Internal Reflection of the Surface of a Plasmonic Substrate Covered by Active Nanoparticles

  • Eugene Bortchagovsky
  • Yurii Demydenko
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 210)


Self-consistent analytical approach was developed to describe the optical properties of an assembly of evenly distributed nanoparticles on a plasmonic substrate. The approach is based on the effective susceptibility concept in the frame of the Green function method with the account of the local-field effects in the system. The analytical expressions for the effective susceptibility (polarizability) of a single cylinder-like particle as well as for an ensemble of such particles on plasmonic substrate were derived. In the frame of developed approach, the analytical expressions for reflection coefficients were obtained. On the base of these coefficients, the influence of geometrical parameters of the particle and their surface concentration on reflectance spectrum of p-polarized electromagnetic radiation in the Kretschmann configuration was studied. The strong coupling of surface and localized modes with their hybridization and Rabi splitting at high nanoparticle concentrations was demonstrated.


Surface plasmon polariton Nanoparticle Interparticle interactions Rabi splitting 


  1. 1.
    Agranovich VM, Mills DL (eds) (1982) Surface polaritons: electromagnetic waves at surfaces and interfaces. North Holland, AmsterdamGoogle Scholar
  2. 2.
    Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer, Berlin. CrossRefGoogle Scholar
  3. 3.
    Franzen S (2008) Surface plasmon polaritons and screened plasma absorption in indium tin oxide compared to silver and gold. J Phys Chem C 112(15):6027–6032. CrossRefGoogle Scholar
  4. 4.
    Harrick NJ (1967) Internal reflection spectroscopy. Wiley, New-YorkGoogle Scholar
  5. 5.
    Kretschmann E, Raether H (1968) Radiative decay of non-radiative surface plasmons excited by of non-radiative surface plasmons excited by light. Z Naturforsch A23:2135–2136. CrossRefADSGoogle Scholar
  6. 6.
    Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. J Sensors Actuators B: Chem 54(1–2):3–15. CrossRefGoogle Scholar
  7. 7.
    Gwon HR, Lee SH (2010) Spectral and angular responses of surface Plasmon resonance based on the Kretschmann prism configuration. Mater Trans 51(6):1150–1155. CrossRefGoogle Scholar
  8. 8.
    Devanarayanan VP, Manjuladevi V, Gupta RK (2016) Surface plasmon resonance sensor based on a new opto-mechanical scanning mechanism. Sensors Actuators B: Chem 227:643–648. CrossRefGoogle Scholar
  9. 9.
    Ilchenko SG, Lymarenko RA, Taranenko VB (2017) Using metal-multilayer-dielectric structure to increase sensitivity of surface Plasmon resonance sensor. Nanoscale Res Lett 12:295. CrossRefADSGoogle Scholar
  10. 10.
    Boardman AD (1982) Electromagnetic surface modes. Wiley, New YorkGoogle Scholar
  11. 11.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin. CrossRefGoogle Scholar
  12. 12.
    Lance KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677. CrossRefGoogle Scholar
  13. 13.
    Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16(19):1685–1706. CrossRefGoogle Scholar
  14. 14.
    Chegel V, Demidenko Y, Lozovski V, Tsykhonya A (2008) Influence of the shape of the particles covering the metal surface on dispersion relations of surface plasmons. Surf Sci 602(8):1540–1546. CrossRefADSGoogle Scholar
  15. 15.
    Chen W-Y, Lin C-H (2010) A standing-wave interpretation of plasmon resonance excitation in split-ring resonators. Opt Express 18(13):14280–14292. CrossRefADSGoogle Scholar
  16. 16.
