Gastrointestinal Hormones

  • Menizibeya Osain WelcomeEmail author


Gastrointestinal (GI) hormones are internal or endocrine secretions of the gut released from special cells of the GI system that participate in modulating the functions of the gut or extragut tissues and organs. Although proposed to have evolved many millions of years ago, internal secretions of the gut were discovered relatively recently—around the nineteenth century. Founding fathers of internal secretions include Claude Bernard (1813–1878), Ernest Henry Starling (1866–1927), William Maddock Bayliss (1860–1924), Konstantinovich Kulchitsky (1856–1925), Sir Edward Albert Sharpey-Schafer (1850–1935), and Paul Langerhans (1847–1888). The concept of endocrine regulation was borne out from the 1855 pioneering work of Claude Bernard, who observed a novel role of the liver in the regulation of blood sugar. Bernard concluded from his observation on how the liver was able to regulate blood sugar to maintain a constant range of values by the release of internal secretions from ductless glands. This concept of ductless glands gradually gained recognition following discoveries of intestinal regulation of some secretions. Currently, over 60 types of hormones have been identified in the gut alone. This chapter presents data on the path of discoveries of internal secretions of the gut and trends in contemporary science and also describes the mechanisms of functioning of the internal secretions of the gut. The chapter is a key reference source on gut hormones, including recently discovered hormones, their structural and functional characteristics. Importance of the hormones to clinical medicine and diagnostics is outlined at specific points of the discussion.


5-lipoxygenase Adrenocorticotropic hormone ACTH-like peptide Adenes Adipo-fibrokines Adipokines Adrenomedullin Alpha- and gamma-endorphins Alpha-gustducin Amylin Islet amyloid polypeptide APUD Arachidonic acid Beta-endorphin Bombesin related peptides Bombesin Calcitonin gene-related peptide Calcitonin receptor and calcitonin-like receptor Celecoxib Chemokines Cholecystokinin-pancreozymin Cholecystokinin Chromogranin A Cortistatin Coxibs Calcitonin receptor-like receptor Crypts of lieberkühn Cyclooxygenase Cystic fibrosis transmembrane conductance regulator D cells DNES Ductless glands Duodenal glands Eicosanoids Leptin Endocrine Endoperoxides Enterochromaffin Enteroglucagon Enterokines Etoricoxib Fibrokines Follicle-stimulating hormone–releasing hormone G cells G1 cells GAL receptors Galanin Galenism Gamma-aminobutyric acid Gastrin Ghrelin Stomatostatin Gastric inhibitory polypeptide Glicentin Glicentin-related pancreatic polypeptide Glucagon Glucagon-like peptide 1 Glucagon-like peptide-2 Glucose-dependent insulinotropic polypeptide Gonadotropin-releasing hormone Gonadoliberin Luliberin GPR119 GPR120 GPR40 (FFA1) GPRC6A Growth hormone–releasing hormone Growth hormone secretagogue-type 1A receptor Histamine Hormone database Hormones Hormono Incretins Inflammatory bowel diseases Intermedin Adrenomedullin-2 Internal secretion Intestinal (mucous) glands Intestinal L cell K cells Kulchitsky cells Leukotriene A4 Leukotriene B4 Leukotriene C4 LPAR5 Lipoprotein lipase Lumaricoxib Lumencrine (exocrine) Luteinizing hormone Lutropin Lutrophin Luteinizing hormone–releasing hormone Lymphokines Major proglucagon fragment Met-encephalin Misoprostol Motilin Myokines Neuracrines Neuronostatin Neurotenin- related peptide Non-steroidal anti-inflammatory drugs Organic cation transporter Oxyntomodulin Oxytocin Pancreastatin Paraneuron concept Peptide YY Phospholipase A2 PP (F) cells Proglucagon Prohormone convertase 2 Prostacyclins Prostaglandins Prostanoids Receptor activity modifying proteins Receptor fatty acid translocase CD36 Rofecoxib Secretin Selective COX-2 inhibitors Serotonin SGLT1 Somatostatin receptors Somatostatin Substance P Sucralfate/antacids Thromboxane A2 Thyrotropin-releasing hormone Thyrotropin-releasing factor Thyroliberin Thyrotropin-releasing hormone Valdecoxib Valosin Vasoactive intestinal peptide Vasopressin Vesicular monoamine transporter subtype 2 Vesiglandins Vital spirits Xenin Xenopsin Α cells Β cells Δ-1 cell Δ cells Ε cells Epidermal growth factor Endothelins Insulin-like growth factor Nitric oxide Neuropeptide Y Neurotensin Peptide YY Vascular endothelial growth factor Alister J. moody Andrew Conway Ivy Anthony Guy Everson Pearse Bengt Ingemar Samuelsson Benjamin Moore Charles Best Christian de Duve Claude Bernard David M. Kipnis Earl Wilbur Sutherland jr Edgar Zunz Edward Albert Sharpey-Schafer Edward S. Edie Efendic S Emil Theodor Kocher Erick Oldberg Ernest Henry Starling Frederick Grant Banting Friedrich Feyrter George Barger George Oliver Gerd Hamscher Gerhard E. Feurle Gustave-Édouard Laguesse Hartmut Kratzin Hippocrates J. Michael Conlon Jean La Barre Jerzy Kaulbersz Johann Conrad Brunner Johann Nathanael Lieberkühn John Hill Abram John Jacob Abel John James Rickard Macleod John Sydney Edkins Jorg W. Metzgers Julian Walawski Kazuhiko Tatemoto Lars Thim Luis de Lecea M.C. Ciacco Mats Carlquist Michael J. Perley Nikolai Konstantinovich Kulchitsky Paul Langerhans Roderic Alfred Gregory Roger C. L. Guillemin Rosalyn Sussman Yalow Rudolf Peter Heidenhain Sir Henry Hallett Dale Sir John Robert Vane Sir William Maddock Bayliss Solomon Aaron Berson Sune K. Bergström Tatemoto K Thomas Addison Ulf Svante von Euler Viktor Mutt Vittorio Erspamer W. Hardy Werner Creutzfeldt Willis K. Samson Wolfgang E. Schmidt 


  1. 1.
    Lechago J, Bencosme SA (1973) The endocrine elements of the digestive system. Int Rev Exp Pathol 12:119–201PubMedPubMedCentralGoogle Scholar
  2. 2.
    Bencosme SA, Lechago J (1973) Staining procedures for the endocrine cells of the upper gastrointestinal mucosa: light-electron microscopic correlation for the gastrin-producing cell. J Clin Pathol 26(6):427–434PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Eknoyan G (2004) Emergence of the concept of endocrine function and endocrinology. Adv Chronic Kidney Dis 11(4):371–376PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Buchanan KD (1976) The gut as an endocrine organ. Ir J Med Sci 145(4):103–115PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Lloyd RV (1990) Endocrine pathology. Springer-Verlag, New York, USACrossRefGoogle Scholar
  6. 6.
    Liu EH, Oberg K (2010) The history and development of the gastroenteropancreatic endocrine axis. Endocrinol Metab Clin 39(4):697–711CrossRefGoogle Scholar
  7. 7.
    McConalogue K, Furness JB (1994) Gastrointestinal neurotransmitters—the gut as an endocrine organ. Baillière’s Clin Endocrinol Metab 8(1):51–76CrossRefGoogle Scholar
  8. 8.
    Sundler F (2004) GI tract, general anatomy (cells). In: Martini L (ed) Encyclopedia of endocrine diseases. Elsevier, San Diego, CA, USAGoogle Scholar
  9. 9.
    Arimura A, Fishback JB (1981) Somatostatin: regulation of secretion. Neuroendocrinol 33(4):246–256CrossRefGoogle Scholar
  10. 10.
    Chandra R, Liddle RA (2009) Neural and hormonal regulation of pancreatic secretion. Curr Opin Gastroenterol 25(5):441–446PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Bloom SR, Polak JM (1980) Physiology of gastrointestinal hormones. Biochem Soc Trans 8(1):15–17PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Rehfeld JF (2014) Gastrointestinal hormones and their targets. In: Lyte M, Cryan JF (eds) Microbial endocrinology: the microbiota-gut-brain axis in health and disease. Springer, New York, USAGoogle Scholar
  13. 13.
    Pacheco-Pantoja EL, Ranganath LR, Gallagher JA, Wilson PJM, Fraser WD (2011) Receptors and effects of gut hormones in three osteoblastic cell lines. BMC Physiology 11:12PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Wren AM, Bloom SR (2007) Gut hormones and appetite control. Gastroenterology 132(6):2116–2130PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Côté CD, Zadeh-Tahmasebi M, Rasmussen BA, Duca FA, Lam TK (2014) Hormonal signaling in the gut. J Biol Chem 289(17):11642–11649PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Perry B, Wang Y (2012) Appetite regulation and weight control: the role of gut hormones. Nutr Diabetes 2:e26PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Pressley L, Funder JW (1975) Glucocorticoid and mineralocorticoid receptors in gut mucosa. Endocrinol 97(3):588–596CrossRefGoogle Scholar
  18. 18.
    Modlin IM, Champaneria MC, Bornschein J, Kidd M (2006) Evolution of the diffuse neuroendocrine system–clear cells and cloudy origins. Neuroendocrinol 84(2):69–82CrossRefGoogle Scholar
  19. 19.
    Medvei VC (1983) A history of endocrinology. Kluwer Academic Publishers Group, Dordrecht, NetherlandsGoogle Scholar
  20. 20.
    David AR (1997) Disease in Egyptian mummies: the contribution of new technologies. Lancet 349(9067):1760–1763PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Tassinari J, Sisti A (2016) Endocrinology and art. First dwarf represented: ancient Egypt 2520 B.C. J Endocrinoll Invest 39(4):489PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Emerson CH (1987) Thyroid function and disease in the female. In: Gold JJ, Josimovich JB (eds) Gynecologic endocrinology. Springer, New York, USAGoogle Scholar
  23. 23.
    Kleine B, Rossmanith WG (2016) History of hormones and endocrinology. In: Hormones and the endocrine system. Springer International Publishing, Cham, SwitzerlandCrossRefGoogle Scholar
  24. 24.
    Encyclopædia Britannica (2003) Encyclopædia Britannica, Inc, Chicago, ILGoogle Scholar
  25. 25.
    Koertge N (ed) (2007) New dictionary of scientific biography, 1st edn. Charles Scribners & Sons, Detroit, MichiganGoogle Scholar
  26. 26.
    Stoka AM (1999) Phylogeny and evolution of chemical communication: an endocrine approach. J Mol Endocrinol 22:207–225PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Trinkaus JP (1984) The forces that shape the embryo. Prentice-Hall Inc, Englewood, NJ, USAGoogle Scholar
  28. 28.
    Alexander JS, Ganta VC, Jordan PA, Witte MH (2010) Gastrointestinal lymphatics in health and disease. Pathophysiol 17(4):315–335CrossRefGoogle Scholar
  29. 29.
    SRódka A (2003) The short history of gastroenterology. J Physiol Pharmacol 54(S3):9–21Google Scholar
  30. 30.
    Goet JP (1953) Gustave Edouard Laguesse; his demonstration of the significance of the islands of Langerhans. Diabetes 2(4):322–324PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Grossman MI (1950) Gastrointestinal hormones. Physiol Rev 30(1):33–90PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    de Herder WW (2014) Heroes in endocrinology: nobel prizes. Endocr Connect 3(3):R94–R104PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Smans LCCJ, Zelissen PMJ (2012) Thomas addison and the adrenal gland. Ned Tijdschr Geneeskd 156(32):A4788PubMedPubMedCentralGoogle Scholar
  34. 34.
    Gautschi OP, Hildebrandt G (2009) Emil Theodor Kocher (25/8/1841-27/7/1917)—a swiss (neuro-)surgeon and Nobel Prize winner. Br J Neurosurg 23(3):234–236PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Hill L (1935) Sir Edward Albert Sharpey-Schafer. 1850–1935. Obit Not Fell R Soc 1(4): 400Google Scholar
  36. 36.
    Sneader W (2005) Drug discovery: a history. John Wiley and Sons Ltd, Chichester, UKCrossRefGoogle Scholar
  37. 37.
    Power HJ (2007) Sharpey-Schafer, Edward Albert (1850–1935). In: Considine GD (ed) Van Nostrand’s scientific encyclopedia. John Wiley & Sons Inc, New York, United StatesGoogle Scholar
  38. 38.
    Hoet JP (1953) Gustave Edouard Laguesse: his demonstration of the significance of the islands of Langerhans. Diab 2:322–324CrossRefGoogle Scholar
  39. 39.
    Drozdov I, Modlin IM, Kidd M, Goloubinov VV (2009) From Leningrad to London: the saga of Kulchitsky and the legacy of the enterochromaffin cell. Neuroendocrinol 89(1):1–12CrossRefGoogle Scholar
  40. 40.
    Drozdov I, Modlin IM, Kidd M, Goloubinov VV (2009) Nikolai Konstantinovich Kulchitsky (1856–1925). J Med Biogr 17(1):47–54PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Marincola P, Liu EH (2015) History of neuroendocrine tumors. In: Yalcin S, Öberg K (eds) Neuroendocrine tumours. Springer, Berlin, GermanyGoogle Scholar
  42. 42.
    Häcki WH (1980) Secretin. Clin Gastroenterol 9(3):609–632PubMedPubMedCentralGoogle Scholar
  43. 43.
    Kopin AS, Wheeler MB, Leiter AB (1990) Secretin: structure of the precursor and tissue distribution of the mRNA. Proc Natl Acad Sci USA 87(6):2299–2303PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Whitmore TE, Holloway JL, Lofton-Day CE, Maurer MF, Chen L, Quinton TJ et al (2000) Human secretin (SCT): gene structure, chromosome location, and distribution of mRNA. Cytogenet Cell Genet 90(1–2):47–52PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Chu JY, Chung SC, Lam AK, Tam S, Chung SK, Chow BK (2007) Phenotypes developed in secretin receptor-null mice indicated a role for secretin in regulating renal water reabsorption. Mol Cell Biol 27(7):2499–2511PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Chu JY, Lee LT, Lai CH, Vaudry H, Chan YS, Yung WH, Chow BK (2009) Secretin as a neurohypophysial factor regulating body water homeostasis. Proc Natl Acad Sci USA 106(37):15961–15966PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Krishnaswami S, McPheeters ML, Veenstra-Vanderweele J (2011) A systematic review of secretin for children with autism spectrum disorders. Pediatr 127(5):e1322–e1325CrossRefGoogle Scholar
  48. 48.
    Simoni RD, Hill RL, Vaughan M (2002) The discovery of insulin: the work of Frederick Banting and Charles Best. J Biol Chem 277:e15Google Scholar
  49. 49.
    Majumdar SK (2001) Glimpses of the history of insulin. Bull Indian Inst Hist Med Hyderabad 31(1):57–70PubMedPubMedCentralGoogle Scholar
  50. 50.
    Masson P (1928) Carcinoids (argentaffin-cell tumors) and nerve hyperplasia of the appendicular mucosa. Am J Pathol 4:181–212PubMedPubMedCentralGoogle Scholar
  51. 51.
    Champaneria MC, Modlin IM, Kidd M, Eick GN (2006) Friedrich Feyrter: a precise intellect in a diffuse system. Neuroendocrinol 83(5–6):394–404CrossRefGoogle Scholar
  52. 52.
    Gregory H, Hardy PM, Jones DS, Kenner GW, Sheppard RC (1964) The antral hormone gastrin. Nat 204:931–933CrossRefGoogle Scholar
  53. 53.
    Gregory RA, Tracy HJ (1964) The constitution and properties of two gastrins extracted from hog antral mucosa. Gut 5:103–117PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Gregory RA (1979) A review of some recent developments in the chemistry of the gastrins. Bioorg Chem 8(4):497–511CrossRefGoogle Scholar
  55. 55.
    Mutt V, Magnusson S, Jorpes JE, Dahl E (1965) Structure of porcine secretin. Biochem 4:2358–2362CrossRefGoogle Scholar
  56. 56.
    Jorpes E, Mutt V (1966) Cholecystokinin and pancreozymin—a single hormone? Acta Physiol Scand 66:196–202PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Yalow RS, Berson SA (1960) Immunoassay of endogenous plasma insulin in man. J Clin Invest 39:1157–1175PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Rehfeld JF (1978) Immunochemical studies on cholecystokinin. I. Development of sequencespecific radioimmunoassays against porcine triacontatriapeptide cholecystokinin. J Biol Chem 253:4016–4021PubMedPubMedCentralGoogle Scholar
  59. 59.
    Konturek PC, Konturek SJ (2003) The history of gastrointestinal hormones and the polish contribution to elucidation of their biology and relation to nervous system. J Physiol Pharmacol 54(S3):83–98PubMedPubMedCentralGoogle Scholar
  60. 60.
    Yeom J, Kabir MH, Lim B, Ahn H-S, Kim S-Y, Lee C (2016) A proteogenomic approach for protein-level evidence of genomic variants in cancer cells. Sci Rep 6:35305PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Johnston PR, Dobson AJ, Rolff J (2016) Genomic signatures of experimental adaptation to antimicrobial peptides in Staphylococcus aureus. G3 Genes Genom Genet 6(6):1535–1539Google Scholar
  62. 62.
    Rehfeld JF (1998) The new biology of gastrointestinal hormones. Physiol Rev 78:1087–1108PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Rawdon BB, Kramer B, Andrew A (1984) The distribution of endocrine cell progenitors in the gut of chick embryos. J Embryol Exp Morphol 82:131–145PubMedPubMedCentralGoogle Scholar
  64. 64.
    Janssen S, Depoortere I (2013) Nutrient sensing in the gut: new roads to therapeutics? Trends Endocrinol Metab 24(2):92–100PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Sternini C (2007) Taste receptors in the gastrointestinal tract. IV. Functional implications of bitter taste receptors in gastrointestinal chemosensing. Am Jf Physiol Gastrointest Liver Physiol 292(2):G457–G461PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Sundaresan S, Abumrad NA (2015) Dietary lipids inform the gut and brain about meal arrival via CD36-mediated signal transduction. J Nutr 145(10):2195–2200PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Depoortere I (2014) Taste receptors of the gut: emerging roles in health and disease. Gut 63(1):179–190PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Rawal S, Huedo-Medina TB, Hoffman HJ, Swede H, Duffy VB (2017) Structural equation modeling of associations among taste-related risk factors, taste functioning, and adiposity. Obesity (Silver Spring) 25(4):781–787CrossRefGoogle Scholar
  69. 69.
    Ano Y, Dohata A, Taniguchi Y, Hoshi A, Uchida K, Takashima A, Nakayama H (2017) Iso-α-acids, bitter components of beer, prevent inflammation and cognitive decline induced in a mouse model of alzheimer’s disease. J Biol Chem 292(9):3720–3728PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Klinger A, Orzekowsky-Schroeder R, von Smolinski D, Blessenohl M, Schueth A, Koop N et al (2012) Complex morphology and functional dynamics of vital murine intestinal mucosa revealed by autofluorescence 2-photon microscopy. Histochem Cell Biol 137:269–278PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Solcia E, Capella C, Buffa R, Usellini L, Fiocca R, Frigerio B et al (1981) The diffuse endocrine-paracrine system of the gut in health and disease: ultrastructural features. Scand J Gastroenterol 70:25–36Google Scholar
  72. 72.
    Kiba T (2004) Relationships between the autonomic nervous system and the pancreas including regulation of regeneration and apoptosis: recent developments. Pancreas 29(2):e51–e58PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Mantyh PW, Catton MD, Allen CJ, Labenski ME, Maggio JE, Vigna SR (1992) Receptor binding sites for cholecystokinin, galanin, somatostatin, substance P and vasoactive intestinal polypeptide in sympathetic ganglia. Neurosci 46(3):739–754CrossRefGoogle Scholar
  74. 74.
    Schonhoff SE, Giel-Moloney M, Leiter AB (2004) Minireview: development and differentiation of gut endocrine cells. Endocrinol 145(6):2639–2644CrossRefGoogle Scholar
  75. 75.
    Škrha J (2006) Pancreatic hormones and hormonal regulation of insulin secretion. Čas Lék Čes 145(8):599–605Google Scholar
  76. 76.
    Petersen MBK, Azad A, Ingvorsen C, Hess K, Hansson M, Grapin-Botton A, Honoré C (2017) Single-cell gene expression analysis of a human esc model of pancreatic endocrine development reveals different paths to β-cell differentiation. Stem Cell Rep 9(4):1246–1261CrossRefGoogle Scholar
  77. 77.
    Andralojc KM, Mercalli A, Nowak KW, Albarello L, Calcagno R, Luzi L et al (2009) Ghrelin-producing epsilon cells in the developing and adult human pancreas. Diabetologia 52(3):486–493PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Amano O, Mizobe K, Bando Y, Sakiyama K (2012) Anatomy and histology of rodent and human major salivary glands: -overview of the Japan salivary gland society-sponsored workshop. Acta Histochem Cytochem 45(5):241–550PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Tierney S, Pitt HA, Lillemoe KD (1993) Physiology and pathophysiology of gallbladder motility. Surg Clin North Am 73(6):1267–1290PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Rybakova MG (1978) Endocrine function of the salivary glands. Arkh Patol 40(2):85–91PubMedPubMedCentralGoogle Scholar
  81. 81.
    Houten SM, Watanabe M, Auwerx J (2006) Endocrine functions of bile acids. EMBO J 25(7):1419–1425PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Pietrangelo A (2007) Hemochromatosis: an endocrine liver disease. Hepatol 46:1291–1301CrossRefGoogle Scholar
  83. 83.
    Solomon TE (1984) Regulation of pancreatic secretion. Clin Gastroenterol 13(3):657–678PubMedPubMedCentralGoogle Scholar
  84. 84.
    Rossi J, Santamäki P, Airaksinen MS, Herzig K-H (2005) Parasympathetic innervation and function of endocrine pancreas requires the glial cell line–derived factor family receptor α2 (GFRα2). Diab 54(5):1324–1330CrossRefGoogle Scholar
  85. 85.
    Barber DL (1993) Regulation of peptide secretion from gastroenteric endocrine cells. In: Brown DR (ed) Gastrointestinal regulatory peptides. Springer, Berlin, GermanyGoogle Scholar
  86. 86.
    Morris KE, St. Laurent CD, Hoeve RS, Forsythe P, Suresh MR, Mathison RD, Befus AD (2009) Autonomic nervous system regulates secretion of anti-inflammatory prohormone SMR1 from rat salivary glands. Am J Physiol Cell Physiol 296(3):C514-C524PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Pearse AG (1969) The cytochemistry and ultrastructure of polypeptide hormone-producing cells of the APUD series and the embryologic, physiologic and pathologic implications of the concept. J Histochem Cytochem 17(5):303–313PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Montuenga LM, Guembe L, Burrell MA, Bodegas ME, Calvo A, Sola JJ et al (2003) The diffuse endocrine system: from embryogenesis to carcinogenesis. Prog Histochem Cytochem 38(2):153–272CrossRefGoogle Scholar
  89. 89.
    Ahlman H, Nilsson O (2001) The gut as the largest endocrine organ in the body. Ann Oncol 12(Suppl 2):S63–S68PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Gunawardene AR, Corfe BM, Staton CA (2011) Classification and functions of enteroendocrine cells of the lower gastrointestinal tract. Int J Exp Pathol 92(4):219–231PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Pearse AGE, Polak JM (1971) Neural crest origin of the endocrine polypeptide (APUD) cells of the gastrointestinal tract and pancreas. Gut 12:783–788PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Luca IC (1998) Endocrine diffuse system. Histological and functional aspects interrelated with tumoral pathology. Rom J Morphol Embryol 44(1–4):17–22PubMedPubMedCentralGoogle Scholar
  93. 93.
    Ilett EE, Langer SW, Holst IO, Federspiel B, Kjær A, Knigge U (2015) Neuroendocrine carcinomas of the gastroenteropancreatic system: a comprehensive review. Diagn 5(2):119–176CrossRefGoogle Scholar
  94. 94.
    Welbourn RB (1977) Current status of the apudomas. Ann Surg 185(1):1–12PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Rindi G, Wiedenmann B (2012) Neuroendocrine neoplasms of the gut and pancreas: new insights. Nat Rev Endocrinol 8:54–64CrossRefGoogle Scholar
  96. 96.
    Moran GW, Leslie FC, Levison SE, McLaughlin JT (2008) Review: enteroendocrine cells: neglected players in gastrointestinal disorders? Therap Adv Gastroenterol 1(1):51–60PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Bosman FT, Louwerens J-WK (1981) APUD cells in teratomas. Am J Pathol 104:174–180PubMedPubMedCentralGoogle Scholar
  98. 98.
    Delektorskaya VV, Kozlov NA, Chemeris GY (2013) Clinico-morphological analysis of the neuroendocrine neoplasms of the gastroenteropancreatic system. Klin Lab Diagn 10: 48–50, 10–3Google Scholar
  99. 99.
    Fazio N, Spada F (2016) Management of neuroendocrine tumors. In: Ambrosini V, Fanti S (eds) PET/CT in neuroendocrine tumors. Part of the series clinicians’ guides to radionuclide hybrid imaging. Springer, Cham, SwitzerlandGoogle Scholar
  100. 100.
    Fujita T, Kanno T, Kobayashi S (2011) The paraneuron. Springer Verlag, Tokyo, JapanGoogle Scholar
  101. 101.
    Fujita T, Kobayashi S (1979) Current views on the paraneurone concept. Trend Neurosci 2:27–30CrossRefGoogle Scholar
  102. 102.
    Kobayashi S, Chiba T (1977) Paraneurons: new concepts on neuro-endocrine relatives. In: Proceedings of the symposium on the paraneurons, Morioka, JapanGoogle Scholar
  103. 103.
    Fujita T (1976) Gastro-enteric endocrine cell and its paraneuronic nature. In: Coupland RE, Fujita T (eds) Chromaffin, enterochromaffin and related cells. Elsevier, Amsterdam, NetherlandsGoogle Scholar
  104. 104.
    Kobayashi S, Segi M (1984) Gut paraneurons and Segi’s cap. In: Motta PM (ed) Ultrastructure of endocrine cells and tissues. Electron microscopy in biology and medicine (current topics in ultrastructural research), vol 1. Springer, Boston, MACrossRefGoogle Scholar
  105. 105.
    Fujita T (1989) Present status of paraneuron concept. Arch Histol Cytol 52:1–8PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Kubarko AI, Semenovich AA, Pereverzev VA (eds) (2013) A textbook of human physiology. Part I & 2. Visheishaya Shkola, Minsk, BelarusGoogle Scholar
  107. 107.
    Nikitina OS, Welcome MO, Pereverzev VA (2016) Human anatomy and physiology. In: 2 parts. Part 1 & 2. Belarusian State Medical University Press, Minsk, BelarusGoogle Scholar
  108. 108.
    Gomez GA, Englander EW, Greeley GH Jr (2012) Postpyloric gastrointestinal peptides. In: Physiology of the gastrointestinal tract. Academic Press, San Diego, CA, USACrossRefGoogle Scholar
  109. 109.
    Xiong X, Zhong A, Xu H (2014) Effect of cyanotoxins on the hypothalamic–pituitary–gonadal axis in male adult mouse. PLoS ONE 9(11):e106585PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Labrie F, Borgeat P, Godbout M, Barden N, Beaulieu M, Lagacé L et al (1980) Mechanism of action of hypothalamic hormones and interactions with sex steroids in the anterior pituitary gland. In: Jutisz M, McKerns KW (eds) Synthesis and release of adenohypophyseal hormones. Springer, Boston, MAGoogle Scholar
  111. 111.
    Parker HE, Gribble FM, Reimann F (2014) The role of gut endocrine cells in control of metabolism and appetite. Exp Physiol 99(9):1116–1120PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Hill JW, Elmquist JK, Elias CF (2008) Hypothalamic pathways linking energy balance and reproduction. Am J Physiol Endocrinol Metab 294:E827–E832PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Pedersen BK (2009) The diseasome of physical inactivity—and the role of myokines in muscle–fat cross talk. J Physiol 587(23):5559–5568PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Pedersen BK, Åkerström TCA, Nielsen AR, Fischer CP (2007) Role of myokines in exercise and metabolism. J Appl Physiol 103(3):1093–1098PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Gosman GG, Katcher HI, Legro RS (2006) Obesity and the role of gut and adipose hormones in female reproduction. Hum Reprod Update 12(5):585–601PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Venteclef N, Guglielmi V, Balse E, Gaborit B, Cotillard A, Atassi F et al (2015) Human epicardial adipose tissue induces fibrosis of the atrial myocardium through the secretion of adipo-fibrokines. Eur Heart J 36(13):795–805PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Larsson LI (1980) On the possible existence of multiple endocrine, paracrine and neurocrine messengers in secretory cell systems. Invest Cell Pathol 3(1):73–85PubMedPubMedCentralGoogle Scholar
  118. 118.
    Larsson LI (1980) Gastrointestinal cells producing endocrine, neurocrine and paracrine messengers. Clin Gastroenterol 9(3):485–516PubMedPubMedCentralGoogle Scholar
  119. 119.
    O’Byrne P (1988) Lymphokine activated killer cell activity in patients with GI cancer. Gut 29(5):693–694PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Lehmann FS, Terracciano L, Carena I, Baeriswyl C, Drewe J, Tornillo L et al (2002) In situ correlation of cytokine secretion and apoptosis in Helicobacter pylori-associated gastritis. Am J Physiol Gastrointest Liver Physiol 283(2):G481–G488PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Lin HY, Chang KT, Hung CC, Kuo CH, Hwang SJ, Chen HC et al (2014) Effects of the mTOR inhibitor rapamycin on monocyte-secreted chemokines. BMC Immunol 26(15):37CrossRefGoogle Scholar
  122. 122.
    López-Lago MA, Posner S, Thodima VJ, Molina AM, Motzer RJ, Chaganti RSK (2013) Neutrophil chemokines secreted by tumor cells mount a lung antimetastatic response during renal cell carcinoma progression. Oncogene 32(14):1752–1760PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Lazennec G, Richmond A (2010) Chemokines and chemokine receptors: new insights into cancer-related inflammation. Trends Mol Med 16(3):133–144PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Olsnes C, Stavang H, Brokstad K, Olofsson J, Aarstad HJ (2009) Chemokines are secreted by monocytes following OK-432 (lyophilized Streptococcus pyogenes) stimulation. BMC Immunol 10:6PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Majka M, Janowska-Wieczorek A, Ratajczak J, Ehrenman K, Pietrzkowski Z, Kowalska MA et al (1999) Numerous growth factors, cytokines, and chemokines are secreted by human CD34 + cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hematopoiesis in an autocrine/paracrine manner. Blood 94(suppl 1):465aGoogle Scholar
  126. 126.
    Arnold R (1979) Pathophysiology and clinical significance of gut hormones. Acta Med Austriaca 6(3):77–90PubMedPubMedCentralGoogle Scholar
  127. 127.
    Zhao CM, Martinez V, Piqueras L, Wang L, Taché Y, Chen D (2008) Control of gastric acid secretion in somatostatin receptor 2 deficient mice: shift from endocrine/paracrine to neurocrine pathways. Endocrinol 149(2):498–505CrossRefGoogle Scholar
  128. 128.
    Rashid M, Singla D, Sharma A, Kumar M, Raghava GPS (2009) Hmrbase: a database of hormones and their receptors. BMC Genom 10:307CrossRefGoogle Scholar
  129. 129.
    Henriksen JH, de Muckadell OB (2000) Secretin, its discovery, and the introduction of the hormone concept. Scand J Clin Lab Invest 60(6):463–471PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Lee VHY, Lam IPY, Choi H-S, Chow BKC, Lee LTO (2012) The estrogen-related receptor alpha upregulates secretin expressions in response to hypertonicity and angiotensin II stimulation. PLoS ONE 7(6):e39913PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Pelletier MJ, Chayvialle JA, Minaire Y (1979) Uneven and transient secretin release after a liquid test meal. Gastroenterol 75(6):1124–1132Google Scholar
  132. 132.
    Sundaresan S, Shahid R, Riehl TE, Chandra R, Nassir F, Stenson WF et al (2013) CD36-dependent signaling mediates fatty acid-induced gut release of secretin and cholecystokinin. FASEB J 27(3):1191–1202PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Dong M, Miller LJ (2002) Molecular pharmacology of the secretin receptor. Recept Channels 8(3–4):189–200PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Miller LJ, Dong M, Harikumar KG (2012) Ligand binding and activation of the secretin receptor, a prototypic family B G protein-coupled receptor. Br J Pharmacol 166(1):18–26PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Afroze S, Meng F, Jensen K, McDaniel K, Rahal K, Onori P et al (2013) The physiological roles of secretin and its receptor. Ann Transl Med 1(3):29PubMedPubMedCentralGoogle Scholar
  136. 136.
    Posovszky C, Wabitsch M (2015) Regulation of appetite, satiation, and body weight by enteroendocrine cells. Part 1: characteristics of enteroendocrine cells and their capability of weight regulation. Horm Res Paediatr 83(1):1–10CrossRefPubMedGoogle Scholar
  137. 137.
    Posovszky C, Wabitsch M (2015) Regulation of appetite, satiation, and body weight by enteroendocrine cells. part 2: therapeutic potential of enteroendocrine cells in the treatment of obesity. Horm Res Paediatr 83(1):11–18PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Bassalyk LS (1970) Gastrin (biochemistry, physiology and clinical importance). Ter Arkh 42(12):4–9PubMedPubMedCentralGoogle Scholar
  139. 139.
    Peggion E, Foffani MT, Mammi S (1991) Structure-function relationship of gastrin hormones: a rational approach to drug design. Bioorganic Chemistry in Healthcare and Technology. Vol 207 of the series NATO ASI Series. Plenum Press, New York, USAGoogle Scholar
  140. 140.
    Wiborg O, Berglund L, Boel E, Norris F, Norris K, Rehfeld JF et al (1984) Biochemistry structure of a human gastrin gene. Proc Natl Acad Sci USA 81:1067–1069PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Beinfeld MC (2009) CCK/gastrin and receptors. In: Squire LR (ed) Encyclopedia of neuroscience. Elsevier, San Diego, CA, USAGoogle Scholar
  142. 142.
    Modlin IM, Kidd M, Marks IN, Tang LH (1997) The pivotal role of John S. Edkins in the discovery of gastrin. World J Surg 21(2):226–234PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Gregory RA, Tracy HJ (1964) The constitution and properties of two gastrins extracted from hog antral mucosa: Part I the isolation of two gastrins from hog antral mucosa. Gut 5(2):103PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Dufresne M, Seva C, Fourmy D (2006) Cholecystokinin and gastrin receptors. Physiol Rev 86(3):805–847PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Janssen T, Meelkop E, Lindemans M, Verstraelen K, Husson SJ, Temmerman L et al (2008) Discovery of a cholecystokinin-gastrin-like signaling system in nematodes. Endocrinol 149(6):2826–2839CrossRefGoogle Scholar
  146. 146.
    Johnsen AH (1998) Phylogeny of the cholecystokinin/gastrin family. Front Neuroendocrinol 19(2):73–99PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    McRoberts JW (1986) Cholecystokinin and pain. Anesth Prog 33(2):87–90PubMedPubMedCentralGoogle Scholar
  148. 148.
    Lewis L, Van Brimmer B (2003) A biography of Robert Milton Zollinger, M.D. Am J Surg 186(3):205–207PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Strosberg JR (2014) Systemic treatment of gastroenteropancreatic neuroendocrine tumors (GEP-NETS): current approaches and future options. Endocr Pract 20(2):167–175PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Libutti SK, Alexander HR Jr (2006) Gastrinoma: sporadic and familial disease. Surg Oncol Clin 15(3):479–496CrossRefGoogle Scholar
  151. 151.
    Shah P, Singh MH, Yang Y-X, Metz DC (2013) Hypo-and achlorhydria are associated with false-positive secretin stimulation testing for Zollinger-Ellison syndrome. Pancreas 42(6):932–936PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Goldman JA, Blanton WP, Hay DW, Wolfe MM (2009) False-positive secretin stimulation test for gastrinoma associated with the use of proton pump inhibitor therapy. Clin Gastroenterol Hepatol 7(5):600–602PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Braganza JM, Herman K, Hine P, Kay G (1979) The effect of pentagastrin on peptic secretion in man. J Physiol 289:9–16PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Barbot N, Calmettes C, Schuffenecker I, Saint-André JP, Franc B, Rohmer V et al (1994) Pentagastrin stimulation test and early diagnosis of medullary thyroid carcinoma using an immunoradiometric assay of calcitonin: comparison with genetic screening in hereditary medullary thyroid carcinoma. J Clin Endocrinol Metab 78(1):114–120PubMedPubMedCentralGoogle Scholar
  155. 155.
    Milone F, Ramundo V, Chiofalo MG, Severino R, Paciolla I, Pezzullo L et al (2010) Predictive value of pentagastrin test for preoperative differential diagnosis between C-cell hyperplasia and medullary thyroid carcinoma in patients with moderately elevated basal calcitonin levels. Clin Endocrinol (Oxf) 73(1):85–88Google Scholar
  156. 156.
    Riley JF (1965) Histamine and Sir Henry Dale. Br Med J 1(5448):1488–1490PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Dale HH, Laidlaw PP (1910) The physiological action of beta-iminazolylethylamine. J Physiol 41(5):318–344PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Beales ILP (2002) Easy as 1, 2, 3? Histamine receptors and gastric acid. Gut 50(6):747–748PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Barger G, Dale HH (1911) beta-Iminazolylethylamine a depressor constituent of intestinal mucosa. J Physiol 41(6):499–503PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Dvorak AM, MacGlashan DW Jr, Morgan ES, Lichtenstein LM (1996) Vesicular transport of histamine in stimulated human basophils. Blood 88(11):4090–4101PubMedPubMedCentralGoogle Scholar
  161. 161.
    Xu Y, An F, Borycz JA, Borycz J, Meinertzhagen IA, Wang T (2015) Histamine recycling is mediated by CarT, a carcinine transporter in Drosophila photoreceptors. PLoS Genet 11(12):e1005764PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Prinz C, Zanner R, Gerhard M, Mahr S, Neumayer N, Höhne-Zell B, Gratzl M (1999) The mechanism of histamine secretion from gastric enterochromaffin-like cells. Am J Physiol Cell Physiol 277(5):C845–C855CrossRefGoogle Scholar
  163. 163.
    Travis ER, Wang Y-M, Michael DJ, Caron MG, Wightman RM (1999) Differential quantal release of histamine and 5-hydroxytryptamine from mast cells of vesicular monoamine transporter 2 knockout mice. PNAS 97(1):162–167CrossRefGoogle Scholar
  164. 164.
    Merickel A, Edwards RH (1995) Transport of histamine by vesicular monoamine transporter-2. Neuropharmacol 34(11):1543–1547CrossRefGoogle Scholar
  165. 165.
    Ogasawara M, Yamauchi K, Satoh Y, Yamaji R, Inui K, Jonker JW et al (2006) Recent advances in molecular pharmacology of the histamine systems: organic cation transporters as a histamine transporter and histamine metabolism. J Pharmacol Sci 101(1):24–30PubMedCrossRefGoogle Scholar
  166. 166.
    Stegaev V, Nies AT, Porola P, Mieliauskaite D, Sánchez-Jiménez F, Urdiales JL et al (2013) Histamine transport and metabolism are deranged in salivary glands in Sjogren’s syndrome. Rheumatol (Oxford) 52(9):1599–1608CrossRefGoogle Scholar
  167. 167.
    Feldberg WS (1970) Henry Hallett Dale. 1875–1968. Biogr Mem Fellows R Soc 16:77–174PubMedCrossRefGoogle Scholar
  168. 168.
    Stegaev V, Sillat T, Porola P, Hänninen A, Falus A, Mieliauskaite D et al (2012) Brief report: first identification of H4 histamine receptor in healthy salivary glands and in focal sialadenitis in Sjögren’s syndrome. Arthritis Rheum 64(8):2663–2668PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Panula P, Kaartinen M, Mäcklin M, Costa E (1985) Histamine-containing peripheral neuronal and endocrine systems. J Histochem Cytochem 33(9):933–941PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Knigge U, Warberg J (1991) The role of histamine in the neuroendocrine regulation of pituitary hormone secretion. Acta Endocrinol (Copenh) 124(6):609–719CrossRefGoogle Scholar
  171. 171.
    Erspamer V, Erspamer GF, Inselvini M (1970) Some pharmacological actions of alytesin and bombesin. J Pharm Pharmacol 22:875–876PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Orloff MS, Reeve JR Jr, Ben-Avram CM, Shively JE, Walsh JH (1984) Isolation and sequence analysis of human bombesin-like peptides. Peptides 5(5):865–870PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Erspamer V, Melchiorri P, Broccardo M, Erspamer GF, Falaschi P, Improta G et al (1981) The brain-gut-skin triangle: new peptides. Peptides 2(2):7–16PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Guo YS, Thompson JC, Singh P (1988) Role of Ca2 + in bombesin -stimulated release of gastrin and somatostatin from isolated perfused rat stomach. Am J Physiol 255(5 Pt 1):G627–G632PubMedPubMedCentralGoogle Scholar
  175. 175.
    Kleibeuker JH, Kauffman GL Jr, Walsh JH (1985) Intravenous histamine reduces bombesin-stimulated gastrin release in dogs. Regul Pept 11(3):209–215PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Guo Y-S, Thompson JC, Singh P (1990) Role of gastrin in bombesin-stimulated somatostatin release. Gastroenterol 99(5):1297–1302CrossRefGoogle Scholar
  177. 177.
    Fletcher DR, Shulkes A, Bladin PHD, Hardy KJ (1983) The effect of atropine on bombesin and gastrin releasing peptide stimulated gastrin, pancreatic polypeptide and neurotensin release in man. Regul Pept 7(1):31–40PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Gonzalez N, Moody TW, Igarashi H, Ito T, Jensen RT (2008) Bombesin-related peptides and their receptors: recent advances in their role in physiology and disease states. Curr Opin Endocrinol Diabetes Obes 15(1):58–64PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Ohlsson B, Fredäng N, Axelson J (1999) The effect of bombesin, cholecystokinin, gastrin, and their antagonists on proliferation of pancreatic cancer cell lines. Scand J Gastroenterol 34(12):1224–1229PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Jensen RT, Battey JF, Spindel ER, Benya RV (2008) International Union of Pharmacology. LXVIII. Mammalian bombesin receptors: nomenclature, distribution, pharmacology, signaling, and functions in normal and disease states. Pharmacol Rev 60(1):1–42PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    West SD, Mercer DW (2005) Bombesin-induced gastroprotection. Ann Surg 241(2):227–231PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Xiao D, Qu X, Weber HC (2003) Activation of extracellular signal-regulated kinase mediates bombesin-induced mitogenic responses in prostate cancer cells. Cell Sig 15(10):945–953CrossRefGoogle Scholar
  183. 183.
    Ohki-Hamazaki H (2000) Neuromedin B. Prog Neurobiol 62(3):297–312PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    Krane IM, Naylor SL, Helin-Davis D, Chin WW, Spindel ER (1988) Molecular cloning of cDNAs encoding the human bombesin-like peptide neuromedin B. Chromosomal localization and comparison to cDNAs encoding its amphibian homolog ranatensin. J Biol Chem 263(26):13317–13323PubMedPubMedCentralGoogle Scholar
  185. 185.
    von Euler US (1935) Uber die spezifische blutdrucksenkende substanz des menschlichen prostate- und samenblasensekrets. Klin Wochenschr 14:1182–1183CrossRefGoogle Scholar
  186. 186.
    Kresge N, Simoni RD, Hill RL (2006) The prostaglandins, Sune Bergström and Bengt Samuelsson. J Biol Chem 281:e9–e11CrossRefGoogle Scholar
  187. 187.
    Goldblatt MW (1935) Properties of human seminal plasma. J Physiol 84:208–218PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Stanley D, Kim Y (2014) Eicosanoid signaling in insects: from discovery to plant protection. Crit Rev Plant Sci 33(1):20–63CrossRefGoogle Scholar
  189. 189.
    Shimizu N, Nakamura T (1985) Prostaglandins as hormones. Dig Dis Sci 30(11 Suppl):109S–113SPubMedCrossRefPubMedCentralGoogle Scholar
  190. 190.
    Lupulescu A (1996) Prostaglandins, their inhibitors and cancer. Prostaglandins Leukot Essent Fatty Acids 54(2):83–94PubMedCrossRefPubMedCentralGoogle Scholar
  191. 191.
    Hata AN, Breyer RM (2004) Pharmacology and signaling of prostaglandin receptors: multiple roles in inflammation and immune modulation. Pharmacol Ther 103(2):147–166PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Brash AR (2001) Arachidonic acid as a bioactive molecule. J Clin Invest 107(11):1339–1345PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Kuksis A, Myher JJ (1995) Application of tandem mass spectrometry for the analysis of long-chain carboxylic acids. J Chromatogr B Biomed Sci Appl 671(1–2):35–70CrossRefGoogle Scholar
  194. 194.
    Flower RJ (2006) Prostaglandins, bioassay and inflammation. Br J Pharmacol 147(1):S182–S192PubMedPubMedCentralGoogle Scholar
  195. 195.
    Hammarström S (1983) Leukotrienes. Annu Rev Biochem 52:355–377PubMedCrossRefPubMedCentralGoogle Scholar
  196. 196.
    Feldberg W, Kellaway CH (1938) Liberation of histamine and formation of lysocithin-like substances by cobra venom. J Physiol 94:187–226PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Malmsten CL (1986) Prostaglandins, thromboxanes, and leukotrienes in inflammation. Am J Med 80(4B):11–17PubMedCrossRefPubMedCentralGoogle Scholar
  198. 198.
    Samuelsson B (1987) An elucidation of the arachidonic acid cascade. Discovery of prostaglandins, thromboxane and leukotrienes. Drugs 33(1):2–9PubMedCrossRefPubMedCentralGoogle Scholar
  199. 199.
    Weinberger B, Hirsch D, Yin K, Spur BW (2015) Lipid mediators and lung function. In: Parent RA (ed) Comparative biology of the normal lung. Elsevier, San Diego, CA, USAGoogle Scholar
  200. 200.
    Davies P, Bailey PJ, Goldenberg MM, Ford-Hutchinson AW (1984) The role of arachidonic acid oxygenation products in pain and inflammation. Ann Rev Immunol 2:335–357CrossRefGoogle Scholar
  201. 201.
    Jabbour HN, Sales KJ (2004) Prostaglandin receptor signalling and function in human endometrial pathology. Trends Endocrinol Metab 15(8):398–404PubMedCrossRefPubMedCentralGoogle Scholar
  202. 202.
    Leonhardt A, Glaser A, Wegmann M, Hackenberg R, Nüsing RM (2003) Expression of prostanoid receptors in human lower segment pregnant myometrium. Prostaglandins Leukot Essent Fatty Acids 69(5):307–313PubMedCrossRefPubMedCentralGoogle Scholar
  203. 203.
    Narumiya S, Sugimoto Y, Ushikubi F (1999) Prostanoid receptors: structures, properties, and functions. Physiol Rev 79(4):1193–1226PubMedCrossRefPubMedCentralGoogle Scholar
  204. 204.
    Robert A (1984) Prostaglandins: effects on the gastrointestinal tract. Clin Physiol Biochem 2(2–3):61–69PubMedPubMedCentralGoogle Scholar
  205. 205.
    Dey I, Lejeune M, Chadee K (2006) Prostaglandin E2 receptor distribution and function in the gastrointestinal tract. Br J Pharmacol 149(6):611–623PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Occhipinti M (1978) Prostaglandins and gastrointestinal function. Adv Pediatr 25:205–221PubMedPubMedCentralGoogle Scholar
  207. 207.
    Wang D, Mann JR, Dubois RN (2005) The role of prostaglandins and other eicosanoids in the gastrointestinal tract. Gastroenterol 128(5):1445–1461CrossRefGoogle Scholar
  208. 208.
    Becker JC, Domschke W, Pohle T (2004) Current approaches to prevent NSAID-induced gastropathy—COX selectivity and beyond. Br J Clin Pharmacol 58(6):587–600PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Scarpignato C, Hunt RH (2010) Nonsteroidal antiinflammatory drug-related injury to the gastrointestinal tract: clinical picture, pathogenesis, and prevention. Gastroenterol Clin 39(3):433–464CrossRefGoogle Scholar
  210. 210.
    Johnell K, Fastbom J (2008) Concomitant use of gastroprotective drugs among elderly NSAID/COX-2 selective inhibitor users—a nationwide register-based study. Clin Drug Invest 28(11):687–695CrossRefGoogle Scholar
  211. 211.
    Wolfe F, Anderson J, Burke TA, Arguelles LM, Pettitt D (2002) Gastroprotective therapy and risk of gastrointestinal ulcers: risk reduction by COX-2 therapy. J Rheumatol 29(3):467–473PubMedPubMedCentralGoogle Scholar
  212. 212.
    Pasina L, Nobili A, Tettamanti M, Riva E, Lucca U, Piccinelli R et al (2010) Co-prescription of gastroprotective agents in patients taking non-selective NSAIDs or COX-2 selective inhibitors: analysis of prescriptions. Int J Clin Pharmacol Ther 48(11):735–743PubMedCrossRefPubMedCentralGoogle Scholar
  213. 213.
    Sun SX, Lee KY, Bertram CT, Goldstein JL (2007) Withdrawal of COX-2 selective inhibitors rofecoxib and valdecoxib: impact on NSAID and gastroprotective drug prescribing and utilization. Curr Med Res Opin 23(8):1859–1866PubMedCrossRefPubMedCentralGoogle Scholar
  214. 214.
    Allen R, O’Brien BM (2009) Uses of misoprostol in obstetrics and gynecology. Rev Obstet Gynecol 2(3):159–168PubMedPubMedCentralGoogle Scholar
  215. 215.
    La Barre J (1932) Sur les possibilite´s d’un traitement du diabète par l’incrétine. Bull Acad R Med Belg 12:620–634Google Scholar
  216. 216.
    Moore N, Edie ES, Abram TH (1906) On the treatment of diabetes mellitus by acid extract of duodenal mucous membrane. Biochem J 1:28–38PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Brown JC, Pederson RA (1970) Cleavage of a gastric inhibitory polypeptide with cyanogen bromide and the physiological action of the C-terminal fragment. J Physiol 210:52–53Google Scholar
  218. 218.
    Brown JC (1971) A gastric inhibitory polypeptide. I. The amino acid composition and the tryptic peptides. Can J Biochem 49:255–261PubMedCrossRefPubMedCentralGoogle Scholar
  219. 219.
    Dupre J, Ross SA, Watson D, Brown JC (1973) Stimulation of insulin secretion by gastric inhibitory polypeptide in man. J Clin Endocrinol Metab 37:826–828PubMedCrossRefPubMedCentralGoogle Scholar
  220. 220.
    Creutzfeldt W (2005) The [pre-] history of the incretin concept. Regul Pept 128(2):87–91PubMedCrossRefPubMedCentralGoogle Scholar
  221. 221.
    Kieffer TJ, Habener JF (1999) The glucagon-like peptides. Endocr Rev 20(6):876–913PubMedCrossRefPubMedCentralGoogle Scholar
  222. 222.
    Orskov C, Nielsen JH (1988) Truncated glucagon-like peptide-1(proglucagon 78–107 amide), an intestinal insulin-releasing peptide, has specific receptors on rat insulinoma cells (RIN 5AH). FEBS Lett 229:175–178PubMedCrossRefPubMedCentralGoogle Scholar
  223. 223.
    Orskov C, Holst JJ, Poulsen SS, Kirkegaard P (1987) Pancreatic and intestinal processing of proglucagon in man. Diabetologia 30:874–881PubMedPubMedCentralGoogle Scholar
  224. 224.
    Orskov C, Holst JJ, Nielsen OV (1988) Effect of truncated glucagon-like peptide-1 [proglucagon-(78–107)amide] on endocrine secretion from pig pancreas, antrum, and nonantral stomach. Endocrinol 123:209–213CrossRefGoogle Scholar
  225. 225.
    Kreymann B, Williams G, Ghatei MA, Bloom SR (1987) Glucagon-like peptide-1 7-36: A physiological incretin in man. Lancet 2:1300–1304PubMedCrossRefPubMedCentralGoogle Scholar
  226. 226.
    Mojsov S, Weir GC, Habener JF (1987) Insulinotropin: glucagon-like peptide I (7–37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J Clin Invest 79:616–619PubMedPubMedCentralCrossRefGoogle Scholar
  227. 227.
    Zunz E, LaBarre J (1928) Hyperinsulinémie consécutive a l’injection de solution de secrétine non hypotensive. C R Soc Biol (Paris):1435–1438Google Scholar
  228. 228.
    McIntyre N, Holdsworth CD, Turner DS (1964) New interpretation of oral glucose tolerance. Lancet 2:20–21PubMedCrossRefPubMedCentralGoogle Scholar
  229. 229.
    Elrick H, Stimmler L, Hlad CJ, Arai Y (1964) Plasma insulin responses to oral and intravenous glucose administration. J Clin Endocrinol Metab 24:1076–1082PubMedCrossRefPubMedCentralGoogle Scholar
  230. 230.
    Perley MJ, Kipnis DM (1967) Plasma insulin responses to oral and intravenous studies in normal and diabetic subjects. J Clin Invest 46:1954–1962PubMedPubMedCentralCrossRefGoogle Scholar
  231. 231.
    Brubaker PL, Drucker DJ (2002) Structure-function of the glucagon receptor family of G protein–coupled receptors: the glucagon, GIP, GLP-1, and GLP-2 receptors. Recept Channels 8:179–188PubMedCrossRefPubMedCentralGoogle Scholar
  232. 232.
    Girard J (2008) The incretins: From the concept to their use in the treatment of type 2 diabetes. Part A: Incretins: Concept and physiological functions. Diabetes Metab 34:550–559PubMedCrossRefPubMedCentralGoogle Scholar
  233. 233.
    Takeda J, Seino Y, Tanaka K, Fukumoto H, Kayano T, Takahashi H et al (1987) Sequence of an intestinal cDNA encoding human gastric inhibitory polypeptide precursor. Proc Natl Acad Sci USA 84:7005–7008PubMedPubMedCentralCrossRefGoogle Scholar
  234. 234.
    Brown JC, Mutt V, Pederson RA (1970) Further purification of a polypeptide demonstrating enterogastrone activity. J Physiol (Lond) 209:57–64CrossRefGoogle Scholar
  235. 235.
    Lauritsen KB, Moody AJ, Christensen KC, Jensen SL (1980) Gastric-inhibitory polypeptide (GIP) and insulin release after small bowel resection in man. Scand J Gastroenterol 15:833–840PubMedCrossRefPubMedCentralGoogle Scholar
  236. 236.
    Mojsov S, Heinrich G, Wilson IB, Ravazzola M, Orci L, Habener JF (1986) Preproglucagon gene expression in pancreas and intestine diversifies at the level of post-translational processing. J Biol Chem 261:11880–11889PubMedPubMedCentralGoogle Scholar
  237. 237.
    Holst JJ, Gromada J (2004) Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans. Am J Physiol Endocrinol Metab 287:E199–E206PubMedCrossRefPubMedCentralGoogle Scholar
  238. 238.
    Orskov C, Holst JJ, Knuhtsen S, Baldissera FG, Poulsen SS, Nielsen OV (1986) Glucagon-like peptides GLP-1 and GLP-2, predicted products of the glucagon gene are secreted separately from pig small intestine but not pancreas. Endocrinol 119:1467–1475CrossRefGoogle Scholar
  239. 239.
    Yip RG, Wolfe MM (2000) GIP biology and fat metabolism. Life Sci 66(2):91–103PubMedCrossRefPubMedCentralGoogle Scholar
  240. 240.
    Beck B (1989) Gastric inhibitory polypeptide: a gut hormone with anabolic functions. J Mol Endocrinol 2(3):169–174PubMedCrossRefPubMedCentralGoogle Scholar
  241. 241.
    Pellissier S, Sasaki K, Le-Nguyen D, Bataille D, Jarrousse C (2004) Oxyntomodulin and glicentin are potent inhibitors of the fed motility pattern in small intestine. Neurogastroenterol Motil 16(4):455–463PubMedCrossRefPubMedCentralGoogle Scholar
  242. 242.
    Steiner DF, Albrechtsen NJW, Rehfeld JF, Holst JJ (2017) Glucagon processing. In: Stein J, Bennett D, Coen C, Dunbar R, Goodwin G, Husain M et al (eds) Reference module in neuroscience and biobehavioral psychology. Elsevier, San Diego, CA, USAGoogle Scholar
  243. 243.
    Mineo I, Matsumura T, Shingu R, Namba M, Kuwajima M, Matsuzawa Y (1995) The role of prohormone convertases PC1 (PC3) and PC2 in the cell-specific processing of proglucagon. Biochem Biophys Res Commun 207(2):646–651PubMedCrossRefPubMedCentralGoogle Scholar
  244. 244.
    Anini Y, Jarrousse C, Chariot J, Nagain C, Yanaihara N, Sasaki K et al (2000) Oxyntomodulin inhibits pancreatic secretion through the nervous system in rats. Pancreas 20(4):348–360PubMedCrossRefPubMedCentralGoogle Scholar
  245. 245.
    Ohneda A, Ohneda K, Nagasaki T, Sasaki K (1995) Insulinotropic action of human glicentin in dogs. Metab 44(1):47–51CrossRefGoogle Scholar
  246. 246.
    Rodier G, Magous R, Mochizuki T, Le Nguyen D, Martinez J, Bali JP et al (1999) Glicentin and oxyntomodulin modulate both the phosphoinositide and cyclic adenosine monophosphate signaling pathways in gastric myocytes. Endocrinol 140(1):22–28CrossRefGoogle Scholar
  247. 247.
    Bataille D, Dalle S (2014) The forgotten members of the glucagon family. Diabetes Res Clin Pract 106(1):1–10PubMedCrossRefPubMedCentralGoogle Scholar
  248. 248.
    Vilsbøll T (2004) On the role of the incretin hormones GIP and GLP-1 in the pathogenesis of Type 2 diabetes mellitus. Dan Med Bull 51(4):364–370PubMedPubMedCentralGoogle Scholar
  249. 249.
    Sørensen G, Reddy IA, Weikop P, Graham DL, Stanwood GD, Wortwein G et al (2015) The glucagon-like peptide 1 (GLP-1) receptor agonist exendin-4 reduces cocaine self-administration in mice. Physiol Behav 149:262–268PubMedPubMedCentralCrossRefGoogle Scholar
  250. 250.
    Seufert J, Gallwitz B (2014) The extra-pancreatic effects of GLP-1 receptor agonists:a focus on the cardiovascular, gastrointestinal and centralnervous systems. Diabetes Obes Metab 16:673–688PubMedCrossRefPubMedCentralGoogle Scholar
  251. 251.
    Körner M, Stöckli M, Waser B, Reubi JC (2007) GLP-1 receptor expression in human tumors and human normal tissues: potential for in vivo targeting. J Nucl Med 48(5):736–743PubMedCrossRefPubMedCentralGoogle Scholar
  252. 252.
    Runge S, Wul BS, Madsen K, BraÈ uner-Osborne H, Knudsen LB (2003) Different domains of the glucagon and glucagon-like peptide-1 receptors provide the critical determinants of ligand selectivity. Br J Pharmacol 138:787–794PubMedPubMedCentralCrossRefGoogle Scholar
  253. 253.
    Pocai A (2012) Unraveling oxyntomodulin, GLP1’s enigmatic brother. J Endocrinol 215(3):335–346PubMedPubMedCentralCrossRefGoogle Scholar
  254. 254.
    Baggio LL, Drucker DJ (2007) Biology of incretins: GLP-1 and GIP. Gastroenterol 132(6):2131–2157CrossRefGoogle Scholar
  255. 255.
    You C, Chey W (1987) Secretin is an enterogastrone in humans. Dig Dis Sci 32(5):466–471PubMedCrossRefPubMedCentralGoogle Scholar
  256. 256.
    Lloyd K, Maxwell V, Chuang C, Wong H, Soll A, Walsh J (1994) Somatostatin is released in response to cholecystokinin by activation of type A CCK receptors. Peptides 15(2):223–227PubMedCrossRefPubMedCentralGoogle Scholar
  257. 257.
    Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homolog. Nat 372:425–432CrossRefGoogle Scholar
  258. 258.
    Bado A, Levasseur S, Attoub S, Kermorgant S, Laigneau JP, Bortoluzzi MN et al (1998) The stomach is a source of leptin. Nat 394:790–793CrossRefGoogle Scholar
  259. 259.
    Cammisotto PG, Renaud C, Gingras D, Delvin E, Levy E, Bendayan M (2005) Endocrine and exocrine secretion of leptin by the gastric mucosa. J Histochem Cytochem 53:851–860PubMedCrossRefPubMedCentralGoogle Scholar
  260. 260.
    Yarandi SS, Hebbar G, Sauer CG, Cole CR, Ziegler TR (2011) Diverse roles of leptin in the gastrointestinal tract: Modulation of motility, absorption, growth, and inflammation. Nutr 27(3):269–275CrossRefGoogle Scholar
  261. 261.
    Guilmeau S, Buyse M, Bado A (2004) Gastric leptin: a new manager of gastrointestinal function. Curr Opin Pharmacol 4(6):561–566PubMedCrossRefPubMedCentralGoogle Scholar
  262. 262.
    Barrenetxe J, Villaro AC, Guembe L, Pascual I, Munoz-Navas M, Barber A, Lostao MP (2008) Distribution of the long leptin receptor isoform in brush border, basolateral membrane, and cytoplasm of enterocytes. Gut 50:797–809CrossRefGoogle Scholar
  263. 263.
    Cammisotto P, Bendayan M (2012) A review on gastric leptin: the exocrine secretion of a gastric hormone. Anat Cell Biol 45(1):1–16PubMedPubMedCentralCrossRefGoogle Scholar
  264. 264.
    Havel PJ (2000) Role of adipose tissue in body-weight regulation: mechanisms regulating leptin production and energy balance. Proc Nutr Soc 59:359–371PubMedCrossRefPubMedCentralGoogle Scholar
  265. 265.
    Guilmeau S, Buyse M, Tsocas A, Laigneau JP, Bado A (2003) Duodenal leptin stimulates cholecystokinin secretion: evidence of a positive leptin-cholecystokinin feedback loop. Diab 52:1664–1672CrossRefGoogle Scholar
  266. 266.
    Bohlender J, Rauh M, Zenk J, Groschl M (2003) Differential distribution and expression of leptin and the functional leptin receptor in major salivary glands of humans. J Endocrinol 178:217–223PubMedCrossRefPubMedCentralGoogle Scholar
  267. 267.
    Cinti S, de Matteis R, Ceresi E, Picó C, Oliver J, Oliver P et al (2001) Leptin in the human stomach. Gut 49:155–159PubMedPubMedCentralCrossRefGoogle Scholar
  268. 268.
    Boelen A, Kwakkel J, Vos XG, Wiersinga WM, Fliers E (2006) Differential effects of leptin and refeeding on the fasting-induced decrease of pituitary type 2 deiodinase and thyroid hormone receptor beta2 mRNA expression in mice. J Endocrinol 190(2):537–544PubMedCrossRefPubMedCentralGoogle Scholar
  269. 269.
    Casanueva FF, Dieguez C (1999) Growth hormone secretagogues: physiological role and clinical utility. Trends Endocrinol Metab 10:30–38PubMedCrossRefPubMedCentralGoogle Scholar
  270. 270.
    Mojsilović M, Katić V, Ilić I, Radovanović B, Petrović B, Lazić M, Krstić M (2015) A thirty-seven-year follow-up of Peutz-Jeghers syndrome across three generations. Acta Fac Med Naiss 32(3):221–226Google Scholar
  271. 271.
    Modlin IM, Sank A, Albert D (1981) Current aspects of gut hormones. J Surg Res 30(6):602–618PubMedCrossRefPubMedCentralGoogle Scholar
  272. 272.
    Kokas E, Ludány G (1938) Relation between the “villikinine” and the absorption of glucose from the intestine. Q J Exp Physiol 28(1):15–22CrossRefGoogle Scholar
  273. 273.
    Brown JC (1967) Presence of a gastric motor-stimulating property in duodenal extracts. Gastroenterol 52(2):225–229Google Scholar
  274. 274.
    Brown JC, Cook MA, Dryburgh JR (1973) Motilin, a gastric motor activity stimulating polypeptide: the complete amino acid sequence. Can J Biochem 51(5):533–537PubMedCrossRefPubMedCentralGoogle Scholar
  275. 275.
    Sakai T, Satoh M, Sonobe K, Nakajima M, Shiba Y, Itoh Z (1994) Autoradiographic study of motilin binding sites in the rabbit gastrointestinal tract. Regul Peptides 53(3):249–257CrossRefGoogle Scholar
  276. 276.
    Pasricha P (1999) Identifying the motilin receptor: Science, serendipity, or simply business? Gastroenterol 117:1502–1504CrossRefGoogle Scholar
  277. 277.
    Bowers CY (1998) Growth hormone-releasing peptide (GHRP). Cell Mol Life Sci 54:1316–1329PubMedCrossRefPubMedCentralGoogle Scholar
  278. 278.
    Simonsson M, Eriksson S, Håkanson R, Lind T, Lönroth H, Lundell L et al (1988) Endocrine cells in the human oxyntic mucosa: a histochemical study. Scand J Gastroenterol 23(9):1089–1099PubMedCrossRefPubMedCentralGoogle Scholar
  279. 279.
    Perello M, Scott MM, Sakata I, Lee CE, Chuang JC, Osborne-Lawrence S et al (2012) Functional implications of limited leptin receptor and ghrelin receptor coexpression in the brain. J Comp Neurol 520(2):281–294PubMedPubMedCentralCrossRefGoogle Scholar
  280. 280.
    Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nat 402:656–660CrossRefGoogle Scholar
  281. 281.
    Sato T, Nakamura Y, Shiimura Y, Ohgusu H, Kangawa K, Kojima M (2012) Structure, regulation and function of ghrelin. J Biochem 151(2): 119–128PubMedCrossRefPubMedCentralGoogle Scholar
  282. 282.
    Sakata I, Sakai T (2010) Ghrelin cells in the gastrointestinal tract. Int J Peptides 2010:945056CrossRefGoogle Scholar
  283. 283.
    Tomasetto C, Karam SM, Ribieras S, Masson R, Lefèbvre O, Staub A et al (2000) Identification and characterization of a novel gastric peptide hormone: the motilin-related peptide. Gastroenterol 119(2):395–405CrossRefGoogle Scholar
  284. 284.
    Broom DR, Miyashita M, Wasse LK, Pulsford R, King JA, Thackray AE, Stensel DJ (2017) Acute effect of exercise intensity and duration on acylated ghrelin and hunger in men. J Endocrinol 232(3):411–422PubMedCrossRefGoogle Scholar
  285. 285.
    Kojima M, Kangawa K (2005) Ghrelin: structure and function. Physiol Rev 85:495–522PubMedCrossRefGoogle Scholar
  286. 286.
    St-Pierre DH, Wang L, Taché Y (2003) Ghrelin: a novel player in the gut-brain regulation of growth hormone and energy balance. News Physiol Sci 18:242–246PubMedGoogle Scholar
  287. 287.
    Ivy AC, Oldberg E (1928) Hormone mechanism for gallbladder contraction and evacuation. Am J Physiol 65:599–613Google Scholar
  288. 288.
    Harper AA, Raper HS (1943) Pancreozymin, a stimulant of secretion of pancreatic enzymes in extracts of the small intestine. J Physiol 102(1):115–125PubMedPubMedCentralCrossRefGoogle Scholar
  289. 289.
    Wank SA (1998) G protein-coupled receptors in gastrointestinal physiology. I. CCK receptors: an exemplary family. Am J Physiol 274(4 Pt 1):G607–13CrossRefGoogle Scholar
  290. 290.
    Wank SA (1995) Cholecystokinin receptors. Am J Physiol 269(5 Pt 1):G628–G646PubMedPubMedCentralGoogle Scholar
  291. 291.
    Mutt V, Jorpes J (1968) Structure of porcine cholecystokinin-pancreozymin. Eur J Biochem 6:156–162PubMedCrossRefPubMedCentralGoogle Scholar
  292. 292.
    Liddle RA (2003) CCK (Cholecystokinin). In: Martini L (ed) Encyclopedia of endocrine diseases. Elsevier, San Diego, CA, USAGoogle Scholar
  293. 293.
    Rashmi C, Liddle RA (2007) Cholecystokinin. Curr Opin Endocrinol Diabetes Obes 14(1):63–67CrossRefGoogle Scholar
  294. 294.
    López H, Molina-Ruiz R, Molón L, Díaz-Marsá M (2011) Cholecystokinin in the pathogenesis of bulimia nervosa. Int J Clin Med 2(4):509–515CrossRefGoogle Scholar
  295. 295.
    Williams RH, Champagne J (1979) Effects of cholecystokinin, secretin, and pancreatic polypeptide on secretion of gastric inhibitory polypeptide, insulin, and glucagon. Life Sci 25(11):947–956PubMedCrossRefPubMedCentralGoogle Scholar
  296. 296.
    Verspohl EJ, Ammon HPT (1987) Cholecystokinin (CCK8) regulates glucagon, insulin, and somatostatin secretion from isolated rat pancreatic islets: interaction with glucose. Pflugers Arch 410(3):284–287PubMedCrossRefPubMedCentralGoogle Scholar
  297. 297.
    MacIntosh CG, Morley JE, Wishart J, Morris H, Jansen JB, Horowitz M, Chapman IM (2001) Effect of exogenous cholecystokinin (CCK)-8 on food intake and plasma CCK, leptin, and insulin concentrations in older and young adults: evidence for increased CCK activity as a cause of the anorexia of aging. J Clin Endocrinol Metab 86(12):5830–5837PubMedCrossRefPubMedCentralGoogle Scholar
  298. 298.
    Lehmann F, Hildebrand P, Beglinger C (2003) New molecular targets for treatment of peptic ulcer disease. Drugs 63(17):1785–1797PubMedCrossRefPubMedCentralGoogle Scholar
  299. 299.
    Hull RAD, Shankley NP, Harper EA, Gerskowitch VP, Black JW (1993) 2-Naphthalenesulphonyl l-aspartyl-(2-phenethyl)amide (2-NAP)-a selective cholecystokinin CCKA-receptor antagonist. Br J Pharmacol 108(3):734–740PubMedPubMedCentralCrossRefGoogle Scholar
  300. 300.
    Martinez V (2013) Somatostatin. In: Kastin A (ed) Handbook of biologically active peptides. Academic Press, San Diego, CA, USAGoogle Scholar
  301. 301.
    O’Shaughnessy DJ, Long RG, Adrian TE, Christofides ND, Ghatei MA, Sarson DL, Bloom SR (1985) Somatostatin-14 modulates postprandial glucose levels and release of gastrointestinal and pancreatic hormones. Dig 31(4):234–242CrossRefGoogle Scholar
  302. 302.
    Barnes AJ, Long RG, Adrian TE, Vale W, Brown MR, Rivier JE et al (1981) Effect of a long-acting octapeptide analogue of somatostatin on growth hormone and pancreatic and gastrointestinal hormones in man. Clin Sci (Lond) 61(5):653–656CrossRefGoogle Scholar
  303. 303.
    Vale W, Brazeau P, Grant G, Nussey A, Burgus R, Rivier J et al (1972) Premières observations sur le mode d’action de la somatostatine, un facteur hypothalamique qui inhibe la sécrétion de l’hormone de croissance. C R Acad Sci Hebd Seances Acad Sci D 275(25):2913–2916PubMedPubMedCentralGoogle Scholar
  304. 304.
    Brazeau P, Vale W, Burgus R, Ling N, Butcher M, Rivier J, Guillemin R (1973) Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Sci 179(4068):77–79CrossRefGoogle Scholar
  305. 305.
    Dharmsathaphorn K (1985) Intestinal somatostatin function. Adv Exp Med Biol 188:463–473PubMedCrossRefPubMedCentralGoogle Scholar
  306. 306.
    Reubi JC (1992) Somatostatin receptors in the gastrointestinal tract in health and disease. Yale J Biol Med 65(5):493–536PubMedPubMedCentralGoogle Scholar
  307. 307.
    Dubois MP (1975) Presence of immunoreactive somatostatin in discrete cells of the endocrine pancreas. Proc Natl Acad Sci (Wash) 72:1340–1343CrossRefGoogle Scholar
  308. 308.
    Patel YC, Murthy KK, Escher EE, Banville D, Spiess J, Srikant CB (1990) Mechanism of action of somatostatin: an overview of receptor function and studies of the molecular characterization and purification of somatostatin receptor proteins. Metab 39(9 Suppl 2):63–69CrossRefGoogle Scholar
  309. 309.
    Patel YC, Galanopoulou AS, Rabbani SN, Liu J-L, Ravazzola M, Amherdt M (1997) Somatostatin-14, somatostatin-28, and prosomatostatin[1–10] are independently and efficiently processed from prosomatostatin in the constitutive secretory pathway in islet somatostatin tumor cells (1027B2). Mol Cell Endocrinol 131(2):183–194PubMedCrossRefPubMedCentralGoogle Scholar
  310. 310.
    Schreff M, Schulz S, Händel M, Keilhoff G, Braun H, Pereira G et al (2000) Distribution, targeting, and internalization of the sst4 somatostatin receptor in rat brain. J Neurosci 20(10):3785–3797PubMedCrossRefPubMedCentralGoogle Scholar
  311. 311.
    Fodor M, Slama A, Guillaume V, Videau C, Csaba Z, Oliver C, Epelbaum J (1997) Distribution and pharmacological characterization of somatostatin receptor binding sites in the sheep brain. J Chem Neuroanat 12(3):175–182PubMedCrossRefPubMedCentralGoogle Scholar
  312. 312.
    Seno M, Seino Y, Taminato T, Tsuda K, Kitano N, Takeda J et al (1988) Comparative effect of somatostatin-14 and somatostatin-28 on glucagon-induced glycogenolysis from the perfused rat liver. Metab, Clin Exp 37(6):587–590CrossRefGoogle Scholar
  313. 313.
    Brazeau P, Vale W, Burgus R, Ling N, Rivier J, Guillemin R (1972) Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Sci 129:77–79Google Scholar
  314. 314.
    Inui T, Kinoshita Y, Yamaguchi A, Yamatani T, Chiba T (1991) Linkage between capsaicin-stimulated calcitonin gene-related peptide and somatostatin release in rat stomach. Am J Physiol Gastrointest Liver Physiol 261(5):G770–G774CrossRefGoogle Scholar
  315. 315.
    Wellendorph P, Hansen KB, Balsgaard A, Greenwood JR, Egebjerg J, Bräuner-Osborne H (2005) Deorphanization of GPRC6A: a promiscuous L-alpha-amino acid receptor with preference for basic amino acids. Mol Pharmacol 67(3):589–597PubMedCrossRefPubMedCentralGoogle Scholar
  316. 316.
    Pi M, Faber P, Ekema G, Jackson PD, Ting A, Wang N et al (2005) Identification of a novel extracellular cation-sensing G-protein-coupled receptor. J Biol Chem 280(48):40201–40209PubMedPubMedCentralCrossRefGoogle Scholar
  317. 317.
    Pi M, Parrill AL, Quarles LD (2010) GPRC6A mediates the non-genomic effects of steroids. J Biol Chem 285(51):39953–39964PubMedPubMedCentralCrossRefGoogle Scholar
  318. 318.
    Epelbaum J (2003) Peptides and non peptides of oncologic and neuroendocrine relevance. In: Müller EE (ed) Physiology and pharmacology of somatostatin and its receptors. Springer, Milan, ItalyCrossRefGoogle Scholar
  319. 319.
    Tannenbaum GS, Epelbaum J (1999) Somatostatin. In: Kostyo JL, Goodman HM (eds) Handbook of physiology. Oxford University Press, Oxford, New YorkGoogle Scholar
  320. 320.
    Samson WK, Zhang JV, Avsian-Kretchmer O, Cui K, Yosten GLC, Klein C et al (2008) Neuronostatin encoded by the somatostatin gene regulates neuronal, cardiovascular, and metabolic functions. J Biol Chem 283(46):31949–31959PubMedPubMedCentralCrossRefGoogle Scholar
  321. 321.
    Salvatori AS, Elrick MM, Samson WK, Corbett JA, Yosten GLC (2014) Neuronostatin inhibits glucose-stimulated insulin secretion via direct action on the pancreatic α-cell. Am J Physiol Endocrinol Metab 306(11):E1257–E1263PubMedPubMedCentralCrossRefGoogle Scholar
  322. 322.
    Mo J, Yang A, Chen Z, Shao T, Zhang Y, Chen Q (2013) Neuronostatin ameliorates sodium taurocholate-induced acute pancreatitis in rats. Digest Dis Sci 58(10):2903–2907PubMedCrossRefPubMedCentralGoogle Scholar
  323. 323.
    Elrick MM, Samson WK, Corbett JA, Salvatori AS, Stein LM, Kolar GR et al (2016) Neuronostatin acts via GPR107 to increase cAMP-independent PKA phosphorylation and proglucagon mRNA accumulation in pancreatic α-cells. Am J Physiol Regul Integr Comp Physiol 310(2):R143–R155PubMedCrossRefPubMedCentralGoogle Scholar
  324. 324.
    de Lecea L, Ruiz-Lozano P, Danielson PE, Peelle-Kirley J, Foye PE, Frankel WN, Sutcliffe JG (1997) Cloning, mRNA expression, and chromosomal mapping of mouse and human preprocortistatin. Genomics 42:499–506PubMedCrossRefPubMedCentralGoogle Scholar
  325. 325.
    de Lecea L, Castaño JP (2006) Cortistatin: not just another somatostatin analog. Nat Rev Endocrinol 2:356–357CrossRefGoogle Scholar
  326. 326.
    Spier AD, de Lecea L (2000) Cortistatin: a member of the somatostatin neuropeptide family with distinct physiological functions. Brain Res Rev 33(2–3):228–241PubMedCrossRefPubMedCentralGoogle Scholar
  327. 327.
    de Lecea L, Criado JR, Prospero-Garcia O, Gautvik KM, Schweitzer P, Danielson PE et al (1996) A cortical neuropeptide with neuronal depressant and sleep-modulating properties. Nat 381:242–245CrossRefGoogle Scholar
  328. 328.
    Leavy O (2006) Inflammatory disorders: cortistatin to the rescue. Nat Rev Drug Discov 5:376CrossRefGoogle Scholar
  329. 329.
    Gonzalez-Rey E, Pedreño M, Delgado-Maroto V, Souza-Moreira L, Delgado M (2015) Lulling immunity, pain, and stress to sleep with cortistatin. Ann N Y Acad Sci 1351:89–98PubMedCrossRefPubMedCentralGoogle Scholar
  330. 330.
    Fliers E, Bauer K, Visser T (2004) Thyrotropin-releasing hormone (TRH). In: Martini L (ed) Encyclopedia of endocrine diseases. Elsevier, Amsterdam, NetherlandsGoogle Scholar
  331. 331.
    Morley JE, Garvin TJ, Pekary AE, Hershman JM (1977) Thyrotropin-releasing hormone in the gastrointestinal tract. Biochem Biophys Res Commun 79(1):314–318PubMedCrossRefPubMedCentralGoogle Scholar
  332. 332.
    LaHann TR, Horita A (1977) Thyrotropin releasing hormone and the gastrointestinal tract: the effect of central administration on colonic smooth muscle activity. Proc West Pharmacol Soc 20:305–306PubMedPubMedCentralGoogle Scholar
  333. 333.
    Hernandez DE (1989) Neurobiology of brain—gut interactions. Digest Dis Sci 34(12):1809–1816PubMedCrossRefPubMedCentralGoogle Scholar
  334. 334.
    Morley JE, Steinbach JH, Feldman EJ, Solomon TE (1979) The effects of thyrotropin releasing hormone (TRH) on the gastrointestinal tract. Life Sci 24(12):1059–1065PubMedCrossRefPubMedCentralGoogle Scholar
  335. 335.
    Thorner MO (1999) The discovery of growth hormone-releasing hormone. J Clin Endocrinol Metab 84(12):4671–4676PubMedPubMedCentralGoogle Scholar
  336. 336.
    Bauer K, Schomburg L, Heuer H, Schäfer MK (1999) Thyrotropin releasing hormone (TRH), the TRH-receptor and the TRH-degrading ectoenzyme; three elements of a peptidergic signalling system. Results Probl Cell Differ 26:13–42PubMedCrossRefPubMedCentralGoogle Scholar
  337. 337.
    Guillemin R (2008) Somatostatin. The beginnings, 1972. Mol Cell Endocrinol 286(1–2):3–4PubMedPubMedCentralCrossRefGoogle Scholar
  338. 338.
    Wade N (1978) Guillemin and Schally: the Years in the wilderness. Sci 200(4339):279–282CrossRefGoogle Scholar
  339. 339.
    Bowers CY, Schally AV, Hawley WD, Gual C, Parlow A (1968) Effect of thyrotropin-releasing factor in man. J Clin Endocr 28:978PubMedCrossRefPubMedCentralGoogle Scholar
  340. 340.
    Montminy M, Lee K-F, Rivier JE, Rivier C, Reichlin S (2012) Wylie vale: neuroendocrine master. Proc Natl Acad Sci U S A 109(10):3604–3605PubMedPubMedCentralCrossRefGoogle Scholar
  341. 341.
    Evans H, Baumgartner M, Shine J, Herzog H (1993) Genomic organization and localization of the gene encoding human preprogalanin. Genomics 18(3):473–477PubMedCrossRefPubMedCentralGoogle Scholar
  342. 342.
    Tatemoto K, Rökaeus Å, Jornvall H, McDonald TJ, Mutt V (1983) Galanin—a novel biologically active peptide from porcine intestine. FEBS Lett 164:124–128PubMedCrossRefPubMedCentralGoogle Scholar
  343. 343.
    Mechenthaler I (2008) Galanin and the neuroendocrine axes. Cell Mol Life Sci 65(12):1826–1835PubMedCrossRefPubMedCentralGoogle Scholar
  344. 344.
    Webling KEB, Runesson J, Bartfai T, Langel Ü (2012) Galanin receptors and ligands. Front Endocrinol (Lausanne) 3:146Google Scholar
  345. 345.
    Mitsukawa K, Lu X, Bartfai T (2008) Galanin, galanin receptors and drug targets. Cell Mol Life Sci 65(12):1796–1805PubMedCrossRefPubMedCentralGoogle Scholar
  346. 346.
    Lu X, Lundström L, Bartfai T (2005) Galanin (2-11) binds to GalR3 in transfected cell lines: limitations for pharmacological definition of receptor subtypes. Neuropeptides 39(3):165–167PubMedCrossRefPubMedCentralGoogle Scholar
  347. 347.
    Yanaihara N, Mochizuki T, Takatsuka N, Iguchi K, Sato K, Kakuyama H et al (1993) Galanin analogues: agonist and antagonist. Regul Pept 46(1–2):93–101PubMedCrossRefPubMedCentralGoogle Scholar
  348. 348.
    Ruczyński J, Konstański Z, Korolkiewicz R, Petrusewicz J, Rekowski P (2002) Galanin and its analogues: A structure-activity relationship studies in rat isolated gastric smooth muscles. Lett Pept Sci 9(2–3):91–99Google Scholar
  349. 349.
    Cooper GJ, Willis AC, Clark A, Turner RC, Sim RB, Reid KB et al (1987) Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc Natl Acad Sci USA 84(23):8628–8632PubMedPubMedCentralCrossRefGoogle Scholar
  350. 350.
    Westermark P, Wernstedt C, Wilander E, Hayden DW, O’Brien TD, Johnson KH et al (1987) Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells. Proc Natl Acad Sci USA 84(11):3881–3885PubMedPubMedCentralCrossRefGoogle Scholar
  351. 351.
    Tingstedt J-E, Edlund H, Madsen OD, Larsson L-I (1999) Gastric amylin expression: cellular identity and lack of requirement for the homeobox protein PDX-1. A study in normal and PDX-1-deficient animals with a cautionary note on antiserum evaluation. J Histochem Cytochem 47(8):973–980PubMedCrossRefPubMedCentralGoogle Scholar
  352. 352.
    Zaki M, Koduru S, McCuen R, Vuyyuru L, Schubert ML (2002) Amylin, released from the gastric fundus, stimulates somatostatin and thus inhibits histamine and acid secretion in mice. Gastroenterol 123(1):247–255CrossRefGoogle Scholar
  353. 353.
    Wimalawansa SJ (1997) Amylin, calcitonin gene-related peptide, calcitonin, and adrenomedullin: a peptide superfamily. Crit Rev Neurobiol 11(2–3):167–239PubMedCrossRefPubMedCentralGoogle Scholar
  354. 354.
    Li Z, Shi A, Karlsson FA (2002) Transient increase of rat gastric amylin in the neonatal period and in experimental ulcers. J Gastroenterol 37(3):172–176PubMedCrossRefPubMedCentralGoogle Scholar
  355. 355.
    Beales ILP, Calam J (2003) Regulation of amylin release from cultured rabbit gastric fundic mucosal cells. BMC Physiol 3:13PubMedPubMedCentralCrossRefGoogle Scholar
  356. 356.
    Hay DL, Garelja ML, Poyner DR, Walker CS (2018) Update on the pharmacology of calcitonin/CGRP family of peptides: IUPHAR Review. Br J Pharmacol 175(1):3–17PubMedCrossRefPubMedCentralGoogle Scholar
  357. 357.
    Lee SM, Hay DL, Pioszak AA (2016) Calcitonin and amylin receptor peptide interaction mechanisms: insights into peptide-binding modes and allosteric modulation of the calcitonin receptor by receptor activity-modifying proteins. J Biol Chem 291(16):8686–8700PubMedPubMedCentralCrossRefGoogle Scholar
  358. 358.
    Hay DL, Christopoulos G, Christopoulos A, Poyner DR, Sexton PM (2005) Pharmacological discrimination of calcitonin receptor: receptor activity-modifying protein complexes. Mol Pharmacol 67(5):1655–1665PubMedCrossRefPubMedCentralGoogle Scholar
  359. 359.
    Sexton PM, Poyner DR, Simms J, Christopoulos A, Hay DL (2012) RAMPs as drug targets. In: RAMPs. Advances in experimental medicine and biology, vol 744. Spielman WS, Parameswaran N eds. Springer, New York, USAGoogle Scholar
  360. 360.
    Fu W, Patel A, Jhamandas JH (2013) Amylin receptor: a common pathophysiological target in Alzheimer’s disease and diabetes mellitus. Front Aging Neurosci 5:42PubMedPubMedCentralCrossRefGoogle Scholar
  361. 361.
    Adeghate E, Kalász H (2011) Amylin analogues in the treatment of diabetes mellitus: medicinal chemistry and structural basis of its function. Open Med Chem J 5:78–81PubMedPubMedCentralCrossRefGoogle Scholar
  362. 362.
    El-Rasheidy OF, Amin DA, Ahmed HA, El Masry H, Montaser ZM (2012) Amylin level and gastric emptying in obese children: before and after weight loss. J Egypt Soc Parasitol 42(2):431–442PubMedCrossRefPubMedCentralGoogle Scholar
  363. 363.
    Vella A, Lee JS, Camilleri M, Szarka LA, Burton DD, Zinsmeister AR et al (2002) Effects of pramlintide, an amylin analogue, on gastric emptying in type 1 and 2 diabetes mellitus. Neurogastroenterol Motil 14(2):123–131PubMedCrossRefPubMedCentralGoogle Scholar
  364. 364.
    Kitamura K, Kangawa K, Kawamoto M, Ichiki Y, Nakamura S, Matsuo H, Eto T (1993) Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma. Biochem Biophys Res Commun 192(2):553–560PubMedCrossRefPubMedCentralGoogle Scholar
  365. 365.
    Kitamura K, Kangawa K, Eto T (2002) Adrenomedullin and PAMP: discovery, structures, and cardiovascular functions. Microsc Res Tech 57(1):3–13PubMedCrossRefPubMedCentralGoogle Scholar
  366. 366.
    Schubert ML (2006) Adrenomedullin in gastrointestinal function. In: Kastin AJ (ed) Handbook of biologically active peptides. Elesvier, London, UKGoogle Scholar
  367. 367.
    Sakata J, Asada Y, Shimokubo T, Kitani M, Inatsu H, Kitamura K et al (1998) Adrenomedullin in the gastrointestinal tract. Distribution and gene expression in rat and augmented gastric adrenomedullin after fasting. J Gastroenterol 33(6):828–834PubMedCrossRefPubMedCentralGoogle Scholar
  368. 368.
    Mulder H, Ahrén B, Karlsson S, Sundler F (1996) Adrenomedullin: localization in the gastrointestinal tract and effects on insulin secretion. Regul Peptides 62(2–3):107–112CrossRefGoogle Scholar
  369. 369.
    Turner AJ (2007) Adrenomedullin receptor. In: Enna SJ, Bylund DB (eds) xPharm: The comprehensive pharmacology reference. Elsevier, Amsterdam, NetherlandsGoogle Scholar
  370. 370.
    Smith DM, Coppock HA, Withers DJ, Owji AA, Hay DL, Choksi TP et al (2002) Adrenomedullin: receptor and signal transduction. Biochem Soc Trans 30(4):432–437PubMedCrossRefPubMedCentralGoogle Scholar
  371. 371.
    Roh J, Chang CL, Bhalla A, Klein C, Hsu SY (2004) Intermedin is a calcitonin/calcitonin gene-related peptide family peptide acting through the calcitonin receptor-like receptor/receptor activity-modifying protein receptor complexes. J Biol Chem 279(8):7264–7274PubMedCrossRefPubMedCentralGoogle Scholar
  372. 372.
    Ochiai T, Chijiiwa Y, Motomura Y, Yasuda O, Harada N, Nawata H (2001) Direct inhibitory effect of adrenomedullin, calcitonin gene-related peptide, calcitonin, and amylin on cholecystokinin-induced contraction of guinea-pig isolated caecal circular smooth muscle cells. Peptides 22(6):909–914PubMedCrossRefPubMedCentralGoogle Scholar
  373. 373.
    Lenhart PM, Caron KM (2012) Adrenomedullin and pregnancy: perspectives from animal models to humans. Trends Endocrinol Metab 23(10):524–532PubMedPubMedCentralCrossRefGoogle Scholar
  374. 374.
    Shimosawa T, Shibagaki Y, Ishibashi K, Kitamura K, Kangawa K, Kato S et al (2002) Adrenomedullin, an endogenous peptide, counteracts cardiovascular damage. Circ 105(1):106–111CrossRefGoogle Scholar
  375. 375.
    Ando K, Shimosawa T, Fujita T (2004) Adrenomedullin in vascular diseases. Curr Hypertens Rep 6(1):55–59PubMedCrossRefPubMedCentralGoogle Scholar
  376. 376.
    Ozbek E, Yurekli M, Soylu A, Davarci M, Balbay MD (2000) The role of adrenomedullin in varicocele and impotence. BJU Int 86(6):694–698PubMedCrossRefPubMedCentralGoogle Scholar
  377. 377.
    Nikitenko LL, Fox SB, Kehoe S, Rees MCP, Bicknell R (2006) Adrenomedullin and tumour angiogenesis. Br J Cancer 94:1–7PubMedPubMedCentralCrossRefGoogle Scholar
  378. 378.
    Takei Y, Hyodo S, Katafuchi T, Minamino N (2004) Novel fish-derived adrenomedullin in mammals: structure and possible function. Peptides 25:1643–1656PubMedCrossRefPubMedCentralGoogle Scholar
  379. 379.
    Bell D, McDermott BJ (2008) Intermedin (adrenomedullin-2): a novel counter-regulatory peptide in the cardiovascular and renal systems. Br J Pharmacol 153(1):S247–S262PubMedPubMedCentralGoogle Scholar
  380. 380.
    Hong Y, Hay DL, Quirion R, Poyner DR (2012) The pharmacology of adrenomedullin 2/intermedin. Br J Pharmacol 166(1):110–120PubMedPubMedCentralCrossRefGoogle Scholar
  381. 381.
    Smith RS Jr, Gao L, Bledsoe G, Chao L, Chao J (2009) Intermedin is a new angiogenic growth factor. Am J Physiol Heart Circ Physiol 297:H1040–H1047PubMedPubMedCentralCrossRefGoogle Scholar
  382. 382.
    Li H, Bian Y, Zhang N, Guo J, Wang C, Lau WB, Xiao C (2013) Intermedin protects against myocardial ischemia-reperfusion injury in diabetic rats. Cardiovasc Diabetol 12:91PubMedPubMedCentralCrossRefGoogle Scholar
  383. 383.
    Takahashi K, Morimoto R, Hirose T, Satoh F, Totsune K (2011) Adrenomedullin 2/intermedin in the hypothalamo–pituitary–adrenal axis. J Mol Neurosci 43(2):182–192PubMedCrossRefPubMedCentralGoogle Scholar
  384. 384.
    Gan X-B, Sun H-J, Chen D, Zhang L-L, Zhou H, Chen L-Y, Zhou Y-B (2014) Intermedin in the paraventricular nucleus attenuates cardiac sympathetic afferent reflex in chronic heart failure rats. PLoS ONE 9(4):e94234PubMedPubMedCentralCrossRefGoogle Scholar
  385. 385.
    Holst JJ (1988) Enteroglucagon. Adv Metab Dis 11:393–419CrossRefGoogle Scholar
  386. 386.
