Advertisement

Cellular Organization of the Gastrointestinal Tract

  • Menizibeya Osain Welcome
Chapter

Abstract

The gastrointestinal (GI) tract is composed of basic tissue types (epithelia, connective, blood, lymphatic, muscle, and nerve tissue) formed from different structural and functional units that determine fundamental life processes. This chapter provides detailed and contemporary information on the structural and functional characteristics of the cells that constitute the GI tract.

Keywords

Gut cells Epithelial cells GI epithelial cells Absorptive columnar enterocyte Mucin-secreting Enteroendocrine or neuroendocrine cells Epithelial enteroimmune response cells GI epithelial cellular network Structure and function Cellular and molecular basis of function Plasma membrane Cell Cytoplasm Organelles Polarity 

Abbreviations

5-HT

5-Hydroxytryptamine

ABC

ATP-binding cassette

AQP

Aquaporin

ATP

Adenosine triphosphate

BiP

Binding immunoglobulin protein

CCAAT

Cytidine-cytidine-adenosine-adenosine-thymidine

COP

Coat protein complex

DAA

Derivatives of arachidonic acid

DHA

Docosahexaenoic acid

DNA

Deoxyribonucleic acid

EC

Enterochromaffin cell

ER

Endoplasmic reticulum

ERM

Ezrin, radixin, moesin

GI

Gastrointestinal

GIP

Gastric inhibitory peptide

GLP-1 and GLP-2

Glucagon-like peptide 1 & 2

GLUT1

Glucose transporter type 1

GM2

Ganglioside monosialic type 2

GPI

Glycosylphosphatidylinositol

GTP

Guanosine triphosphate

lncRNAs

Long noncoding RNAs

miRNAs

MicroRNAs

mRNA

Messenger RNA

MRP

Multidrug resistance-associated protein

mtDNA

Mitochondrial DNA

MTOC

Microtubule organizing center

NANA

N-acetylneuraminic acid

ncRNA

Noncoding RNA

NF-H

Neurofilament-heavy

NF-L

Neurofilament-light

NF-M

Neurofilament-medium

OXM

Oxyntomodulin

PYY

Peptide YY

RM

Membrane resistance

RNA

Ribonucleic acid

rRNA

Ribosomal RNA

snRNA

Small nuclear RNA

tRNA

Transfer RNA

Bibliography

  1. 1.
    Langkamp-Henken B, Glezer JA, Kudsk KA (1992) Immunologic structure and function of the gastrointestinal tract. Nutr Clin Pract 7(3):100–108PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Vigneulle RM, Rao S, Fasano A, MacVittie TJ (2002) Structural and functional alterations of the gastrointestinal tract following radiation-induced injury in the rhesus monkey. Dig Dis Sci 47(7):1480–1491PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Inoue H, Kudo S, Shiokawa A (2005) Technology insight: laser-scanning confocal microscopy and endocytoscopy for cellular observation of the gastrointestinal tract. Nat Rev Gastroenterol Hepatol 2:31–37CrossRefGoogle Scholar
  4. 4.
    Pacifici R, Zuccaro P, Farré M, Pichini S, Di Carlo S, Roset PN et al (2002) Cell-mediated immune response in MDMA users after repeated dose administration: studies in controlled versus noncontrolled settings. Ann N Y Acad Sci 965:421–433PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Ferguson CM (1990) An overview of the gastrointestinal system. In: Walker HK, Hall WD, Hurst JW (eds) Clinical methods: the history, physical, and laboratory examinations, 3rd edn. Butterworths, BostonGoogle Scholar
  6. 6.
    Bernhardt HS, Tate WP (2012) Primordial soup or vinaigrette: did the RNA world evolve at acidic pH? Biol Direct 7:4PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    McNichol J (2008) Primordial soup, fool’s gold, and spontaneous generation. Biochem Mol Biol Educ 36(4):255–261PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Forterre P, Gribaldo S (2007) The origin of modern terrestrial life. HFSP J 1(3):156–168PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Pross A, Pascal R (2013) The origin of life: what we know, what we can know and what we will never know. Open Biol 3(3):120190PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Wollman AJ, Nudd R, Hedlund EG, Leake MC (2015) From animaculum to single molecules: 300 years of the light microscope. Open Biol 5(4):150019PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Koertge N (ed) (2007) New dictionary of scientific biography (Dictionary of scientific biography (8 vols, 1st ed). Charles Scribners & Sons, DetroitGoogle Scholar
  12. 12.
    Encyclopædia Britannica (2003) Encyclopædia Britannica, Inc, ChicagoGoogle Scholar
  13. 13.
    Bourgoin SM (2012) Encyclopedia of world biography, 2nd edn. Gale Research, DetroitGoogle Scholar
  14. 14.
    Gest H (2004) The discovery of microorganisms by Robert Hooke and Antoni Van Leeuwenhoek, fellows of the Royal Society. Not Rec Royal Soc Lond 58(2):187–201CrossRefGoogle Scholar
  15. 15.
    Sepel LMN, Loreto ELS, Rocha JBT (2009) Using a replica of Leeuwenhoek’s microscope to teach the history of science and to motivate students to discover the vision and the contributions of the first microscopists. CBE Life Sci Educ 8(4):338–343PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Haseloff J (2003) Old botanical techniques for new microscopes. Biotechniques 34(6):1174–1182PubMedPubMedCentralGoogle Scholar
  17. 17.
    Lelut M (1828) Anatomical researches on the epithelium, or internal epidermis. Lancet 9(228):556–558CrossRefGoogle Scholar
  18. 18.
    SRódka A (2003) The short history of gastroenterology. J Physiol Pharmacol 54(S3):9–21PubMedPubMedCentralGoogle Scholar
  19. 19.
    Karamanou M, Poulakou-Rebelakou E, Tzetis M, Androutsos G (2010) Anton van Leeuwenhoek (1632–1723): father of micromorphology and discoverer of spermatozoa. Rev Argent Microbiol 42(4):31–34Google Scholar
  20. 20.
    Jung C, Hugot JP, Barreau F (2010) Peyer’s patches: the immune sensors of the intestine. Int J Inflam 2010:823710PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Richmond C (1986) Two and a quarter centuries of digestive juices. Trends Biochem Sci 11(12):528–530CrossRefGoogle Scholar
  22. 22.
    Schultz M (2008) Rudolf Virchow. Emerg Infect Dis 14(9):1480–1481PubMedCentralCrossRefGoogle Scholar
  23. 23.
    Mazzarello P (1999) A unifying concept: the history of cell theory. Nat Cell Biol 1(1):E13–E15PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Tavassoli M (1980) The cell theory: a foundation to the edifice of biology. Am J Pathol 98(1):44PubMedPubMedCentralGoogle Scholar
  25. 25.
    Smith GP (2000) Pavlov and integrative physiology. Am J Physiol Regul Integr Comp Physiol 279(3):R743–R755PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Samoilov VO (2007) Ivan Petrovich Pavlov (1849–1936). J Hist Neurosci 16(1–2):74–89PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Haas L (1999) Ivan Petrovich Pavlov (1849–1936). J Neurol Neurosurg Psychiatry 67(3):299PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Drozdov I, Modlin IM, Kidd M, Goloubinov VV (2009) From Leningrad to London: the saga of Kulchitsky and the legacy of the enterochromaffin cell. Neuroendocrinol 89(1):1–12CrossRefGoogle Scholar
  29. 29.
    Drozdov I, Modlin IM, Kidd M, Goloubinov VV (2009) Nikolai Konstantinovich Kulchitsky (1856–1925). J Med Biogr 17(1):47–54PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Smith TF, Gruskin K, Tolman S, Faulkner D (1986) The molecular biology computer research resource. Nucleic Acids Res 14(1):25–29PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Fang FC, Casadevall A (2011) Reductionistic and holistic science. Infect Immun 79(4):1401–1404PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Pandolfino JE, Kahrilas PJ (2009) New technologies in the gastrointestinal clinic and research: impedance and high-resolution manometry. World J Gastroenterol 15(2):131–138PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Zhu B, Wang Y, Yan G, Jiang P, Liu Z (2014) A gastrointestinal electrical stimulation system based on transcutaneous power transmission technology. Gastroenterol Res Pract 2014:728572PubMedPubMedCentralGoogle Scholar
  34. 34.
    Zhang JG, Liu HF (2011) Functional imaging and endoscopy. World J Gastroenterol 17(38):4277–4282PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Peck ML (1992) The future of nursing in a technological age: computers, robots, and TLC. J Holist Nurs 10(2):183–191PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Furness JB, Rivera LR, Cho HJ, Bravo DM, Callaghan B (2013) The gut as a sensory organ. Nat Rev Gastroenterol Hepatol 10:729–740PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Yen TH, Wright NA (2006) The gastrointestinal tract stem cell niche. Stem Cell Rev 2(3):203–212PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Kennelly R, Conneely JB, Bouchier-Hayes D, Winter DC (2011) Mast cells in tissue healing: from skin to the gastrointestinal tract. Curr Pharm Des 17(34):3772–3775PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Bitar KN, Raghavan S (2012) Intestinal tissue engineering: current concepts and future vision of regenerative medicine in the gut. Neurogastroenterol Motil 24(1):7–19PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Bitar KN (2003) Function of gastrointestinal smooth muscle: from signaling to contractile proteins. Am J Med 115(Suppl 3A):15S–23SPubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Xu AT, Tong JL, Ran ZH (2016) Organoids derived from digestive tract, liver, and pancreas. J Dig Dis 17(1):3–10PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Gunawardene AR, Corfe BM, Staton CA (2011) Classification and functions of enteroendocrine cells of the lower gastrointestinal tract. Int J Exp Pathol 92(4):219–231PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Langlands AJ, Almet AA, Appleton PL, Newton IP, Osborne JM, Näthke IS (2016) Paneth cell-rich regions separated by a cluster of lgr5+ cells initiate crypt fission in the intestinal stem cell niche. PLoS Biol 14(6):e1002491PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Shenkman BS, Turtikova OV, Nemirovskaya TL, Grigoriev AI (2010) Skeletal muscle activity and the fate of myonuclei. Acta Naturae 2(2):59–66PubMedPubMedCentralGoogle Scholar
  45. 45.
    Nikitina OS, Welcome MO, Pereverzev VA (2016) Human anatomy and physiology. In: 2 parts. Part 1. Belarusian State Medical University Press, MinskGoogle Scholar
  46. 46.