    Baryakhtar I, Demidenko Y, Lozovski V (2013) Interaction between localized-on-nanoparticles plasmon polaritons and surface plasmon polaritons. J Opt Soc Am B 30(4):10200–11026. CrossRefGoogle Scholar
  17. 17.
    Demydenko Y, Juodkazis S, Lozovski V (2014) Composite Au-on-SiC nanorods for sensing. J Opt Soc Am B 31(11):2893–2900. CrossRefADSGoogle Scholar
  18. 18.
    Malynych S, Chumanov G (2003) Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays. J Am Chem Soc 125(10):2896–2898. CrossRefGoogle Scholar
  19. 19.
    Balci S, Karademir E, Kocabas C (2015) Strong coupling between localized and propagating plasmon polaritons. Opt Lett 40(13):3177–3180. CrossRefADSGoogle Scholar
  20. 20.
    Guo L, Jackman JA, Yang H–H, Chen P, Cho N–J, Kim D–H (2015) Strategies for enhancing the sensitivity of plasmonic nanosensors. J Nanotoday 10(2):213–239. CrossRefGoogle Scholar
  21. 21.
    Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108(2):494–521. CrossRefGoogle Scholar
  22. 22.
    Li M, Cushing SK, Wu N (2015) Plasmon-enhanced optical sensors: a review. Analyst 140(2):386–406. CrossRefADSGoogle Scholar
  23. 23.
    Khudik, B.I., Lozovskii, V.Z., and Baryakhtar, I.V.: Macroscopic electrodynamics of ultra-thin films. Phys Status Solidi B 153(1), 167–177 (1989). doi: CrossRefADSGoogle Scholar
  24. 24.
    Keller O (1996) Local fields in electrodynamics of mesoscopic media. Phys Rep 268:85–262. CrossRefADSGoogle Scholar
  25. 25.
    Demidenko Y, Makarov D, Krone P, Lozovski V (2009) Effect of a magnetic field on the optical properties of nonmagnetic nanorods in a dielectric matrix. J Opt A Pure Appl Opt 11(12):125001. CrossRefADSGoogle Scholar
  26. 26.
    Lozovski V (2010) The effective susceptibility concept in the electrodynamics of nano-system. J comput Theor Nanosci 7(7):1–17. CrossRefGoogle Scholar
  27. 27.
    Demidenko YV, Makarov D, Lozovski V (2010) Local-field effects in magneto-plasmonic nanocomposites. J Opt Soc Am B 27(12):2700–2706. CrossRefADSGoogle Scholar
  28. 28.
    Haarmans MT, Bedeaux D (1993) The polarizability and the optical properties of lattices and random distributions of small metal spheres on a substrate. Thin Solid Films 224(1):117–131. CrossRefADSGoogle Scholar
  29. 29.
    Bah ML, Akjouj A, Dobrzynski L (1992) Response functions in layered dielectric media. Surf Sci Rep 16(3):97–131. CrossRefADSGoogle Scholar
  30. 30.
    Kolwas K, Derkachova A (2013) Damping rates of surface plasmons for particles of size nano- to micrometers; reduction of the nonradiative decay. JQSRT 114:45–55. CrossRefADSGoogle Scholar
  31. 31.
    von Rottkay, K., Rubin, M.: Optical indices of pyrolytic tin-oxide glass. Mater Res Soc Symp Proc 426, 449–456 (1996). doi:
  32. 32.
    Persson BNJ (1983) Lateral interactions in small particle systems. J de Physique 44(C10) C10-409-C10-419.
  33. 33.
    Törmä P, Barnes WL (2015) Strong coupling between surface plasmon polaritons and emitters: a review. Rep Prog Phys 78, 013901-1-34. CrossRefADSGoogle Scholar
  34. 34.
    Abrickosov AA, Gor’kov LP, Dzyaloshinskii IY (1965) Quantum field theoretical methods in statistical physics. Pergamon, OxfordGoogle Scholar
  35. 35.
    Lifshitz EM, Pitaevskii LP (1980) Statistical physics (Part.2), course of theoretical physics, vol 9. Pergamon, OxfordGoogle Scholar
  36. 36.
    Yaghjian AD (1980) Electric dyadic green’s functions in the source region. Proc IEEE 68(2):248–263. CrossRefGoogle Scholar
  37. 37.
    van Bladel, J.: Singular electromagnetic fields and sources. Clarendon, Oxford (1991). doi: CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Eugene Bortchagovsky
    • 1
  • Yurii Demydenko
    • 1
  1. 1.V. Lashkaryov Institute of Semiconductor Physics of National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations