Advertisement

Exact Solutions, Lie Symmetry Analysis and Conservation Laws of the Time Fractional Diffusion-Absorption Equation

  • Mir Sajjad Hashemi
  • Zahra Balmeh
  • Dumitru Baleanu
Chapter
Part of the Nonlinear Systems and Complexity book series (NSCH, volume 23)

Abstract

A three-dimensional Lie algebra of the time fractional diffusion-absorption (TFDA) equation, spanned by vector fields, is obtained. One of the generators is singled out in order to extract an invariant solution in a special domain. Conservation laws of TFDA equation are considered by a developed version of Ibragimov’s method. Then the invariant subspace method is used to construct its exact solutions.

References

  1. 1.
    Kalashnikov, A.: Some problems of the qualitative theory of non-linear degenerate second-order parabolic equations. Russ. Math. Surv. 42(2), 169 (1987)CrossRefGoogle Scholar
  2. 2.
    Samarskii, A.A., Mikhailov, A.: Blow-Up in Quasilinear Parabolic Equations, vol. 19. Walter de Gruyter, New York (1995)CrossRefGoogle Scholar
  3. 3.
    Diethelm, K.: The Analysis of Fractional Differential Equations, an Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer, Berlin/Heidelberg (2010)zbMATHGoogle Scholar
  4. 4.
    Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations. North-Holland, New York (2006)zbMATHGoogle Scholar
  5. 5.
    Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.: Fractional Calculus Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos. World Scientific, Singapore (2012)Google Scholar
  6. 6.
    Wang, G., Liu, X., Zhang, Y.: Lie symmetry analysis to the time fractional generalized fifth-order kdv equation. Commun. Nonlinear Sci. Numer. Simul. 18, 2321–2326 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Wang, G., Xu, T.: Symmetry properties and explicit solutions of the nonlinear time fractional kdv equation. Bound Value Probl. 2013, 232 (2013)Google Scholar
  8. 8.
    Wang, G., Xu, T.: Invariant analysis and exact solutions of nonlinear time fractional sharma-tasso-olver equation by lie group analysis. Nonlinear Dyn. 76, 571–580 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Huang, Q., Zhdanov, R.: Symmetries and exact solutions of the time fractional harry-dym equation with riemann-liouville derivative. Phys. A Stat. Mech. Appl. 409, 110–118 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hu, J., Ye, Y., Shen, S., Zhang, J.: Lie symmetry analysis of the time fractional kdv-type equation. Appl. Math. Comput. 233, 439–444 (2014)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Wang, G., Xu, T., Feng, T.: Lie symmetry analysis and explicit solutions of the time fractional fifth-order kdv equation. PLoS ONE 9(2), e88336 (2014)CrossRefGoogle Scholar
  12. 12.
    Liu, H.: Complete group classifications and symmetry reductions of the fractional fifth-order kdv types of equations. Stud. Appl. Math. 131, 317–330 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Sahadevan, R., Bakkyaraj, T.: Invariant analysis of time fractional generalized burgers and korteweg-de vries equations. J. Math. Anal. Appl. 393, 341–347 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hashemi, M.: Group analysis and exact solutions of the time fractional fokker-planck equation. Physica A 417, 141–149 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Gazizov, R., Kasatkin, A., Lukashchuk, S.: Symmetry properties of fractional diffusion equations. Phys. Scr. 2009, 014016 (5pp) (2009)Google Scholar
  16. 16.
    Hashemi, M.S., Baleanu, D.: On the time fractional generalized fisher equation: group similarities and analytical solutions. Commun. Theor. Phys. 65(1), 11 (2016)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hashemi, M.S., Baleanu, D.: Lie symmetry analysis and exact solutions of the time fractional gas dynamics equation. J. Optoelectron. Adv. Mater. 18(3–4), 383–388 (2016)Google Scholar
  18. 18.
    Wang, G.W., Hashemi, M.S.: Lie symmetry analysis and soliton solutions of time-fractional k(m,n) equation. Pramana 88(1), 7 (2017)CrossRefGoogle Scholar
  19. 19.
    Najafi, R., Bahrami, F., Hashemi, M.S.: Classical and nonclassical lie symmetry analysis to a class of nonlinear time-fractional differential equations. Nonlinear Dyn. 87, 1785–1796 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ibragimov, N.H.: A new conservation theorem. J. Math. Anal. Appl. 333(1), 311–328 (2007)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Ouhadan, A., El Kinani, E.: Invariant subspace method and some exact solutions of time fractional modi ed kuramoto-sivashinsky equation. Br. J. Math. Comput. Sci. 15(4), 1–10 (2016)CrossRefGoogle Scholar
  22. 22.
    Gazizov, R., Kasatkin, A.: Construction of exact solutions for fractional order differential equations by the invariant subspace method. Comput. Math. Appl. 66(5), 576–584 (2013)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Sahadevan, R., Prakash, P.: Exact solution of certain time fractional nonlinear partial differential equations. Nonlinear Dyn. 85, 659–673 (2016)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Sahadevan, R., Prakash, P.: Exact solutions and maximal dimension of invariant subspaces of time fractional coupled nonlinear partial differential equations. Commun. Nonlinear Sci. Numer. Simul. 42, 158–177 (2017)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Sahadevan, R., Bakkyaraj, T.: Invariant subspace method and exact solutions of certain nonlinear time fractional partial differential equations. Fract. Calculus Appl. Anal. 18(1), 146–162 (2015)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Galaktionov, V.A., Svirshchevskii, S.R.: Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics. Chapman & Hall/CRC Applied Mathematics and Nonlinear Science. Chapman Hall/CRC, Boca Raton (2007)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Mir Sajjad Hashemi
    • 1
  • Zahra Balmeh
    • 1
  • Dumitru Baleanu
    • 2
  1. 1.Department of Mathematics, Basic Science FacultyUniversity of BonabBonabIran
  2. 2.Department of MathematicsÇankaya UniversityAnkaraTurkey

Personalised recommendations