    Andersson KE, Arner A (2004) Urinary bladder contraction and relaxation: physiology and pathophysiology. Physiol Rev 84(3):935–986PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Fisher SA (2010) Vascular smooth muscle phenotypic diversity and function. Physiol Genomics 42A(3):169–187PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Ikeda T, Murai H, Kaneko S, Usui S, Kobayashi D, Nakano M et al (2012) Augmented single-unit muscle sympathetic nerve activity in heart failure with chronic atrial fibrillation. J Physiol 590(3):509–517PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Macefield VG, Wallin BG (1999) Firing properties of single vasoconstrictor neurones in human subjects with high levels of muscle sympathetic activity. J Physiol 516(1):293–301PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    He WQ, Qiao YN, Peng YJ, Zha JM, Zhang CH, Chen C et al (2013) Altered contractile phenotypes of intestinal smooth muscle in mice deficient in myosin phosphatase target subunit 1. Gastroenterol 144(7):1456–1465PubMedCentralCrossRefGoogle Scholar
  51. 51.
    Thornbury KD (1999) Tonic and phasic activity in smooth muscle. Ir J Med Sci 168(3):201–207PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Mandrek K, Golenhofen K (1990) Phasic-rhythmical and tonic components in gastrointestinal motility. Prog Clin Biol Res 327:463–481PubMedPubMedCentralGoogle Scholar
  53. 53.
    McHale N, Hollywood M, Sergeant G, Thornbury K (2006) Origin of spontaneous rhythmicity in smooth muscle. J Physiol 570(Pt 1):23–28PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Zhao JB, Chen PM, Gregersen H (2013) Changes of phasic and tonic smooth muscle function of jejunum in type 2 diabetic Goto-Kakizaki rats. World J Diab 4(6):339–348CrossRefGoogle Scholar
  55. 55.
    Fiorenza V, Yee YS, Zfass AM (1987) Small intestinal motility: normal and abnormal function. Am J Gastroenterol 82(11):1111–1114PubMedPubMedCentralGoogle Scholar
  56. 56.
    Golenhofen K, Mandrek K (1991) Phasic and tonic contraction processes in the gastrointestinal tract. Dig Dis 9(6):341–346PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Gartner LP, Hiatt JL, Strum JM (2003) Board review series. Cell biology and histology, 4th edn. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  58. 58.
    Bates MD (2002) Development of the enteric nervous system. Clin Perinatol 29(1):97–114PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Kuo B, Urma D (2006) Esophagus—anatomy and development. Part 1: Oral cavity, pharynx and esophagus. GI Motility Online.  https://doi.org/10.1038/gimo6
  60. 60.
    Mittal RK (2011) Motor function of the pharynx, esophagus, and its sphincters. Morgan & Claypool Life Sciences, San RafaelGoogle Scholar
  61. 61.
    Mittal RK (2013) Longitudinal muscle of the esophagus: its role in esophageal health and disease. Curr Opin Gastroenterol 29(4):421–430PubMedPubMedCentralGoogle Scholar
  62. 62.
    Lang IM, Medda BK, Jadcherla SR, Shaker R (2016) Characterization and mechanisms of the pharyngeal swallow activated by stimulation of the esophagus. Am J Physiol Gastrointest Liver Physiol 311(5):G827–G837PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Hanani M (1993) Neurons and glial cells of the enteric nervous system: studies in tissue culture. J Basic Clin Physiol Pharmacol 4(3):157–179PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Rühl A (2005) Glial cells in the gut. Neurogastroenterol Motil 17(6):777–790PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Bassotti G, Villanacci V, Antonelli E, Morelli A, Salerni B (2007) Enteric glial cells: new players in gastrointestinal motility? Lab Invest 87:628–632PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Estofolete CF, Botelho-Machado C, Taboga SR, Zucoloto S, Polli-Lopes AC, Gil CD (2010) Effects of myenteric denervation on extracellular matrix fibers and mast cell distribution in normal stomach and gastric lesions. Cancer Cell Int 10:18PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Murphy MM, Lawson JA, Mathew SJ, Hutcheson DA, Kardon G (2011) Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 138(17):3625–3637PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Cain SA, Morgan A, Sherratt MJ, Ball SG, Shuttleworth CA, Kielty CM (2006) Proteomic analysis of fibrillin-rich microfibrils. Proteomics 6(1):111–122PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Kielty CM, Sherratt MJ, Marson A, Baldock C (2005) Fibrillin microfibrils. Adv Protein Chem 70:405–436PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Hayakawa M, Kobayashi M, Hoshino T (1990) Microfibrils: a constitutive component of reticular fibers in the mouse lymph node. Cell Tissue Res 262(1):199–201PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Barros EM, Rodrigues CJ, Rodrigues NR, Oliveira RP, Barros TE, Rodrigues AJ Jr (2002) Aging of the elastic and collagen fibers in the human cervical interspinous ligaments. Spine J 2(1):57–62PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Doillon CJ, Dunn MG, Bender E, Silver FH (1985) Collagen fiber formation in repair tissue: development of strength and toughness. Coll Relat Res 5(6):481–492PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Chvapil M, Speer DP, Holubec H, Chvapil TA, King DH (1993) Collagen fibers as a temporary scaffold for replacement of ACL in goats. J Biomed Mater Res 27(3):313–325PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Ushiki T (2002) Collagen fibers, reticular fibers and elastic fibers. A comprehensive understanding from a morphological viewpoint. Arch Histol Cytol 65(2):109–126PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Montes GS (1996) Structural biology of the fibres of the collagenous and elastic systems. Cell Biol Int 20(1):15–27PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Kielty CM, Sherratt MJ, Shuttleworth CA (2002) Elastic fibres. J Cell Sci 115(Pt 14):2817–2828PubMedPubMedCentralGoogle Scholar
  77. 77.
    Sherratt MJ, Wess TJ, Baldock C, Ashworth J, Purslow PP, Shuttleworth CA, Kielty CM (2001) Fibrillin-rich microfibrils of the extracellular matrix: ultrastructure and assembly. Micron 32(2):185–200PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Ramirez F, Sakai LY, Dietz HC, Rifkin DB (2004) Fibrillin microfibrils: multipurpose extracellular networks in organismal physiology. Physiol Genomics 19(2):151–154PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Wen SL, Feng S, Tang SH, Gao JH, Zhang LH, Tong H et al (2016) Collapsed reticular network and its possible mechanism during the initiation and/or progression of hepatic fibrosis. Sci Rep 6:35426.  https://doi.org/10.1038/srep35426
  80. 80.
    Raica M, Dema E, Iacovliev M, Alexa A, Mederle O (1996) Reticular fibers in the stroma of the thymus. Rom J Morphol Embryol 42(3–4):141–145PubMedPubMedCentralGoogle Scholar
  81. 81.
    Tanzer ML (2006) Current concepts of extracellular matrix. J Orthop Sci 11(3):326–331PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Pupa SM, Ménard S, Forti S, Tagliabue E (2002) New insights into the role of extracellular matrix during tumor onset and progression. J Cell Physiol 192(3):259–267PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Sherwin E, Sandhu KV, Dinan TG, Cryan JF (2016) May the force be with you: the light and dark sides of the microbiota-gut-brain axis in neuropsychiatry. CNS Drugs 30(11):1019–1041PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Kennedy PJ, Cryan JF, Dinan TG, Clarke G (2017) Kynurenine pathway metabolism and the microbiota-gut-brain axis. Neuropharmacol 112(Pt B):399–412PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Sandhu KV, Sherwin E, Schellekens H, Stanton C, Dinan TG, Cryan JF (2017) Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry. Transl Res 179:223–244PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Chen Z, Li W, Wang H, Wan C, Luo D, Deng S et al (2016) Klf10 regulates odontoblast differentiation and mineralization via promoting expression of dentin matrix protein 1 and dentin sialophosphoprotein genes. Cell Tissue Res 363(2):385–398PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Saito MT, Salmon CR, Amorim BR, Ambrosano GM, Casati MZ, Sallum EA et al (2014) Characterization of highly osteoblast/cementoblast cell clones from a CD105-enriched periodontal ligament progenitor cell population. J Periodontol 85(6):e205–e211PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Rodríguez-Lozano FJ, Insausti CL, Iniesta F, Blanquer M, Ramírez MDC, Luis M et al (2012) Mesenchymal dental stem cells in regenerative dentistry. Med Oral Patol Oral Cir Bucal 17(6):e1062–e1067Google Scholar
  89. 89.
    Edwards PC, Mason JM (2006) Gene-enhanced tissue engineering for dental hard tissue regeneration: (2) dentin-pulp and periodontal regeneration. Head Face Med 2:16PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Xiong J, Gronthos S, Bartold PM (2013) Role of the epithelial cell rests of Malassez in the development, maintenance and regeneration of periodontal ligament tissues. Periodontol 63(1):217–233CrossRefGoogle Scholar
  91. 91.
    Volponi AA, Kawasaki M, Sharpe PT (2013) Adult human gingival epithelial cells as a source for whole-tooth bioengineering. J Dent Res 92(4):329–334CrossRefGoogle Scholar
  92. 92.
    Roper SD (2013) Taste buds as peripheral chemosensory processors. Semin Cell Dev Biol 24(1):71–79PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Breslin PA, Huang L (2006) Human taste: peripheral anatomy, taste transduction, and coding. Adv Otorhinolaryngol 63:152–190PubMedPubMedCentralGoogle Scholar
  94. 94.
    Delporte C, Bryla A, Perret J (2016) Aquaporins in salivary glands: from basic research to clinical applications. Int J Mol Sci 17(2):166PubMedCentralCrossRefGoogle Scholar
  95. 95.
    Park HW, Lee MG (2012) Transepithelial bicarbonate secretion: lessons from the pancreas. Cold Spring Harb Perspect Med 2(10):a009571PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Amano O, Mizobe K, Bando Y, Sakiyama K (2012) Anatomy and histology of rodent and human major salivary glands—overview of the japan salivary gland society-sponsored workshop. Acta Histochem Cytochem 45(5):241–250PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Weiss H, Brockmann W, Bersch W, Fiedler L (1993) The layers of the gallbladder wall: an ultrasound-anatomic comparative study. Bildgebung 60(3):125–130PubMedPubMedCentralGoogle Scholar
  98. 98.
    Lee SP, Savard CE, Kuver R (2009) Gallbladder epithelial cells that engraft in mouse liver can differentiate into hepatocyte-like cells. Am J Pathol 174(3):842–853PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Yoo KS, Lim WT, Choi HS (2016) Biology of cholangiocytes: from bench to bedside. Gut Liver 10(5):687–698PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Tabibian JH, Masyuk AI, Masyuk TV, O’Hara SP, LaRusso NF (2013) Physiology of cholangiocytes. Compr Physiol 3(1).  https://doi.org/10.1002/cphy.c120019
  101. 101.
    Kmieć Z (2001) Cooperation of liver cells in health and disease. Adv Anat Embryol Cell Biol 161(III–XIII):1–151Google Scholar
  102. 102.
    Abdel-Misih SR, Bloomston M (2010) Liver anatomy. Surg Clin North Am 90(4):643–653PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Ding C, Li Y, Guo F, Jiang Y, Ying W, Li D et al (2016) A cell-type-resolved Liver Proteome. Mol Cell Proteomics 15(10):3190–3202PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Davenport M, Hadzic N (2016) Pediatric hepatic physiology. In: Puri P (ed) Pediatric surgery. Springer, BerlinGoogle Scholar
  105. 105.
    Ghosheh N, Küppers-Munther B, Asplund A, Edsbagge J, Ulfenborg B, Andersson TB et al (2017) Comparative transcriptomics of hepatic differentiation of human pluripotent stem cells and adult human liver tissue. Physiol Genomics.  https://doi.org/10.1152/physiolgenomics.00007.2017CrossRefPubMedGoogle Scholar
  106. 106.
    Aloia L, McKie MA, Huch M (2016) Cellular plasticity in the adult liver and stomach. J Physiol 594(17):4815–4825PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Fausto N, Campbell JS (2003) The role of hepatocytes and oval cells in liver regeneration and repopulation. Mech Dev 120(1):117–130PubMedCrossRefGoogle Scholar
  108. 108.
    Otsu K, Kumakami-Sakano M, Fujiwara N, Kikuchi K, Keller L, Lesot H, Harada H (2014) Stem cell sources for tooth regeneration: current status and future prospects. Front Physiol 5:36PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Wright NA (2000) Epithelial stem cell repertoire in the gut: clues to the origin of cell lineages, proliferative units and cancer. Int J Exp Path 81:117–143CrossRefGoogle Scholar
  110. 110.
    Merendino N, Dwinell MB, Varki N, Eckmann L, Kagnoff MF (1999) Human intestinal epithelial cells express receptors for platelet-activating factor. Am J Physiol Gastrointest Liver Physiol 277(4):G810–G818CrossRefGoogle Scholar
  111. 111.
    Peterson LW, Artis D (2014) Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol 14(3):141–153PubMedCrossRefGoogle Scholar
  112. 112.
    Lee KZ, Lestradet M, Socha C, Schirmeier S, Schmitz A, Spenlé C et al (2016) Enterocyte purge and rapid recovery is a resilience reaction of the gut epithelium to pore-forming toxin attack. Cell Host Microbe 20:716–730PubMedCrossRefGoogle Scholar
  113. 113.
    Peck BCE, Mah AT, Pitman WA, Ding S, Lund PK, Sethupathy P (2016) Functional transcriptomics in diverse intestinal epithelial cell types reveals robust gut microbial sensitivity of microRNAs in intestinal stem cells. BioRxiv.  https://doi.org/10.1101/087882CrossRefGoogle Scholar
  114. 114.
    Al-Ghadban S, Kaissi S, Homaidan FR, Naim HY, El-Sabban ME (2016) Cross-talk between intestinal epithelial cells and immune cells in inflammatory bowel disease. Sci Rep 6:29783PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Cheng H, Leblond CP (1974) Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine I. Columnar cell. Am J Anat 141(4):461–479PubMedCrossRefGoogle Scholar
  116. 116.
    Murat JC, Gamet L, Cazenave Y, Trocheris V (1990) Questions about the use of [3H]thymidine incorporation as a reliable method to estimate cell proliferation rate. Biochem J 270(2):563–564PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Duque A, Rakic P (2011) Different effects of BrdU and 3H-thymidine incorporation into DNA on cell proliferation, position and fate. J Neurosci 31(42):15205–15217PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Hu VW, Black GE, Torres-Duarte A, Abramson FP (2002) 3H-thymidine is a defective tool with which to measure rates of DNA synthesis. FASEB J 16(11):1456–1457PubMedCrossRefGoogle Scholar
  119. 119.
    Kodama N, Iwao T, Katano T, Ohta K, Yuasa H, Matsunaga T (2016) Characteristic analysis of intestinal transport in enterocyte-like cells differentiated from human induced pluripotent stem cells. Drug Metab Dispos 44(10)PubMedCrossRefGoogle Scholar
  120. 120.
    Chen L, Tuo B, Dong H (2016) Regulation of intestinal glucose absorption by ion channels and transporters. Nutrients 8(1):43PubMedCentralCrossRefPubMedGoogle Scholar
  121. 121.
    Pouokam E, Althaus M (2016) Epithelial electrolyte transport physiology and the gasotransmitter hydrogen sulfide. Oxid Med Cell Longev 2016:4723416PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Maccallum JB (1906) Factors influencing secretion. J Biol Chem 1:335–344Google Scholar
  123. 123.
    Dwight T (1877) Recent progress in anatomy. Boston Med Surg J 97:270–273CrossRefGoogle Scholar
  124. 124.
    Prasanna LC (2016) Analysis of the distribution of mucins in adult human gastric mucosa and its functional significance. J Clin Diagn Res 10(2):AC01–AC04Google Scholar
  125. 125.
    Chen YY, Wang HH, Antonioli DA, Spechler SJ, Zeroogian JM, Goyal R et al (1999) Significance of acid-mucin-positive nongoblet columnar cells in the distal esophagus and gastroesophageal junction. Hum Pathol 30(12):1488–1495PubMedCrossRefGoogle Scholar
  126. 126.
    Mowat AM, Agace WW (2014) Regional specialization within the intestinal immune system. Nat Rev Immunol 14:667–685CrossRefPubMedGoogle Scholar
  127. 127.
    Wang K, Wu LY, Dou CZ, Guan X, Wu HG, Liu HR (2016) Research advance in intestinal mucosal barrier and pathogenesis of Crohn’s disease. Gastroenterol Res Pract 2016:9686238PubMedPubMedCentralGoogle Scholar
  128. 128.
    Ugolev AM, Iezuitova NN, Timofeeva NM, Egorova VV, Nikitina AA, Gordova LA (1992) The digestive enzymes in the gastrointestinal tract, kidney, liver and spleen in different functional states. Fiziol Zh SSSR Im I M Sechenova 78(9):76–83PubMedGoogle Scholar
  129. 129.
    Pandol SJ (2010) The exocrine pancreas. Morgan & Claypool Life Sciences, San RafaelGoogle Scholar
  130. 130.
    Hamosh M (1990) Lingual and gastric lipases. Nutrition 6(6):421–428PubMedGoogle Scholar
  131. 131.
    Brandtzaeg P (2013) Secretory immunity with special reference to the oral cavity. J Oral Microbiol 5.  https://doi.org/10.3402/jom.v5i0.20401
  132. 132.
    Hand AR, Pathmanathan D, Field RB (1999) Morphological features of the minor salivary glands. Arch Oral Biol 44(Suppl 1):S3–10PubMedCrossRefGoogle Scholar
  133. 133.
    Ianiro G, Pecere S, Giorgio V, Gasbarrini A, Cammarota G (2016) Digestive enzyme supplementation in gastrointestinal diseases. Curr Drug Metab 17(2):187–193PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Fieker A, Philpott J, Armand M (2011) Enzyme replacement therapy for pancreatic insufficiency: present and future. Clin Exp Gastroenterol 4:55–73PubMedPubMedCentralGoogle Scholar
  135. 135.
    Miled N, Canaan S, Dupuis L, Roussel A, Rivière M, Carrière F et al (2000) Digestive lipases: from three-dimensional structure to physiology. Biochimie 82(11):973–986PubMedCrossRefGoogle Scholar
  136. 136.
    Sternby B, Nilsson A, Melin T, Borgström B (1991) Pancreatic lipolytic enzymes in human duodenal contents. radioimmunoassay compared with enzyme activity. Scand J Gastroenterol 26(8):859–866PubMedCrossRefGoogle Scholar
  137. 137.
    Sternby B, Nilsson A (1997) Carboxyl ester lipase (bile salt-stimulated lipase), colipase, lipase, and phospholipase A2 levels in pancreatic enzyme supplements. Scand J Gastroenterol 32(3):261–267PubMedCrossRefGoogle Scholar
  138. 138.
    Chew CS, Nakamura K, Ljungström M (1992) Calcium signaling mechanisms in the gastric parietal cell. Yale J Biol Med 65(6):561–623PubMedPubMedCentralGoogle Scholar
  139. 139.
    Waldum HL, Kleveland PM, Sørdal ØF (2016) Helicobacter pylori and gastric acid: an intimate and reciprocal relationship. Therap Adv Gastroenterol 9(6):836–844PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Helander HF, Keeling DJ (1993) Cell biology of gastric acid secretion. Baillieres Clin Gastroenterol 7(1):1–21PubMedCrossRefGoogle Scholar
  141. 141.
    Schubert ML (2016) Gastric acid secretion. Curr Opin Gastroenterol 32(6):452–460PubMedCrossRefGoogle Scholar
  142. 142.
    Latorre R, Sternini C, De Giorgio R, Greenwood-Van Meerveld B (2016) Enteroendocrine cells: a review of their role in brain-gut communication. Neurogastroenterol Motil 28(5):620–630PubMedCrossRefGoogle Scholar
  143. 143.
    Posovszky C, Wabitsch M (2015) Regulation of appetite, satiation, and body weight by enteroendocrine cells. Part 1: characteristics of enteroendocrine cells and their capability of weight regulation. Horm Res Paediatr 83:1–10PubMedCrossRefGoogle Scholar
  144. 144.
    El-Salhy M, Mazzawi T, Hausken T, Jan Hatlebakk G (2016) Interaction between diet and gastrointestinal endocrine cells. Biomed Rep 4(6):651–656PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Sun FP, Song YG, Cheng W, Zhao T, Yao YL (2002) Gastrin, somatostatin, G and D cells of gastric ulcer in rats. World J Gastroenterol 8:375–378PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Margolis KG, Gershon MD, Bogunovic M (2016) Cellular organization of neuroimmune interactions in the gastrointestinal tract. Trends Immunol 37(7):487–501PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Furness JB (2016) Integrated neural and endocrine control of gastrointestinal function. Adv Exp Med Biol 891:159–173PubMedCrossRefGoogle Scholar
  148. 148.
    Holst JJ (1997) Enteroglucagon. Annu Rev Physiol 59:257–271PubMedCrossRefGoogle Scholar
  149. 149.
    Pearse AGE, Coulling I, Weavers B, Friesen S (1970) The endocrine polypeptide cells of the human stomach, duodenum, and jejunum. Gut 11(8):649–658PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Rhodin J, Dalhamn T (1956) Electron microscopy of the tracheal ciliated mucosa in rat. Z Zellforsch Mikrosk Anat 44(4):345–412PubMedCrossRefGoogle Scholar
  151. 151.
    Jarvi O, Keyrilainen O (1956) On the cellular structures of the epithelial invasions in the glandular stomach of mice caused by intramural application of 20-methylcholantren. Acta Pathol Microbiol Scand Suppl 39(Suppl 111):72–73PubMedCrossRefGoogle Scholar
  152. 152.
    Luciano L, Reale E, Ruska H (1968) On a glycogen containing brusc cell in the rectum of the rat. Z Zellforsch Mikrosk Anat 91(1):153–158PubMedCrossRefGoogle Scholar
  153. 153.
    Isomaki AM (1973) A new cell type (tuft cell) in the gastrointestinal mucosa of the rat. A transmission and scanning electron microscopic study. Acta Pathol Microbiol Scand A Suppl 240:235–241Google Scholar
