Features of Spin Transport in Magnetic Nanostructures with Nonmagnetic Metal Layers

  • A. M. Korostil
  • M. M. Krupa
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 210)


The spin transport through and near interfaces have been studied in magnet/normal metal-based multilayer magnetic nanostructures in magnetostatic and magneto-dynamic cases. Its features and accompanying effects, such as the magnetoresistance or the magnetic precession-induced spin pumping and spin accumulation in adjacent normal metal, are determined by the spin-dependent scattering on the interface. These effects are governed by the entire spin-coherent region that is limited in size by spin-flip relaxation processes and can be controlled by the spin-polarized current of different origins including the spin Hall effect. Conditions of realization of the mentioned spin currents in the multilayer magnetic nanostructures are considered.


  1. 1.
    Akerman J (2005) Toward a Universal Memory. Science 308:508CrossRefGoogle Scholar
  2. 2.
    Barder SD, Parkin SSP (2010) Spintronics. Ann Rev Cond Matt Phys 1:71CrossRefADSGoogle Scholar
  3. 3.
    Bauer GEW (1992) Perpendicular transport through magnetic multilayers. Phys Rev Lett 9:1676CrossRefADSGoogle Scholar
  4. 4.
    Binash G, Grűnberg P, Saurenbach F, Ziman W (1989) Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys Rev B 39:4828CrossRefADSGoogle Scholar
  5. 5.
    Braganca PM, Guney BA, Wilson BA, Katine JA, Maat S, Childress JR (2010) Nanoscale magnetic field detection using a spin torque oscillator. Nanotechnology 21:235202CrossRefADSGoogle Scholar
  6. 6.
    Brataas A, Nazarov YV, Inoue J, Bauer GEW (1999) Spin accumulation in small ferromagnetic double barrier junctions. Phys Rev B 59:93CrossRefADSGoogle Scholar
  7. 7.
    Brataas A, Nazarov YV, Bauer GEW (2001) Spin-transport in multi-terminal normal-metal – ferromagnet systems with non-collinear magnetization. Eur Phys J B22:99CrossRefADSGoogle Scholar
  8. 8.
    Bűttiker M (1986) Four-terminal Phase-Coherent Conductance. Phys Rev Lett 57:1761CrossRefADSGoogle Scholar
  9. 9.
    Cheng R, Zhu J-G, Xiao D (2016) Dynamic Feedback in Ferromagnet/Spin-Hall Heterostructures. Phys Rev Lett 117:097202CrossRefADSGoogle Scholar
  10. 10.
    Danilewicz P (1984) Quantum theory of Nonequilibrium Processes. Ann Phys 152:234ADSGoogle Scholar
  11. 11.
    Fisher J, Gomonay O, Schlitz R, Ganzhom KN, Vestra H, Althammer M, et al (2017) Spin Hall magnetoresistance in antiferromagnet/normal metal heterostructures. arXiv:cond-mat.mes-hallGoogle Scholar
  12. 12.
    Gijos MAM, Bauer GEW (1997) Perpendicular giant magnetoresistance of magnetic multilayers. Adv Phys 46:285CrossRefADSGoogle Scholar
  13. 13.
    Huertas D, Hemando A, Brataas A, Nazarov YV, Bauer GEW (2000) Conductance modulation by spin precessing in noncollinear ferromagnet/normal metal ferromagnetic multilayers. Phys Rev B 62:5700CrossRefADSGoogle Scholar
  14. 14.
    Katine J, Fullerton EF (2008) Device implications of spin-transfer torque. J Magn Magn Mater 320:1217CrossRefADSGoogle Scholar
  15. 15.
    Manchon A, Stelkova N, Ryzhanova A, Vedyaeva BA, Dienya BB, Slonczewski JC (2007) Theoretical investigation of the relationship between spin torque and magnetoresistance in spin-valves and magnetic tunnel junctions. J Magn Magn Mater 316:L977CrossRefADSGoogle Scholar
  16. 16.
    Manchon A, Koo HC, Nitta J, Frolov SM, Duine RA (2015) New Perspective for Rashba Spin-Orbit Coupling. Nat Mater 36:871CrossRefADSGoogle Scholar
  17. 17.
    Matsunaga S, Hiyama K, Matsumoto A, Ikeda S, Hasegawa H, Miura K, Hayakawa J, Endoh T, Ohno H, Hanyu T (2009) Standby-power-free compact ternary content-addressable memory cell chip using magnetic tunnel junction devices. Appl Phys Express 2:023004CrossRefADSGoogle Scholar
  18. 18.
    Miron IM, Gaudin G, Auffer S, Rodmacq B, Schuhl A, Pizzini S, Vogel J, Gambardalla P (2010) Current-driven spin torque induced by the Rashba effect in ferromagnetic metal layer. Nat Mater 9:230CrossRefADSGoogle Scholar
  19. 19.
    Myöhänem P, Stan A, Stefanucci G, Leeuwen R (2009) Kadanoff-Baym approach to quantum transport through interacting nanoscale systems: From the transient to the steady-state regime. Phys Rev B 80:115107CrossRefADSGoogle Scholar
  20. 20.
    Nagasaka K (2009) CPP-GMR technology for magnetic read heads of future high-density recording systems. J Magn Magn Mater 321:508CrossRefADSGoogle Scholar
  21. 21.
    Silva TJ, Rippard WH (2008) Developments in nano-transfer point-contact devices. J Magn Magn Mater 320:1260CrossRefADSGoogle Scholar
  22. 22.
    Slonczewski JC (1996) Current-driven excitation of magnetic multilayers. J Magn Magn Mater 159:L1CrossRefADSGoogle Scholar
  23. 23.
    Tserkovnyak Y, Brataas A, Bauer GEW (2002) Spin pumping and magnetization dynamics in metallic multilayers. Phys Rev B 66:224403CrossRefADSGoogle Scholar
  24. 24.
    Tserkovnyak Y, Brataas A, Bauer GE, Halperin BI (2005) Nonlocal magnetization dynamics in ferromagnetic heterostructures. Rev Mod Phys 77:1375CrossRefADSGoogle Scholar
  25. 25.
    Waintal X, Myers EB, Brouwer PW, Ralph DC (2000) Role of spin-dependent interface scattering in generating current-induced torques in magnetic multilayers. Phys Rev B 62:12317CrossRefADSGoogle Scholar
  26. 26.
    Zutic L, Fabian J, Sarma SD (2004) Spintronics: fundamentals and applications. Rev Mod Phys 77:323CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • A. M. Korostil
    • 1
  • M. M. Krupa
    • 1
  1. 1.Institute of Magnetism National Academy of Sciences of Ukraine and MESUKyivUkraine

Personalised recommendations