    Holst JJ (1997) Enteroglucagon. Annu Rev Physiol 59:257–271CrossRefPubMedGoogle Scholar
  387. 387.
    Bloom SR (1987) Gut hormones in adaptation. Gut 28:31–35PubMedPubMedCentralCrossRefGoogle Scholar
  388. 388.
    Drucker DJ, Ehrlich P, Asa SL, Brubaker PL (1996) Induction of intestinal epithelial proliferation by glucagon-like peptide 2. Proc Natl Acad Sci USA 93(15):7911–7916PubMedPubMedCentralCrossRefGoogle Scholar
  389. 389.
    Kimball CP, Murlin JR (1923) Aqueous extracts of pancreas: III. Some precipitation reactions of insulin. J Biol Chem 58:337–346Google Scholar
  390. 390.
    Moody AJ, Holst JJ, Thim L, Jensen SL (1981) Relationship of glicentin to proglucagon and glucagon in the porcine pancreas. Nat 289(5797):514–516CrossRefGoogle Scholar
  391. 391.
    Sutherland EW, De Duve C (1948) Origin and distribution of the hyperglycemic-glycogenolytic factor of the pancreas. J Biol Chem 175:663–674PubMedPubMedCentralGoogle Scholar
  392. 392.
    Sutherland EW, Cori CF, Haynes R, Olsen NS (1949) Purification of hyperglycemic-glycogenolytic factor from insulin and from gastric mucosa. J Biol Chem 180:825PubMedPubMedCentralGoogle Scholar
  393. 393.
    Unger RH, Eisentraut AM, McCall MS, Keller S, Lanz HC, Madison LL (1959) Glucagon antibodies and their use for immunoassay for glucagon. Proc Soc Exp Biol Med 102:621–623PubMedCrossRefPubMedCentralGoogle Scholar
  394. 394.
    Unger RH, Eisentraut AM, McCall MS, Madison LL (1961) Glucagon antibodies and an immunoassay for glucagon. J Clin Invest 40:1280–1289PubMedPubMedCentralCrossRefGoogle Scholar
  395. 395.
    Baldissera FGA, Holst JJ (1984) Glucagon-related peptides in the human gastrointestinal mucosa. Diabetologia 26(3):223–228PubMedCrossRefPubMedCentralGoogle Scholar
  396. 396.
    Gutman RA, Fink G, Voyles N, Selawry H, Penhos JC, Lepp A, Recant L (1973) Specific biologic effects of intestinal glucagon-like materials. J Clin Invest 52:1165–1175PubMedPubMedCentralCrossRefGoogle Scholar
  397. 397.
    Holst JJ (1997) Enteroglucagon. Ann Rev Physiol 59:257–271CrossRefGoogle Scholar
  398. 398.
    Günter B (2013) Christian de Duve (1917–2013) Biologist who won a Nobel prize for insights into cell structure. Nat 498(7454):300CrossRefGoogle Scholar
  399. 399.
    Klionsky DJ (2008) Autophagy revisited: a conversation with Christian de Duve. Autophagy 4(6):740–743PubMedCrossRefPubMedCentralGoogle Scholar
  400. 400.
    Caries-Bonnet C, Jarrousse C, Niel H, Martinez J, Bataille D (1991) Oxyntomodulin and its (19–37) and (30–37) fragments inhibit histamine-stimulated gastric acid secretion in the conscious rat. Eur J Pharmacol 203(2):245–252CrossRefGoogle Scholar
  401. 401.
    Unger RH, Eisentraut AM (1969) Entero-insular axis. Arch Intern Med 123:261–266PubMedCrossRefPubMedCentralGoogle Scholar
  402. 402.
    Valverde I, Rigopoulou D, Exton J, Ohneda A, Eisentraut A, Unger RH (1968) Demonstration and characterization of a second fraction of glucagon-like immunoreactivity in jejunal extracts. Am J Med Sci 255:415–420PubMedCrossRefPubMedCentralGoogle Scholar
  403. 403.
    Bataille D, Gespach C, Coudray AM, Rosselin G (1981) ‘Enteroglucagon’: a specific effect on gastric glands isolated from the rat fundus. Evidence for an ‘oxyntomodulin’ action. Biosci Rep 1:151–155PubMedCrossRefPubMedCentralGoogle Scholar
  404. 404.
    Bataille D, Gespach C, Tatemoto K, Marie JC, Coudray AM, Rosselin G, Mutt V (1981) Bioactive enteroglucagon (oxyntomodulin): present knowledge on its chemical structure and its biological activities. Peptides 2(2):41–44PubMedCrossRefPubMedCentralGoogle Scholar
  405. 405.
    Bataille D, Tatemoto K, Gespach C, Jornvall H, Rosselin G, Mutt V (1982) Isolation of glucagon-37 (bioactive enteroglucagon/oxyntomodulin) from porcine jejuno-ileum characterization of the peptide. FEBS Lett 146:79–86PubMedCrossRefPubMedCentralGoogle Scholar
  406. 406.
    Dubrasquet M, Bataille D, Gespach C (1982) Oxyntomodulin (glucagon-37 or bioactive enteroglucagon): a potent inhibitor of pentagastrin-stimulated acid secretion in rats. Biosci Rep 2:391–395PubMedCrossRefPubMedCentralGoogle Scholar
  407. 407.
    Unger RH, Ohneda A, Valverde I, Eisentraut AM, Exton J (1968) Characterization of the responses of circulating glucagon-like immunoreactivity to intraduodenal and intravenous administration of glucose. J Clin Invest 47:48–65PubMedPubMedCentralCrossRefGoogle Scholar
  408. 408.
    Moody AJ, Hoist JJ, Thim L, Jensen SL (1981) Relationship of glicentin to pro-glucagon and glucagon in the porcine pancreas. Nat 289:514–518CrossRefGoogle Scholar
  409. 409.
    Sasaki M, Fitzgerald AJ, Mandir N, Sasaki K, Wright NA, Goodlad RA (2001) Glicentin, an active enteroglucagon, has a significant trophic role on the small intestine but not on the colon in the rat. Aliment Pharmacol Ther 15(10):1681–1686PubMedCrossRefPubMedCentralGoogle Scholar
  410. 410.
    Sundby F, Jacobsen H, Moody AJ (1976) Purification and characterization of a protein from porcine gut with glucagon-like immunoreactivity. Horm Metab Res 8:366–371PubMedCrossRefPubMedCentralGoogle Scholar
  411. 411.
    Thim L, Moody AJ (1981) The amino acid sequence of porcine glicentin. Peptides 2(2):37–39PubMedCrossRefPubMedCentralGoogle Scholar
  412. 412.
    Fiocca R, Rindi G, Capella C, Grimelius L, Polak JM, Schwartz TW et al (1987) Glucagon, glicentin, proglucagon, PYY, PP and proPP-icosapeptide immunoreactivities of rectal carcinoid tumors and related non-tumor cells. Regul Peptides 17(1):9–29CrossRefGoogle Scholar
  413. 413.
    Ito H, Yokozaki H, Hata J, Mandai K, Tahara E (1984) Glicentin-containing cells in intestinal metaplasia, adenoma and carcinoma of the stomach. Virchows Archiv A 404(1):17–29CrossRefGoogle Scholar
  414. 414.
    Holst JJ (1982) Evidence that enteroglucagon (II) is identical with the C-terminal sequence (residues 33–69) of glicentin. Biochem J 207:381–388PubMedPubMedCentralCrossRefGoogle Scholar
  415. 415.
    Whiting L, Stewart KW, Hay DL, Harris PW, Choong YS, Phillips AR, et al (2015) Glicentin-related pancreatic polypeptide inhibits glucose-stimulated insulin secretion from the isolated pancreas of adult male rats. Physiol Rep 3(12). pii: e12638PubMedPubMedCentralCrossRefGoogle Scholar
  416. 416.
    Thim L, Moody AJ (1982) Purification and chemical characterization of a glicentin-related pancreatic peptide (proglucagon fragment) from porcine pancreas. BBA Protein Struct Mol Enzymol 703(2):134–141CrossRefGoogle Scholar
  417. 417.
    Feurle GE, Hamscher G, Kusiek R, Meyer HE, Metzger JW (1992) Identification of xenin, a xenopsin-related peptide, in the human gastric mucosa and its effect on exocrine pancreatic secretion. J Biol Chem 267(31):22305–22309PubMedPubMedCentralGoogle Scholar
  418. 418.
    Feurle GE (1998) Xenin—a review. Peptides 19(3):609–615PubMedCrossRefPubMedCentralGoogle Scholar
  419. 419.
    Leckstrom A, Kim ER, Wong D, Mizuno TM (2009) Xenin, a gastrointestinal peptide, regulates feeding independent of the melanocortin signaling pathway. Diab 58(1):87–94CrossRefGoogle Scholar
  420. 420.
    Alexiou C, Zimmermann JP, Schick RR, Schusdziarra V (1998) Xenin-a novel suppressor of food intake in rats. Brain Res 800(2):294–299PubMedCrossRefPubMedCentralGoogle Scholar
  421. 421.
    Feurle GE, Pfeiffer A, Schmidt T, Dominguez-Munoz E, Malfertheiner P, Hamscher G (2001) Phase III of the migrating motor complex: associated with endogenous xenin plasma peaks and induced by exogenous xenin. Neurogastroenterol Motil 13(3):237–246PubMedCrossRefPubMedCentralGoogle Scholar
  422. 422.
    Anlauf M, Weihe E, Hartschuh W, Hamscher G, Feurle GE (2000) Localization of xenin-immunoreactive cells in the duodenal mucosa of humans and various mammals. J Histochem Cytochem 48(12):1617–1626PubMedCrossRefPubMedCentralGoogle Scholar
  423. 423.
    Feurle GE, Anlauf M, Hamscher G, Arnold R, Klöppel G, Weihe E (2002) Xenin-immunoreactive cells and extractable xenin in neuroendocrine tumors of duodenal origin. Gastroenterol 123(5):1616–1626CrossRefGoogle Scholar
  424. 424.
    Schmidt WE, Mutt V, Carlquist M, Kratzin H, Conlon JM, Creutzfeldt W (1985) Valosin: isolation and characterization of a novel peptide from porcine intestine. FEBS Lett 191(2):264–268PubMedCrossRefPubMedCentralGoogle Scholar
  425. 425.
    Konturek SJ, Schmidt WE, Mutt V, Konturek JW, Creutzfeldt W (1987) Valosin stimulates gastric and exocrine pancreatic secretion and inhibits fasting small intestinal myoelectric activity in the dog. Gastroenterol 92(5):1181–1186CrossRefGoogle Scholar
  426. 426.
    Schmidt WE, Mutt V, Konturek SJ, Creutzfeldt W (1985) Peptide VQY: isolation and characterization of a new biologically active gastrointestinal peptide. Dig Dis Sci 29:755Google Scholar
  427. 427.
    Funakoshi S, Tamamura H, Ohta M, Yoshizawa K, Funakoshi A, Miyasaka K et al (1989) Isolation and characterization of a tumor-derived human pancreastatin-related protein. Biochem Biophys Res Commun 164(1):141–148PubMedCrossRefPubMedCentralGoogle Scholar
  428. 428.
    Schmidt WE, Siegel EG, Kratzin H, Creutzfeldt W (1988) Isolation and primary structure of tumor-derived peptides related to human pancreastatin and chromogranin A. Proc Natl Acad Sci USA 85:8231–8235PubMedPubMedCentralCrossRefGoogle Scholar
  429. 429.
    Sánchez-Margalet V, Lucas M, Goberna R (1996) Pancreastatin: further evidence for its consideration as a regulatory peptide. J Mol Endocrinol 16:1–8PubMedCrossRefPubMedCentralGoogle Scholar
  430. 430.
    O’Connor DT, Cadman PE, Smiley C, Salem RM, Rao F, Smith J et al (2005) Pancreastatin: multiple actions on human intermediary metabolism in vivo, variation in disease, and naturally occurring functional genetic polymorphism. J Clin Endocrinol Metab 90:5414–5425PubMedCrossRefPubMedCentralGoogle Scholar
  431. 431.
    Bishop AE, Bretherton-Watt D, Hamid QA, Fahey M, Shepherd N, Valentino K et al (1988) The occurrence of pancreastatin in tumours of the diffuse neuroendocrine system. Mol Cell Probes 2(3):225–235PubMedCrossRefPubMedCentralGoogle Scholar
  432. 432.
    Tatemoto K, Efendic S, Mutt V, Makk G, Feistner GJ, Barchas JD (1986) Pancreastatin, a novel pancreatic peptide that inhibits insulin secretion. Nat 324:476–478CrossRefGoogle Scholar
  433. 433.
    Tatemoto K (1991) Novel peptides and islet function. In: Vranic M, Efendic S, Hollenberg CH (eds) Fuel homeostasis and the nervous system. Springer, NY, USAGoogle Scholar
  434. 434.
    Woussen-Colle M-C, Lingier P, Vertongen P, Vandermeers-Piret M-C, Vandermeers A, Robberecht P (1994) Chromogranin A (210–301) is the major form of pancreastatin-like material in human gut extracts and endocrine tumors. Peptides 15(5):869–874PubMedCrossRefPubMedCentralGoogle Scholar
  435. 435.
    McGrath-Linden SJ, Johnston CF, O’Connor DT, Shaw C, Buchanan KD (1991) Pancreastatin-like immunoreactivity in human carcinoid disease. Regul Pept 33(1):55–70PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physiology, Faculty of Basic Medical SciencesCollege of Health Sciences, Nile University of NigeriaFCT-AbujaNigeria

Personalised recommendations