  154. 154.
    Reid L, Meyrick B, Antony VB, Chang LY, Crapo JD, Reynolds HY (2005) The mysterious pulmonary brush cell: a cell in search of a function. Am J Respir Crit Care Med 172(1):136–139PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Galligan JJ, Akbarali HI (2014) Molecular physiology of enteric opioid receptors. Am J Gastroenterol Suppl 2:17–21PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Holzer P (2009) Opioid receptors in the gastrointestinal tract. Regul Pept 155(1–3):11–17PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Gerbe F, Jay P (2016) Intestinal tuft cells: epithelial sentinels linking luminal cues to the immune system. Mucosal Immunol 9:1353–1359PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Gillispie CC, Holmes FL, Koertge N (eds) (2008) Complete dictionary of scientific biography. Charles Scribner’s Sons, DetroitGoogle Scholar
  159. 159.
    Gutierrez-Gonzalez L, Graham TA, Rodriguez-Justo M, Leedham SJ, Novelli MR, Gay LJ et al (2011) The clonal origins of dysplasia from intestinal metaplasia in the human stomach. Gastroenterol 140(4):1251–1260CrossRefGoogle Scholar
  160. 160.
    Colby JKL, Klein RD, McArthur MJ, Conti CJ, Kiguchi K, Kawamoto T et al (2008) Progressive metaplastic and dysplastic changes in mouse pancreas induced by cyclooxygenase-2 overexpression. Neoplasia 10(8):782–796PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Camilo V, Garrido M, Valente P, Ricardo S, Amaral AL, Barros R et al (2015) Differentiation reprogramming in gastric intestinal metaplasia and dysplasia: role of SOX2 and CDX2. Histopathol 66(3):343–350CrossRefGoogle Scholar
  162. 162.
    Dolznig H, Grebien F, Sauer T, Beug H, Müllner EW (2004) Evidence for a size-sensing mechanism in animal cells. Nat Cell Biol 6:899–905PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Cooper GM (2000) The cell: a molecular approach, 2nd edn. Sinauer Associates, SunderlandGoogle Scholar
  164. 164.
    Escribá PV, González-Ros JM, Goñi FM, Kinnunen PKJ, Vigh L, Sánchez-Magraner L et al (2008) Membranes: a meeting point for lipids, proteins and therapies. J Cell Mol Med 12(3):829–875PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland Science, New YorkGoogle Scholar
  166. 166.
    Freitas RA Jr (1999) Nanomedicine: basic capabilities, vol 1. Landes Bioscience, GeorgetownGoogle Scholar
  167. 167.
    Lee AG (2004) How lipids affect the activities of integral membrane proteins. BBA—Biomembranes 1666(1–2):62–87PubMedCrossRefGoogle Scholar
  168. 168.
    Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000) Molecular cell biology, 4th edn. WH Freeman, New YorkGoogle Scholar
  169. 169.
    Kararli TT (1995) Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm Drug Dispos 16(5):351–380CrossRefPubMedGoogle Scholar
  170. 170.
    Kraft ML (2013) Plasma membrane organization and function: moving past lipid rafts. Mol Biol Cell 24:2765–2768PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Head BP, Patel HH, Insel PA (2014) Interaction of membrane/lipid rafts with the cytoskeleton: impact on signaling and function: membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling. Biochim Biophys Acta 1838(2):532–545PubMedCrossRefGoogle Scholar
  172. 172.
    Donovan EL, Pettine SM, Hickey MS, Hamilton KL, Miller BF (2013) Lipidomic analysis of human plasma reveals ether-linked lipids that are elevated in morbidly obese humans compared to lean. Diabetol Metab Syndr 5:24PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry, 5th edn. WH Freeman, New YorkGoogle Scholar
  174. 174.
    van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9(2):112–124PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Fadeel B, Xue D (2009) The ins and outs of phospholipid asymmetry in the plasma membrane: roles in health and disease. Crit Rev Biochem Mol Biol 44(5):264–277PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Naudí A, Jové M, Ayala V, Cabré R, Portero-Otín M, Pamplona R (2013) Non-enzymatic modification of aminophospholipids by carbonyl-amine reactions. Int J Mol Sci 14(2):3285–3313PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Jain SK (1985) In vivo externalization of phosphatidylserine and phosphatidylethanolamine in the membrane bilayer and hypercoagulability by the lipid peroxidation of erythrocytes in rats. J Clin Invest 76(1):281–286PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Saheki Y, Bian X, Schauder CM, Sawaki Y, Surma MA, Klose C et al (2016) Control of plasma membrane lipid homeostasis by the extended synaptotagmins. Nat Cell Biol 18:504–515PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Okeke E, Dingsdale H, Parker T, Voronina S, Tepikin AV (2016) Endoplasmic reticulum-plasma membrane junctions: structure, function and dynamics. J Physiol 594(11):2837–2847PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Watson H (2015) Biological membranes. Essays Biochem 59:43–69PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Jaiswal R, Luk F, Gong J, Mathys JM, Grau GER, Bebawy M (2012) Microparticle conferred microRNA profiles—implications in the transfer and dominance of cancer traits. Mol Cancer 11:37PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Bevers EM, Williamson PL (2010) Phospholipid scramblase: an update. FEBS Lett 584(13):2724–2730PubMedCrossRefPubMedCentralGoogle Scholar
  183. 183.
    Doherty GJ, McMahon HT (2008) Mediation, modulation and consequences of membrane-cytoskeleton interactions. Annu Rev Biophys 37:65–95PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    van Meer G, Halter D, Sprong H, Somerharju P, Egmond MR (2006) ABC lipid transporters: extruders, flippases, or flopless activators? FEBS Lett 580(4):1171–1177PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    Holgersson J, Jovall PÅ, Breimer ME (1991) Glycosphingolipids of human large intestine: detailed structural characterization with special reference to blood group compounds and bacterial receptor structures. J Biochem 110(1):120–131PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    Breimer ME, Hansson GC, Karlsson KA, Larson G, Leffler H (2012) Glycosphingolipid composition of epithelial cells isolated along the villus axis of small intestine of a single human individual. Glycobiology 22(12):1721–1730PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Khan MS, Dosoky NS, Williams JD (2013) Engineering lipid bilayer membranes for protein studies. Int J Mol Sci 14(11):21561–21597PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Dawaliby R, Trubbia C, Delporte C, Noyon C, Ruysschaert JM, Van Antwerpen P, Govaerts C (2016) Phosphatidylethanolamine is a key regulator of membrane fluidity in eukaryotic cells. J Biol Chem 291(7):3658–3667PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 119:569–572CrossRefGoogle Scholar
  190. 190.
    Morozova D, Guigas G, Weiss M (2011) Dynamic structure formation of peripheral membrane proteins. PLoS Comput Biol 7(6):e1002067PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Bastiani M, Parton RG (2010) Caveolae at a glance. J Cell Sci 123:3831–3836PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Taggart MJ (2001) Smooth muscle excitation-contraction coupling: a role for caveolae and caveolins? Physiology 16(2):61–65CrossRefGoogle Scholar
  193. 193.
    Echarri A, Del Pozo MA (2012) Caveolae. Curr Biol 22(4):R114–R116PubMedCrossRefPubMedCentralGoogle Scholar
  194. 194.
    Lo HP, Nixon SJ, Hall TE, Cowling BS, Ferguson C, Morgan GP et al (2015) The caveolin-cavin system plays a conserved and critical role in mechanoprotection of skeletal muscle. J Cell Biol 210(5):833–849PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Lo HP, Hall TE, Parton RG (2016) Mechanoprotection by skeletal muscle caveolae. Bioarchitecture 6(1):22–27PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Merrifield CJ, Perrais D, Zenisek D (2005) Coupling between clathrin-coated-pit invagination, cortactin recruitment, and membrane scission observed in live cells. Cell 121(4):593–606PubMedCrossRefPubMedCentralGoogle Scholar
  197. 197.
    Palade GE (1953) Fine structure of blood capillaries. J Appl Phys 24:1424Google Scholar
  198. 198.
    Yamada E (1955) The fine structure of the gall bladder epithelium of the mouse. J Biophys Biochem Cytol 1(5):445–458PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Rothberg KG, Heuser JE, Donzell WC, Ying YS, Glenney JR, Anderson RGW (1992) Caveolin, a protein component of caveolae membrane coats. Cell 68(4):673–682PubMedCrossRefPubMedCentralGoogle Scholar
  200. 200.
    Glenney JR Jr, Soppet D (1992) Sequence and expression of caveolin, a protein component of caveolae plasma membrane domains phosphorylated on tyrosine in Rous sarcoma virus-transformed fibroblasts. Proc Natl Acad Sci USA 89(21):10517–10521PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Brown MS, Goldstein JL (2011) Richard G.W. Anderson (1940–2011) and the birth of receptor-mediated endocytosis. J Cell Biol 193(4):601–603PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Chidlow JH Jr, Sessa WC (2010) Caveolae, caveolins, and cavins: complex control of cellular signalling and inflammation. Cardiovasc Res 86(2):219–225PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Scherer PE, Okamoto T, Chun M, Nishimoto I, Lodish HF, Lisanti MP (1996) Identification, sequence, and expression of caveolin-2 defines a caveolin gene family. Proc Natl Acad Sci USA 93(1):131–135PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Tang Z, Scherer PE, Okamoto T, Song K, Chu C, Kohtz DS et al (1996) Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J Biol Chem 271:2255–2261PubMedCrossRefGoogle Scholar
  205. 205.
    Way M, Parton R (1995) M-caveolin: a muscle-specific caveolin-related protein. FEBS Lett 376:108–112PubMedCrossRefGoogle Scholar
  206. 206.
    Sowa G (2011) Caveolae, caveolins, cavins, and endothelial cell function: new insights. Front Physiol 2:120Google Scholar
  207. 207.
    Vinten J, Johnsen AH, Roepstorff P, Harpoth J, Tranum-Jensen J (2005) Identification of a major protein on the cytosolic face of caveolae. Biochim Biophys Acta 1717:34–40PubMedCrossRefPubMedCentralGoogle Scholar
  208. 208.
    Parton RG, del Pozo MA (2013) Caveolae as plasma membrane sensors, protectors and organizers. Nat Rev Mol Cell Biol 14:98–112PubMedCrossRefPubMedCentralGoogle Scholar
  209. 209.
    Liu P, Li WP, Machleidt T, Anderson RGW (1999) Identification of caveolin-1 in lipoprotein particles secreted by exocrine cells. Nat Cell Biol 1:369–375PubMedCrossRefPubMedCentralGoogle Scholar
  210. 210.
    Fridolfsson HN, Patel HH (2013) Caveolin and caveolae in age associated cardiovascular disease. J Geriatr Cardiol 10(1):66–74PubMedPubMedCentralGoogle Scholar
  211. 211.
    Gazzerro E, Sotgia F, Bruno C, Lisanti MP, Minetti C (2010) Caveolinopathies: from the biology of caveolin-3 to human diseases. Eur J Hum Genet 18(2):137–145PubMedCrossRefGoogle Scholar
  212. 212.
    Fletcher A (2013) The cell membrane and receptors. Anaest Intens Care Med 14(9):417–421CrossRefGoogle Scholar
  213. 213.
    Graves PR, Haystead TAJ (2002) Molecular biologist’s guide to proteomics. Microbiol Mol Biol Rev 66(1):39–63PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Mischak H, Apweiler R, Banks RE, Conaway M, Coon J, Dominiczak A et al (2007) Clinical proteomics: a need to define the field and to begin to set adequate standards. Proteomics Clin Appl 1(2):148–156PubMedCrossRefGoogle Scholar
  215. 215.
    Monti M, Orrù S, Pagnozzi D, Pucci P (2005) Functional proteomics. Clin Chim Acta 357(2):140–150PubMedCrossRefGoogle Scholar
  216. 216.
    Vermeer BJ (1987) Plasma membrane receptors. J Invest Dermatol 88:529–531PubMedCrossRefGoogle Scholar
  217. 217.
    Wilson J, Hunt T (2008) Molecular biology of the cell: the problems book, 5th edn. Garland Science, New YorkGoogle Scholar
  218. 218.
    Chou KC, Elrod DW (1999) Prediction of membrane protein types and subcellular locations. Proteins 34(1):137–153PubMedCrossRefGoogle Scholar
  219. 219.
    Chou KC, Elrod DW (1999) Protein subcellular location prediction. Protein Eng 12(2):107–118PubMedCrossRefGoogle Scholar
  220. 220.
    Ouzounis CA, Coulson RM, Enright AJ, Kunin V, Pereira-Leal JB (2003) Classification schemes for protein structure and function. Nat Rev Genet 4(7):508–519PubMedCrossRefGoogle Scholar
  221. 221.
    Sunde M, Blake CC (1998) From the globular to the fibrous state: protein structure and structural conversion in amyloid formation. Q Rev Biophys 31(1):1–39PubMedCrossRefGoogle Scholar
  222. 222.
    Thiriet M (2014) Mechanotransduction and vascular resistance. In: Lanzer P (ed) Pan vascular medicine. Springer, BerlinGoogle Scholar
  223. 223.
    Banfalvi G (2016) Biological membranes. In: Permeability of biological membranes. Springer, ChamCrossRefGoogle Scholar
  224. 224.
    Almén MS, Nordström KJV, Fredriksson R, Schiöth HB (2009) Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin. BMC Biol 7:50PubMedPubMedCentralCrossRefGoogle Scholar
  225. 225.
    Stansfeld PJ, Goose JE, Caffrey M, Carpenter EP, Parker JL, Newstead S, Sansom MS (2015) MemProtMD: automated insertion of membrane protein structures into explicit lipid membranes. Structure 23(7):1350–1361PubMedPubMedCentralCrossRefGoogle Scholar
  226. 226.
    Ali F, Hayat M (2015) Classification of membrane protein types using voting feature interval in combination with Chou’s Pseudo amino acid composition. J Theor Biol 384:78–83PubMedCrossRefGoogle Scholar
  227. 227.
    Butt AH, Rasool N, Khan YD (2017) A treatise to computational approaches towards prediction of membrane protein and its subtypes. J Membr Biol 250(1):55–76PubMedCrossRefGoogle Scholar
  228. 228.
    Josic D, Clifton JG (2007) Mammalian plasma membrane proteomics. Proteomics 7(16):3010–3029PubMedCrossRefGoogle Scholar
  229. 229.
    Good MC, Zalatan JG, Lim WA (2011) Scaffold proteins: hubs for controlling the flow of cellular information. Science 332(6030):680–686PubMedPubMedCentralCrossRefGoogle Scholar
  230. 230.
    Ziemba BP, Falke JJ (2013) Lateral diffusion of peripheral membrane proteins on supported lipid bilayers is controlled by the additive frictional drags of 1) bound lipids and 2) protein domains penetrating into the bilayer hydrocarbon core. Chem Phys Lipids 172–173:67–77PubMedCrossRefGoogle Scholar
  231. 231.
    Walther TC, Brickner JH, Aguilar PS, Bernales S, Pantoja C, Walter P (2006) Eisosomes mark static sites of endocytosis. Nature 439:998–1003PubMedCrossRefGoogle Scholar
  232. 232.
    Olivera-Couto A, Salzman V, Mailhos M, Digman MA, Gratton E, Aguilar PS (2015) Eisosomes are dynamic plasma membrane domains showing pil1-lsp1 heteroligomer binding equilibrium. Biophys J 108(7):1633–1644PubMedPubMedCentralCrossRefGoogle Scholar
  233. 233.
    Aoki-Kinoshita KF (2008) An introduction to bioinformatics for glycomics research. PLoS Comput Biol 4(5):e1000075PubMedPubMedCentralCrossRefGoogle Scholar
  234. 234.
    Egberts HJ, Koninkx JF, van Dijk JE, Mouwen JM (1984) Biological and pathobiological aspects of the glycocalyx of the small intestinal epithelium—a review. Vet Q 6(4):186–199PubMedCrossRefGoogle Scholar
  235. 235.
    Roseman S (2001) Reflections on glycobiology. J Biol Chem 276:41527–41542PubMedCrossRefGoogle Scholar
  236. 236.
    Weinbaum S, Tarbell JM, Damiano ER (2007) The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng 9:121–167PubMedCrossRefGoogle Scholar
  237. 237.
    Reitsma S, Slaaf DW, Vink H, van Zandvoort MAMJ, Oude Egbrink MGA (2007) The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch 454(3):345–359PubMedPubMedCentralCrossRefGoogle Scholar
  238. 238.
    Frey A, Giannasca KT, Weltzin P, Giannasca PJ, Reggio H, Lencer WI, Neutra MR (1996) Role of the glycocalyx in regulating access of microparticles to apical plasma membranes of intestinal epithelial cells: implications for microbial attachment and oral vaccine targeting. Exp Med 184:1045–1059CrossRefGoogle Scholar
  239. 239.
    Artis D (2008) Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol 8:411–420PubMedCrossRefGoogle Scholar
  240. 240.
    Cruz-Chu ER, Malafeev A, Pajarskas T, Pivkin IV, Koumoutsakos P (2014) Structure and response to flow of the glycocalyx layer. Biophys J 106(1):232–243PubMedPubMedCentralCrossRefGoogle Scholar
  241. 241.
    Hart GW, Copeland RJ (2010) Glycomics hits the big time. Cell 143(5):672–676PubMedPubMedCentralCrossRefGoogle Scholar
  242. 242.
    Soo EC, Hui JP (2010) Metabolomics in glycomics. Methods Mol Biol 600:175–186PubMedCrossRefGoogle Scholar
  243. 243.
    Kreisel W, Volk BA, Büchsel R, Reutter W (1980) Different half-lives of the carbohydrate and protein moieties of a 110,000-dalton glycoprotein isolated from plasma membranes of rat liver. Proc Natl Acad Sci USA 77(4):1828–1831PubMedPubMedCentralCrossRefGoogle Scholar
  244. 244.
    Murray RK, Granner DK, Mayes PA, Rodwell VW (1993) Harper’s biochemistry, 23rd edn. Appleton & Lange, NorwalkGoogle Scholar
  245. 245.
    Hankins HM, Baldridge RD, Xu P, Graham TR (2015) Role of flippases, scramblases and transfer proteins in phosphatidylserine subcellular distribution. Traffic 16(1):35–47PubMedCrossRefGoogle Scholar
  246. 246.
    Farquhar MG, Palade GE (1998) The Golgi apparatus: 100 years of progress and controversy. Trends Cell Biol 8(1):2–10PubMedCrossRefGoogle Scholar
  247. 247.
    Greenberg ME, Li XM, Gugiu BG, Gu X, Qin J, Salomon RG et al (2008) The lipid whisker model of the structure of oxidized cell membranes. J Biol Chem 283:2385–2396PubMedCrossRefGoogle Scholar
  248. 248.
    Catalá A (2012) Lipid peroxidation modifies the picture of membranes from the “Fluid Mosaic Model” to the “Lipid Whisker Model”. Biochimie 94(1):101–109PubMedCrossRefGoogle Scholar
  249. 249.
    Vyšniauskas A, Qurashi M, Kuimova MK (2016) A molecular rotor that measures dynamic changes of lipid bilayer viscosity caused by oxidative stress. Chemistry 22(37):13210–13217PubMedPubMedCentralCrossRefGoogle Scholar
  250. 250.
    Israelachvili JN (1977) Refinement of the fluid-mosaic model of membrane structure. Biochim Biophys Acta 469(2):221–225PubMedCrossRefGoogle Scholar
  251. 251.
    Bagatolli LA, Mouritsen OG (2013) Is the fluid mosaic (and the accompanying raft hypothesis) a suitable model to describe fundamental features of biological membranes? What may be missing? Front Plant Sci 4:457PubMedPubMedCentralCrossRefGoogle Scholar
  252. 252.
    Lombard J (2014) Once upon a time the cell membranes: 175 years of cell boundary research. Biol Direct 9:32PubMedPubMedCentralCrossRefGoogle Scholar
  253. 253.
    Hoff HE, Geddes LA (1957) The rheotome and its prehistory: a study in the historical interrelation of electrophysiology and electromechanics. Bull Hist Med 31(4):327–347PubMedGoogle Scholar
  254. 254.
    Gorter E, Grendel F (1925) On bimolecular layers of lipoids on the chromocytes of the blood. J Exp Med 41(4):439–443PubMedPubMedCentralCrossRefGoogle Scholar
  255. 255.
    Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175(4023):720–731PubMedCrossRefGoogle Scholar
  256. 256.
    Dowhan W, Bogdanov M (2011) Lipid-protein interactions as determinants of membrane protein structure and function. Biochem Soc Trans 39(3):767–774PubMedPubMedCentralCrossRefGoogle Scholar
  257. 257.
    Kahya N (2010) Protein-protein and protein-lipid interactions in domain-assembly: lessons from giant unilamellar vesicles. Biochim Biophys Acta 1798(7):1392–1398PubMedCrossRefGoogle Scholar
  258. 258.
    Lopez-Marques RL, Theorin L, Palmgren MG, Pomorski TG (2014) P4-ATPases: lipid flippases in cell membranes. Pflugers Arch 466(7):1227–1240PubMedCrossRefGoogle Scholar
  259. 259.
    Andersen JP, Vestergaard AL, Mikkelsen SA, Mogensen LS, Chalat M, Molday RS (2016) P4-ATPases as phospholipid flippases-structure, function, and enigmas. Front Physiol 7:275PubMedPubMedCentralCrossRefGoogle Scholar
  260. 260.
    Pomorski T, Menon AK (2006) Lipid flippases and their biological functions. Cell Mol Life Sci 63(24):2908–2921PubMedCrossRefGoogle Scholar
  261. 261.
    Clark MR (2011) Flippin’ lipids. Nat Immunol 12:373–375PubMedCrossRefGoogle Scholar
  262. 262.
    Sahu SK, Gummadi SN, Manoj N, Aradhyam GK (2007) Phospholipid scramblases: an overview. Arch Biochem Biophys 462(1):103–114PubMedCrossRefGoogle Scholar
  263. 263.
    Prasad R, Rawal MK (2014) Efflux pump proteins in antifungal resistance. Front Pharmacol 5:202PubMedPubMedCentralCrossRefGoogle Scholar
  264. 264.
    Williamson P (2015) Phospholipid scramblases. Lipid insights 8(Suppl 1):41–44PubMedGoogle Scholar
  265. 265.
    Huang Z, Chang X, Riordan JR, Huang Y (2004) Fluorescent modified phosphatidylcholine floppase activity of reconstituted multidrug resistance-associated protein MRP1. Biochim Biophys Acta 1660(1–2):155–163PubMedCrossRefGoogle Scholar
  266. 266.
    Kamp D, Haest CW (1998) Evidence for a role of the multidrug resistance protein (MRP) in the outward translocation of NBD-phospholipids in the erythrocyte membrane. Biochim Biophys Acta 1372(1):91–101PubMedCrossRefGoogle Scholar
  267. 267.
    Degiorgio D, Colombo C, Seia M, Porcaro L, Costantino L, Zazzeron L et al (2007) Molecular characterization and structural implications of 25 new ABCB4 mutations in progressive familial intrahepatic cholestasis type 3 (PFIC3). Eur J Hum Genet 15:1230–1238PubMedCrossRefGoogle Scholar
  268. 268.
    Choi CH (2005) ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal. Cancer Cell Int 5:30PubMedPubMedCentralCrossRefGoogle Scholar
  269. 269.
    Morita S, Terada T (2014) Molecular mechanisms for biliary phospholipid and drug efflux mediated by abcb4 and bile salts. Biomed Res Int 954781:1–11CrossRefGoogle Scholar
  270. 270.
    Ramadurai S, Holt A, Krasnikov V, van den Bogaart G, Killian JA, Poolman B (2009) Lateral diffusion of membrane proteins. J Am Chem Soc 131(35):12650–12656PubMedCrossRefGoogle Scholar
  271. 271.
    Chen IHB, Huber M, Guan T, Bubeck A, Gerace L (2006) Nuclear envelope transmembrane proteins (NETs) that are up-regulated during myogenesis. BMC Cell Biol 7:38PubMedPubMedCentralCrossRefGoogle Scholar
  272. 272.
    Nicolson GL (2014) The fluid-mosaic model of membrane structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochim Biophys Acta 1838(6):1451–1466PubMedCrossRefGoogle Scholar
  273. 273.
    Morange M (2013) What history tells us XXX. The emergence of the fluid mosaic model of membranes. J Biosci 38(1):3–7PubMedCrossRefGoogle Scholar
  274. 274.
    Vereb G, Szöllosi J, Matkó J, Nagy P, Farkas T, Vigh L et al (2003) Dynamic, yet structured: the cell membrane three decades after the Singer-Nicolson model. PNAS 100(14):8053–8058PubMedPubMedCentralCrossRefGoogle Scholar
  275. 275.
    Edidin M (2015) Light and life in Baltimore and beyond. Biophys J 108(3):466–470PubMedPubMedCentralCrossRefGoogle Scholar
  276. 276.
    de la Serna JB, Schütz GJ, Eggeling C, Cebecauer M (2016) There is no simple model of the plasma membrane organization. Front Cell Dev Biol 4:106Google Scholar
  277. 277.
    Marguet D, Lenne PF, Rigneault H, He HT (2006) Dynamics in the plasma membrane: how to combine fluidity and order. EMBO J 25(15):3446–3457PubMedPubMedCentralCrossRefGoogle Scholar
  278. 278.
    Engelman DM (2005) Membranes are more mosaic than fluid. Nature 438:578–580PubMedCrossRefPubMedCentralGoogle Scholar
  279. 279.
    Gheber LA, Edidin M (1999) A model for membrane patchiness: lateral diffusion in the presence of barriers and vesicle traffic. Biophys J 77(6):3163–3175PubMedPubMedCentralCrossRefGoogle Scholar
  280. 280.
    Edidin M (1993) Patches, posts and fences: proteins and plasma membrane domains. Trends Cell Biol 2(12):376–380CrossRefGoogle Scholar
  281. 281.
    Contreras FX, Ernst AM, Wieland F, Brügger B (2011) Specificity of intramembrane protein–lipid interactions. Cold Spring Harb Perspect Biol 3(6):a004705PubMedPubMedCentralCrossRefGoogle Scholar
  282. 282.
    Edidin M (2003) Lipids on the frontier: a century of cell-membrane bilayers. Nat Rev Mol Cell Biol 4:414–418PubMedCrossRefPubMedCentralGoogle Scholar
  283. 283.
    Zhang M, Bohlson SS, Dy M, Tenner AJ (2005) Modulated interaction of the ERM protein, moesin, with CD93. Immunology 115(1):63–73PubMedPubMedCentralCrossRefGoogle Scholar
  284. 284.
    Xu K, Zhong G, Zhuang X (2013) Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339(6118):452–456PubMedCrossRefPubMedCentralGoogle Scholar
  285. 285.
    Hirao M, Sato N, Kondo T, Yonemura S, Monden M, Sasaki T et al (1996) Regulation mechanism of ERM (ezrin/radixin/moesin) protein/plasma membrane association: possible involvement of phosphatidylinositol turnover and Rho-dependent signaling pathway. J Cell Biol 135(1):37–51PubMedCrossRefGoogle Scholar
  286. 286.
    Niggli V, Rossy J (2008) Ezrin/radixin/moesin: versatile controllers of signaling molecules and of the cortical cytoskeleton. Int J Biochem Cell Biol 40(3):344–349PubMedCrossRefGoogle Scholar
  287. 287.
    Kondo T, Takeuchi K, Doi Y, Yonemura S, Nagata S, Tsukita S (1997) ERM (ezrin/radixin/moesin)-based molecular mechanism of microvillar breakdown at an early stage of apoptosis. J Cell Biol 139(3):749–758PubMedPubMedCentralCrossRefGoogle Scholar
  288. 288.
    Machnicka B, Czogalla A, Hryniewicz-Jankowska A, Bogusławska DM, Grochowalska R, Heger E, Sikorski AF (2014) Spectrins: a structural platform for stabilization and activation of membrane channels, receptors and transporters. Biochim Biophys Acta 1838(2):620–634PubMedCrossRefGoogle Scholar
  289. 289.
    Machnicka B, Grochowalska R, Bogusławska DM, Sikorski AF, Lecomte MC (2012) Spectrin-based skeleton as an actor in cell signaling. Cell Mol Life Sci 69(2):191–201PubMedCrossRefGoogle Scholar
  290. 290.
    Cohen CM, Tyler JM, Branton D (1980) Spectrin-actin associations studied by electron microscopy of shadowed preparations. Cell 21(3):875–883PubMedCrossRefGoogle Scholar
  291. 291.
    Coleman TR, Fishkind DJ, Mooseker MS, Morrow JS (1989) Contributions of the beta-subunit to spectrin structure and function. Cell Motil Cytoskeleton 12(4):248–263PubMedCrossRefGoogle Scholar
  292. 292.
    Tilney LG (1975) The role of actin in nonmuscle cell motility. Soc Gen Physiol Ser 30:339–388PubMedGoogle Scholar
  293. 293.
    Fowler VM, Davis JQ, Bennett V (1985) Human erythrocyte myosin: identification and purification. J Cell Biol 100(1):47–55PubMedCrossRefGoogle Scholar
  294. 294.
    Bjorkman DJ, Allan CH, Hagen SJ, Trier JS (1986) Structural features of absorptive cell and microvillus membrane preparations from rat small intestine. Gastroenterol 91(6):1401–1414CrossRefGoogle Scholar
  295. 295.
    Hull BE, Staehelin LA (1979) The terminal web. A reevaluation of its structure and function. J Cell Biol 81(1):67–82PubMedPubMedCentralCrossRefGoogle Scholar
  296. 296.
    Walton KD, Freddo AM, Wang S, Gumucio DL (2016) Generation of intestinal surface: an absorbing tale. Development 143(13):2261–2272PubMedPubMedCentralCrossRefGoogle Scholar
  297. 297.
    Leeson TS (1982) The terminal web of the duodenal enterocyte. J Anat 134(4):653–666PubMedPubMedCentralGoogle Scholar
  298. 298.
    Xiao H, Wu R (2017) Quantitative investigation of human cell surface N-glycoprotein dynamics. Chem Sci 8:268–277PubMedCrossRefPubMedCentralGoogle Scholar
  299. 299.
    Christ L, Raiborg C, Wenzel EM, Campsteijn C, Stenmark H (2017) Cellular functions and molecular mechanisms of the ESCRT membrane-scission machinery. Trends Biochem Sci 42(1):42–56PubMedCrossRefPubMedCentralGoogle Scholar
  300. 300.
    Triffo SB, Huang HH, Smith AW, Chou ET, Groves JT (2012) Monitoring lipid anchor organization in cell membranes by PIE-FCCS. J Am Chem Soc 134(26):10833–10842PubMedPubMedCentralCrossRefGoogle Scholar
  301. 301.
    Paulick MG, Bertozzi CR (2008) The glycosylphosphatidylinositol anchor: a complex membrane-anchoring structure for proteins. Biochem 47(27):6991–7000CrossRefGoogle Scholar
  302. 302.
    Smith HW (1962) The plasma membrane, with notes on the history of botany. Circulation 26:987–1012PubMedCrossRefPubMedCentralGoogle Scholar
  303. 303.
    Kraft ML (2013) Plasma membrane organization and function: moving past lipid rafts. Mol Biol Cell 24(18):2765–2768PubMedPubMedCentralCrossRefGoogle Scholar
  304. 304.
    Syrovatkina V, Alegre KO, Dey R, Huang XY (2016) Regulation, signaling, and physiological functions of G-proteins. J Mol Biol 428(19):3850–3868PubMedPubMedCentralCrossRefGoogle Scholar
  305. 305.
    Wu W, Shi X, Xu C (2016) Regulation of T cell signalling by membrane lipids. Nat Rev Immunol 16:690–701PubMedCrossRefPubMedCentralGoogle Scholar
  306. 306.
    Loganathan SK, Lukowski CM, Casey JR (2016) The cytoplasmic domain is essential for transport function of the integral membrane transport protein SLC4A11. Am J Physiol Cell Physiol 310(2):C161–C174PubMedCrossRefPubMedCentralGoogle Scholar
  307. 307.
    Levin ER (2002) Cellular functions of plasma membrane estrogen receptors. Steroids 67(6):471–475PubMedCrossRefPubMedCentralGoogle Scholar
  308. 308.
    Bonifacino JS, Lippincott-Schwartz J (2003) Coat proteins: shaping membrane transport. Nat Rev Mol Cell Biol 4:409–414PubMedCrossRefPubMedCentralGoogle Scholar
  309. 309.
    Shull GE, Okunade G, Liu LH, Kozel P, Periasamy M, Lorenz JN, Prasad V (2003) Physiological functions of plasma membrane and intracellular Ca2+ pumps revealed by analysis of null mutants. Ann N Y Acad Sci 986:453–460PubMedCrossRefPubMedCentralGoogle Scholar
  310. 310.
    Seelig J (1993) Phospholipid headgroups as sensors of electric charge. New developments in lipid-protein interactions and receptor function. NATO ASI Series 246:241–248Google Scholar
  311. 311.
    Meyer H (1899) Zur Theorie der Alkoholnarkose. Erste Mittheilung. Welche Eigenschaft der Anasthetica bedingt ihre narkotis che Wirkung? (On the theory of alcohol narcosis. What property of anesthetics produces their anesthetic action?) Arch Exp Pathol Pharmakol 425:109–118Google Scholar
  312. 312.
    Overton CE (1991) Studien uber die Narkose, zugleich ein Beitrag zur allgemeiner Pharmakologie (Studies of narcosis). Verlag Gustav Fischer, JenaGoogle Scholar
  313. 313.
    Li S, Hu PC, Malmstadt N (2011) Imaging molecular transport across lipid bilayers. Biophys J 101(3):700–708PubMedPubMedCentralCrossRefGoogle Scholar
  314. 314.
    Chakrabarti AC, Deamer DW (1992) Permeability of lipid bilayers to amino acids and phosphate. Biochim Biophys Acta 1111(2):171–177PubMedCrossRefGoogle Scholar
  315. 315.
    Gadsby DC (2009) Ion channels versus ion pumps: the principal difference, in principle. Mol Cell Biol 10:344–352Google Scholar
  316. 316.
    Itel F, Al-Samir S, Öberg F, Chami M, Kumar M, Supuran CT et al (2012) CO2 permeability of cell membranes is regulated by membrane cholesterol and protein gas channels. FASEB J 26(12):5182–5191PubMedCrossRefGoogle Scholar
  317. 317.
    Wang Y, Cohen J, Boron WF, Schulten K, Tajkhorshid E (2007) Exploring gas permeability of cellular membranes and membrane channels with molecular dynamics. J Struct Biol 157(3):534–544PubMedCrossRefGoogle Scholar
  318. 318.
    Ripoche P, Goossens D, Devuyst O, Gane P, Colin Y, Verkman AS, Cartron JP (2006) Role of RhAG and AQP1 in NH3 and CO2 gas transport in red cell ghosts: a stopped-flow analysis. Transfus Clin Biol 13(1–2):117–122PubMedCrossRefGoogle Scholar
  319. 319.
    Peng J, Huang CH (2006) Rh proteins vs Amt proteins: an organismal and phylogenetic perspective on CO2 and NH3 gas channels. Transfus Clin Biol 13(1–2):85–94PubMedCrossRefGoogle Scholar
  320. 320.
    Hub JS, de Groot BL (2006) Does CO2 permeate through aquaporin-1? Biophys J 91(3):842–848PubMedPubMedCentralCrossRefGoogle Scholar
  321. 321.
    Hub JS, de Groot BL (2008) Mechanism of selectivity in aquaporins and aquaglyceroporins. Proc Natl Acad Sci USA 105(4):1198–1203PubMedPubMedCentralCrossRefGoogle Scholar
  322. 322.
    Yu L, Villarreal OD, Chen LL, Chen LY (2016) 1,3-Propanediol binds inside the water-conducting pore of aquaporin 4: does this efficacious inhibitor have sufficient potency? J Syst Integr Neurosci 2(1):91–98PubMedPubMedCentralCrossRefGoogle Scholar
  323. 323.
    Assentoft M, Kaptan S, Schneider HP, Deitmer JW, de Groot BL, MacAulay N (2016) Aquaporin 4 as a NH3 Channel. J Biol Chem 291(36):19184–19195PubMedPubMedCentralCrossRefGoogle Scholar
  324. 324.
    Al-Samir S, Goossens D, Cartron JP, Nielsen S, Scherbarth F, Steinlechner S et al (2016) Maximal oxygen consumption is reduced in aquaporin-1 knockout mice. Front Physiol 7:347PubMedPubMedCentralGoogle Scholar
  325. 325.
    Missner A, Pohl P (2009) 110 years of the Meyer-Overton rule: predicting membrane permeability of gases and other small compounds. ChemPhysChem 10(9–10):1405–1414PubMedPubMedCentralCrossRefGoogle Scholar
  326. 326.
    Al-Awqati Q (1999) One hundred years of membrane permeability: does Overton still rule? Nat Cell Biol 1:E201–E202PubMedCrossRefGoogle Scholar
  327. 327.
    Missner A, Kügler P, Antonenko YN, Pohl P (2008) Passive transport across bilayer lipid membranes: overton continues to rule. PNAS 105(52):E123PubMedPubMedCentralCrossRefGoogle Scholar
  328. 328.
    Grime JMA, Edwards MA, Rudd NC, Unwin PR (2008) Quantitative visualization of passive transport across bilayer lipid membranes. Proc Natl Acad Sci USA 105:14277–14282PubMedPubMedCentralCrossRefGoogle Scholar
  329. 329.
    Farinas J, Kneen M, Moore M, Verkman AS (1997) Plasma membrane water permeability of cultured cells and epithelia measured by light microscopy with spatial filtering. J Gen Physiol 110(3):283–296PubMedPubMedCentralCrossRefGoogle Scholar
  330. 330.
    Falath W, Sabir A, Jacob KI (2017) Novel reverse osmosis membranes composed of modified PVA/Gum Arabic conjugates: Biofouling mitigation and chlorine resistance enhancement. Carbohydr Polym 155:28–39PubMedCrossRefGoogle Scholar
  331. 331.
    Shannon MA (2010) Water desalination: fresh for less. Nat Nanotechnol 5:248–250PubMedCrossRefGoogle Scholar
  332. 332.
    Xie M, Gray SR (2017) Silica scaling in forward osmosis: from solution to membrane interface. Water Res 108:232–239PubMedCrossRefGoogle Scholar
  333. 333.
    Conde A, Diallinas G, Chaumont F, Chaves M, Gerós H (2010) Transporters, channels, or simple diffusion? Dogmas, atypical roles and complexity in transport systems. Int J Biochem Cell Biol 42(6):857–868PubMedCrossRefGoogle Scholar
  334. 334.
    Madeira A, Moura TF, Soveral G (2016) Detecting aquaporin function and regulation. Front Chem 4:3PubMedPubMedCentralCrossRefGoogle Scholar
  335. 335.
    Kido Y, Tamai I, Okamoto M, Suzuki F, Tsuji A (2000) Functional clarification of MCT1-mediated transport of monocarboxylic acids at the blood-brain barrier using in vitro cultured cells and in vivo BUI studies. Pharm Res 17(1):55–62PubMedCrossRefGoogle Scholar
  336. 336.
    Takanaga H, Tamai I, Tsuji A (1994) pH-dependent and carrier-mediated transport of salicylic acid across Caco-2 cells. J Pharm Pharmacol 46(7):567–570PubMedCrossRefGoogle Scholar
  337. 337.
    Gross E, Hopfer U (1998) Voltage and cosubstrate dependence of the Na-HCO3 cotransporter kinetics in renal proximal tubule cells. Biophys J 75(2):810–824PubMedPubMedCentralCrossRefGoogle Scholar
  338. 338.
    Bennett E, Kimmich GA (1996) The molecular mechanism and potential dependence of the Na+/glucose cotransporter. Biophys J 70(4):1676–1688PubMedPubMedCentralCrossRefGoogle Scholar
  339. 339.
    King RB (1996) Modeling membrane transport. Adv Food Nutr Res 40:243–262PubMedCrossRefGoogle Scholar
  340. 340.
    Arcizet D, Meier B, Sackmann E, Rädler JO, Heinrich D (2008) Temporal analysis of active and passive transport in living cells. Phys Rev Lett 101:248103PubMedCrossRefGoogle Scholar
  341. 341.
    Carruthers A (1991) Mechanisms for the facilitated diffusion of substrates across cell membranes. Biochem 30(16):3898–3906CrossRefGoogle Scholar
  342. 342.
    Barta E, Sideman S, Bassingthwaighte JB (2000) Facilitated diffusion and membrane permeation of fatty acid in albumin solutions. Ann Biomed Eng 28(3):331–345PubMedPubMedCentralCrossRefGoogle Scholar
  343. 343.
    Yang NJ, Hinner MJ (2015) Getting across the cell membrane: an overview for small molecules, peptides, and proteins. Methods Mol Biol 1266:29–53PubMedPubMedCentralCrossRefGoogle Scholar
  344. 344.
    Kvietys PR, Granger DN (2010) Role of intestinal lymphatics in interstitial volume regulation and transmucosal water transport. Ann NY Acad Sci 1207(Suppl 1):E29–E43PubMedPubMedCentralCrossRefGoogle Scholar
  345. 345.
    Hill AV (1910) The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol 40 (Suppl):4–7Google Scholar
  346. 346.
    Holt J, Ackers GK (2009) The hill coefficient: inadequate resolution of cooperativity in human hemoglobin. Method Enzymol 455:193–212CrossRefGoogle Scholar
  347. 347.
    Mandel LJ (1986) Primary active sodium transport, oxygen consumption, and ATP: coupling and regulation. Kidney Int 29(1):3–9PubMedCrossRefGoogle Scholar
  348. 348.
    Zeuthen T (1991) Secondary active transport of water across ventricular cell membrane of choroid plexus epithelium of Necturus maculosus. J Physiol 444:153–173PubMedPubMedCentralCrossRefGoogle Scholar
  349. 349.
    Shi Y (2013) Common folds and transport mechanisms of secondary active transporters. Annu Rev Biophys 42:51–72PubMedCrossRefGoogle Scholar
  350. 350.
    Quistgaard EM, Löw C, Guettou F, Nordlund P (2016) Understanding transport by the major facilitator superfamily (MFS): structures pave the way. Nat Rev Mol Cell Biol 17:123–132PubMedCrossRefGoogle Scholar
  351. 351.
    Gayen A, Leninger M, Traaseth NJ (2016) Protonation of a glutamate residue modulates the dynamics of the drug transporter EmrE. Nat Chem Biol 12:141–145PubMedPubMedCentralCrossRefGoogle Scholar
  352. 352.
    Shechter E (1986) Secondary active transport. Biochimie 68(3):357–365PubMedCrossRefGoogle Scholar
  353. 353.
    Goswitz VC, Brooker RJ (1995) Structural features of the uniporter/symporter/antiporter superfamily. Protein Sci 4(3):534–537PubMedPubMedCentralCrossRefGoogle Scholar
  354. 354.
    Wolfersberger MG (1994) Uniporters, symporters and antiporters. J Exp Biol 196:5–6PubMedGoogle Scholar
  355. 355.
    Zhang Y, Voth GA (2011) The coupled proton transport in the ClC-ec1 Cl/H+ Antiporter. Biophys J 101(10):L47–L49PubMedPubMedCentralCrossRefGoogle Scholar
  356. 356.
    Tarek M (2014) Prerequisites to proton transport in the bacterial ClC-ec1 Cl/H+ exchanger. Proc Natl Acad Sci USA 111(5):1668–1669PubMedPubMedCentralCrossRefGoogle Scholar
  357. 357.
    Reeves JP, Condrescu M, Chernaya G, Gardner JP (1994) Na+/Ca2+ antiport in the mammalian heart. J Exp Biol 196:375–388PubMedGoogle Scholar
  358. 358.
    Dudeja PK, Foster ES, Brasitus TA (1989) Na+-H+ antiporter of rat colonic basolateral membrane vesicles. Am J Physiol 257(4 Pt 1):G624–G632PubMedGoogle Scholar
  359. 359.
    Hunte C, Screpanti E, Venturi M, Rimon A, Padan E, Michel H (2005) Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nature 435(7046):1197–1202PubMedCrossRefGoogle Scholar
  360. 360.
    Arkin IT, Xu H, Jensen MØ, Arbely E, Bennett ER, Bowers KJ et al (2007) Mechanism of Na+/H+ antiporting. Science 317(5839):799–5803PubMedCrossRefGoogle Scholar
  361. 361.
    Krulwich TA (1983) Na+/H+ antiporters. Biochim Biophys Acta 726(4):245–264PubMedCrossRefGoogle Scholar
  362. 362.
    Geng J, Kim K, Zhang J, Escalada A, Tunuguntla R, Comolli LR et al (2014) Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes. Nature 514:612–615PubMedCrossRefGoogle Scholar
  363. 363.
    Du Toit A (2015) Endocytosis—a new gateway into cells. Nat Rev Mol Cell Biol 16:68PubMedGoogle Scholar
  364. 364.
    Haucke V (2015) Cell biology: on the endocytosis rollercoaster. Nature 517:446–447PubMedCrossRefGoogle Scholar
  365. 365.
    Houy S, Croisé P, Gubar O, Chasserot-Golaz S, Tryoen-Tóth P, Bailly Y et al (2013) Exocytosis and endocytosis in neuroendocrine cells: inseparable membranes! Front Endocrinol (Lausanne) 4:135Google Scholar
  366. 366.
    Frazier MN, Jackson LP (2017) Watching real-time endocytosis in living cells. J Cell Biol 216(1):9–11PubMedPubMedCentralCrossRefGoogle Scholar
  367. 367.
    Lang T (2008) Imaging Ca2+ -triggered exocytosis of single secretory granules on plasma membrane lawns from neuroendocrine cells. Methods Mol Biol 440:51–59PubMedCrossRefGoogle Scholar
  368. 368.
    Kreft M, Jorgačevski J, Vardjan N, Zorec R (2016) Unproductive exocytosis. J Neurochem 137(6):880–889PubMedCrossRefGoogle Scholar
  369. 369.
    Charras GT, Mitchison TJ, Mahadevan L (2009) Animal cell hydraulics. J Cell Sci 122(Pt 18):3233–3241PubMedPubMedCentralCrossRefGoogle Scholar
  370. 370.
    Ziviani E, Scorrano L (2016) Cell biology: the organelle replication connection. Nature 538:326–327PubMedCrossRefGoogle Scholar
  371. 371.
    Lu Q, Haragopal H, Slepchenko KG, Stork C, Li YV (2016) Intracellular zinc distribution in mitochondria, ER and the Golgi apparatus. Int J Physiol Pathophysiol Pharmacol 8(1):35–43PubMedPubMedCentralGoogle Scholar
  372. 372.
    Suarez C, Kovar DR (2016) Internetwork competition for monomers governs actin cytoskeleton organization. Nat Rev Mol Cell Biol 17:799–810PubMedPubMedCentralCrossRefGoogle Scholar
  373. 373.
    Strzyz P (2016) Cytoskeleton—a new face of the centrosome. Nat Rev Mol Cell Biol 17:66–67PubMedCrossRefGoogle Scholar
  374. 374.
    Schwarz DS, Blower MD (2016) The endoplasmic reticulum: structure, function and response to cellular signaling. Cell Mol Life Sci 73(1):79–94PubMedCrossRefGoogle Scholar
  375. 375.
    Phillips MJ, Voeltz GK (2016) Structure and function of ER membrane contact sites with other organelles. Nat Rev Mol Cell Biol 17:69–82PubMedCrossRefGoogle Scholar
  376. 376.
    Liu D, Zhang M, Yin H (2013) Signaling pathways involved in endoplasmic reticulum stress-induced neuronal apoptosis. Int J Neurosci 123(3):155–162PubMedCrossRefGoogle Scholar
  377. 377.
    Mezzacasa A, Helenius A (2002) The transitional ER defines a boundary for quality control in the secretion of tsO45 VSV glycoprotein. Traffic 3(11):833–849PubMedCrossRefGoogle Scholar
  378. 378.
    Shindiapina P, Barlowe C (2010) Requirements for transitional endoplasmic reticulum site structure and function in Saccharomyces cerevisiae. Mol Biol Cell 21(9):1530–1545PubMedPubMedCentralCrossRefGoogle Scholar
  379. 379.
    Iurlaro R, Muñoz-Pinedo C (2016) Cell death induced by endoplasmic reticulum stress. FEBS J 283(14):2640–2652PubMedCrossRefGoogle Scholar
  380. 380.
    Valastyan JS, Lindquist S (2014) Mechanisms of protein-folding diseases at a glance. Dis Models Mech 7:9–14CrossRefGoogle Scholar
  381. 381.
    Hartl FU, Hayer-Hartl M (2009) Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol 16:574–581PubMedCrossRefGoogle Scholar
  382. 382.
    Haas IG (1994) BiP (GRP78), an essential hsp70 resident protein in the endoplasmic reticulum. Experientiam 50(11):1012–1020CrossRefGoogle Scholar
  383. 383.
    Chung KT, Shen Y, Hendershot LM (2002) BAP, a mammalian BiP-associated protein, is a nucleotide exchange factor that regulates the ATPase activity of BiP. J Biol Chem 277(49):47557–47563PubMedCrossRefGoogle Scholar
  384. 384.
    Ledford BE, Leno GH (1994) ADP-ribosylation of the molecular chaperone GRP78/BiP. Mol Cell Biochem 138(1–2):141–148PubMedCrossRefGoogle Scholar
  385. 385.
    Fu J, Zhao L, Wang L, Zhu X (2015) Expression of markers of endoplasmic reticulum stress-induced apoptosis in the placenta of women with early and late onset severe pre-eclampsia. Taiwan J Obstetr Gynecol 54(1):19–23CrossRefGoogle Scholar
  386. 386.
    Su J, Zhou L, Kong X, Yang X, Xiang X, Zhang Y et al (2013) Endoplasmic reticulum is at the crossroads of autophagy, inflammation, and apoptosis signaling pathways and participates in the pathogenesis of diabetes mellitus. J Diabetes Res 2013:193461PubMedPubMedCentralCrossRefGoogle Scholar
  387. 387.
    Taniguchi M, Yoshida H (2015) Endoplasmic reticulum stress in kidney function and disease. Curr Opin Nephrol Hypertens 24(4):345–350PubMedCrossRefGoogle Scholar
  388. 388.
    Teske BF, Wek SA, Bunpo P, Cundiff JK, McClintick JN, Anthony TG, Wek RC (2011) The eIF2 kinase PERK and the integrated stress response facilitate activation of ATF6 during endoplasmic reticulum stress. Mol Biol Cell 22(22):4390–4405PubMedPubMedCentralCrossRefGoogle Scholar
  389. 389.
    Ozcan L, Tabas I (2012) Role of endoplasmic reticulum stress in metabolic disease and other disorders. Annu Rev Med 63:317–328PubMedPubMedCentralCrossRefGoogle Scholar
  390. 390.
    Connerly PL (2010) How do proteins move through the golgi apparatus? Nat Educ 3(9):60Google Scholar
  391. 391.
    Pfeffer SR (2001) Constructing a Golgi complex. J Cell Biol 155(6):873–876PubMedPubMedCentralCrossRefGoogle Scholar
  392. 392.
    Nakano A (2015) Cell biology: polarized transport in the Golgi apparatus. Nature 521(7553):427–428PubMedCrossRefGoogle Scholar
  393. 393.
    Andreeva AV, Kutuzov MA, Evans DE, Hawes CR (1998) The structure and function of the Golgi apparatus: a hundred years of questions. J Exp Bot 49(325):1281–1291CrossRefGoogle Scholar
  394. 394.
    De Matteis MA, Mironov AA, Beznoussenko GV (2008) The Golgi ribbon and the function of the Golgins. In: Mironov AA, Pavelka M (eds) The Golgi apparatus. Springer, ViennaGoogle Scholar
  395. 395.
    Malhotra V, Mayor S (2006) Cell biology: the Golgi grows up. Nature 441:939–940PubMedCrossRefPubMedCentralGoogle Scholar
  396. 396.
    Pelham HR (2001) Traffic through the Golgi apparatus. J Cell Biol 155(7):1099–1102PubMedPubMedCentralCrossRefGoogle Scholar
  397. 397.
    Storrie B (2005) Maintenance of Golgi apparatus structure in the face of continuous protein recycling to the endoplasmic reticulum: making ends meet. Int Rev Cytol 244:69–94PubMedCrossRefPubMedCentralGoogle Scholar
  398. 398.
    Gonatas NK (1997) The Golgi apparatus in disease. In: Berger EG, Roth J (eds) The Golgi apparatus. Birkhäuser, BaselCrossRefGoogle Scholar
  399. 399.
    Vanier MT (2010) Niemann-pick disease type C. Orphanet J Rare Dis 5:16PubMedPubMedCentralCrossRefGoogle Scholar
  400. 400.
    Jadhav S, Jadhav A, Thopte S, Marathe S, Vhathakar P, Chivte P, Jamkhande A (2015) Sjögren’s syndrome: a case study. J Int Oral Health 7(3):72–74PubMedPubMedCentralGoogle Scholar
  401. 401.
    Di Ngo YJ, Thomson WM, Nolan A, Ferguson S (2016) The lived experience of Sjögren’s syndrome. BMC Oral Health 16:7PubMedPubMedCentralCrossRefGoogle Scholar
  402. 402.
    Nozawa K, Fritzler MJ, von Mühlen CA, Chan EKL (2004) Giantin is the major Golgi autoantigen in human anti-Golgi complex sera. Arthritis Res Ther 6(2):R95–R102PubMedCrossRefPubMedCentralGoogle Scholar
  403. 403.
    Manson JJ, Rahman A (2006) Systemic lupus erythematosus. Orphanet J Rare Dis 1:6PubMedPubMedCentralCrossRefGoogle Scholar
  404. 404.
    Williams PH, Cobb BL, Namjou B, Scofield RH, Sawalha AH, Harley JB (2007) Horizons in Sjögren’s syndrome genetics. Clin Rev Allergy Immunol 32(3):201–209PubMedPubMedCentralCrossRefGoogle Scholar
  405. 405.
    Gleeson PA, Anderson TJ, Stow JL, Griffiths G, Toh BH, Matheson F (1996) p230 is associated with vesicles budding from the trans-Golgi network. J Cell Sci 109(Pt 12):2811–2821PubMedPubMedCentralGoogle Scholar
  406. 406.
    Fridmann-Sirkis Y, Siniossoglou S, Pelham HRB (2004) TMF is a golgin that binds Rab6 and influences Golgi morphology. BMC Cell Biol 5:18PubMedPubMedCentralCrossRefGoogle Scholar
  407. 407.
    Barr FA, Short B (2003) Golgins in the structure and dynamics of the Golgi apparatus. Curr Opin Cell Biol 15(4):405–413PubMedCrossRefPubMedCentralGoogle Scholar
  408. 408.
    Narula N, Stow JL (1995) Distinct coated vesicles labeled for p200 bud from trans-Golgi network membranes. Proc Natl Acad Sci USA 92(7):2874–2878PubMedPubMedCentralCrossRefGoogle Scholar
  409. 409.
    Weide T, Bayer M, Köster M, Siebrasse JP, Peters R, Barnekow A (2001) The Golgi matrix protein GM130: a specific interacting partner of the small GTPase rab1b. EMBO Rep 2:336–341PubMedPubMedCentralCrossRefGoogle Scholar
  410. 410.
    Diao A, Rahman D, Pappin DJC, Lucocq J, Lowe M (2003) The coiled-coil membrane protein golgin-84 is a novel rab effector required for Golgi ribbon formation. J Cell Biol 160(2):201–212PubMedPubMedCentralCrossRefGoogle Scholar
  411. 411.
    Infante C, Ramos-Morales F, Fedriani C, Bornens M, Rios RM (1999) GMAP-210, A cis-Golgi network-associated protein, is a minus end microtubule-binding protein. J Cell Biol 145(1):83–98PubMedPubMedCentralCrossRefGoogle Scholar
  412. 412.
    Sohda M, Misumi Y, Ogata S, Sakisaka S, Hirose S, Ikehara Y, Oda K (2015) Trans-Golgi protein p 230/golgin-245 is involved in phagophore formation. Biochem Biophys Res Comm 456(1, 2):275–281PubMedCrossRefPubMedCentralGoogle Scholar
  413. 413.
    Lu L, Tai G, Hong W (2004) Autoantigen Golgin-97, an effector of Arl1 GTPase, participates in traffic from the endosome to the trans-Golgi network. Mol Biol Cell 15(10):4426–4443PubMedPubMedCentralCrossRefGoogle Scholar
  414. 414.
    Roels F, Espeel M, Pauwels M, De Craemer D, Egberts HJ, van der Spek P (1991) Different types of peroxisomes in human duodenal epithelium. Gut 32(8):858–865PubMedPubMedCentralCrossRefGoogle Scholar
  415. 415.
    Gabaldón T (2010) Peroxisome diversity and evolution. Philos Trans R Soc Lond B Biol Sci 365(1541):765–773PubMedPubMedCentralCrossRefGoogle Scholar
  416. 416.
    Terlecky SR, Terlecky LJ, Giordano CR (2012) Peroxisomes, oxidative stress, and inflammation. World J Biol Chem 3(5):93–97PubMedPubMedCentralCrossRefGoogle Scholar
  417. 417.
    South ST, Gould SJ (1999) Peroxisome synthesis in the absence of preexisting peroxisomes. J Cell Biol 144(2):255–266PubMedPubMedCentralCrossRefGoogle Scholar
  418. 418.
    Smith JJ, Aitchison JD (2013) Peroxisomes take shape. Nat Rev Mol Cell Biol 14:803–817PubMedPubMedCentralCrossRefGoogle Scholar
  419. 419.
    Mawatari S, Hazeyama S, Fujino T (2016) Measurement of ether phospholipids in human plasma with HPLC-ELSD and LC/ESI-MS after hydrolysis of plasma with phospholipase A1. Lipids 51(8):997–1006PubMedPubMedCentralCrossRefGoogle Scholar
  420. 420.
    Hashimoto M, Hossain S, Al Mamun A, Matsuzaki K, Arai H (2017) Docosahexaenoic acid: one molecule diverse functions. Crit Rev Biotechnol 37(5):579–597PubMedCrossRefPubMedCentralGoogle Scholar
  421. 421.
    Marszalek JR, Lodish HF (2005) Docosahexaenoic acid, fatty acid-interacting proteins, and neuronal function: breastmilk and fish are good for you. Annu Rev Cell Dev Biol 21:633–657PubMedCrossRefPubMedCentralGoogle Scholar
  422. 422.
    Siddiqui RA, Harvey KA, Xu Z, Bammerlin EM, Walker C, Altenburg JD (2011) Docosahexaenoic acid: a natural powerful adjuvant that improves efficacy for anticancer treatment with no adverse effects. BioFactors 37(6):399–412PubMedCrossRefPubMedCentralGoogle Scholar
  423. 423.
    Terano T, Fujishiro S, Ban T, Yamamoto K, Tanaka T, Noguchi Y et al (1999) Docosahexaenoic acid supplementation improves the moderately severe dementia from thrombotic cerebrovascular diseases. Lipids 34(Suppl):S345–S346PubMedCrossRefPubMedCentralGoogle Scholar
  424. 424.
    Holub BJ (2009) Docosahexaenoic acid (DHA) and cardiovascular disease risk factors. Prostaglandins Leukot Essent Fatty Acids 81(2–3):199–204PubMedCrossRefGoogle Scholar
  425. 425.
    Allaire J, Couture P, Leclerc M, Charest A, Marin J, Lépine MC et al (2016) A randomized, crossover, head-to-head comparison of eicosapentaenoic acid and docosahexaenoic acid supplementation to reduce inflammation markers in men and women: the Comparing EPA to DHA (ComparED) Study. Am J Clin Nutr 104(2):280–287PubMedCrossRefPubMedCentralGoogle Scholar
  426. 426.
    Horrocks LA, Yeo YK (1999) Health benefits of docosahexaenoic acid (DHA). Pharmacol Res 40(3):211–225PubMedCrossRefPubMedCentralGoogle Scholar
  427. 427.
    FitzPatrick DR (1996) Zellweger syndrome and associated phenotypes. J Med Genet 33(10):863–868PubMedPubMedCentralCrossRefGoogle Scholar
  428. 428.
    Brul S, Westerveld A, Strijland A, