar
  54. 54.
    Solodovnyk AN, Li W, Fei F et al (2012) Involving low-pressure plasma for surface pretreatment and post print sintering of silver tracks on polymer substrates. In: Proceedings of the international conference nanomaterials: applications and properties, vol 1, pp 1–4Google Scholar
  55. 55.
    Maa S, Singler V, Bromberg L et al (2014) Low temperature plasma sintering of silver nanoparticles. Appl Surf Sci 293:207–215CrossRefADSGoogle Scholar
  56. 56.
    Wünscher S, Stumpf S, Teichler A et al (2012) Localized atmospheric plasma sintering of inkjet printed silver nanoparticles. J Mater Chem 22:24569CrossRefGoogle Scholar
  57. 57.
    Magdassi S, Grouchko M, Berezin O et al (2010) Triggering the sintering of silver nanoparticles at room temperature. ACS Nano 4:1943–1948CrossRefGoogle Scholar
  58. 58.
    Zapka W, Voil W, Loderer C et al (2008) Low temperature chemical post-treatment of inkjet printed nano-particle silver inks. In: Proceedings of NIP24 and Digital Fabrication, pp 906–911Google Scholar
  59. 59.
    Wakuda D, Kim CJ, Kim KS et al (2008) Room temperature sintering mechanism of Agnanoparticlepaste. In: Proceedings of the 2nd electronics systemintegration technology conference, pp 909–914Google Scholar
  60. 60.
    Coutts MJ, Cortie MB, Ford MJ et al (2009) Rapid and controllable sintering of gold nanoparticle inks at room temperature usinga chemical agent. J Phys Chem C 113:1325–1328CrossRefGoogle Scholar
  61. 61.
    Allen ML (2011) Nanoparticle sintering methods and applications for printed electronics. Aalto University School of Electrical Engineering, pp 41–44Google Scholar
  62. 62.
    Magdassi S, Grouchko M, Kamyshny A (2009) Conductive inkjet inks for plastic electronics: air stable copper nanoparticles and room temperature sintering. NIP25 and digital fabrication. Tech Program Proc 25:611–613Google Scholar
  63. 63.
    Allen ML, Leppäniemi J, Vilkman M et al (2010) Substrate-facilitated nanoparticle sintering and component interconnection procedure. Nanotechnology 21:475204CrossRefGoogle Scholar
  64. 64.
    Andersson H, Manuilskiy A, Gao J et al (2014) Investigation of humidity sensor effect in silver nanoparticle ink sensors printed on paper. IEEE Sensors J 14:623–628CrossRefADSGoogle Scholar
  65. 65.
    Olkkonen J, Leppäniemi J, Mattila T et al (2014) Sintering of inkjet printed silver tracks with boiling salt water. J Mater Chem C 2:3577–3582CrossRefGoogle Scholar
  66. 66.
    Andersson H, Manuilskiy A, Lidenmark C et al (2013) The influence of paper coating content on room temperature sintering of silvernanoparticle ink. Nanotechnology 24:455203–455212CrossRefGoogle Scholar
  67. 67.
    Allen ML, Aronniemi M, Mattila T et al (2008) Electrical sintering of nanoparticle structures. Nanotechnology 19:175–201CrossRefGoogle Scholar
  68. 68.
    Alastalo A, Mattila T, Allen ML et al (2008) Rapid electrical sintering of nanoparticle structures. Mater Res Soc Symp Proc 1113:2–7CrossRefGoogle Scholar
  69. 69.
    Werner C, Behrens G, Hellbernd KH et al (2011) Electrical sintering of printed metal structures for mechanical sensors. LOPE-C Proc, pp 192–195Google Scholar
  70. 70.
    Allen M, Alastalo A, Suhonen M et al (2011) Contactless electrical sintering of silver nanoparticles on flexible substrates. IEEE Trans Microwave Theory Tech 59:1419−1429CrossRefGoogle Scholar
  71. 71.
    Ko S, Pan H, Hwang DJ et al (2007) High resolution selective multilayer laser processing by nanosecond laser ablation of metal nanoparticle films. J Appl Phys 102:93–102Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • O. Kravchuk
    • 1
  • R. Lesyuk
    • 2
    • 3
  • Ya. Bobitski
    • 1
    • 4
  • M. Reichenberger
    • 5
  1. 1.Department of PhotonicsLviv Polytechnic National UniversityLvivUkraine
  2. 2.Pidstryhach Institute for Applied Problems of Mechanics and MathematicsNational Academy of Sciences of UkraineLvivUkraine
  3. 3.Institute for Physical ChemistryUniversity of HamburgHamburgGermany
  4. 4.Institute of TechnologyUniversity of RzeszowRzeszowPoland
  5. 5.Technische Hochschule Nuernberg Georg Simon OhmNurembergGermany

Personalised recommendations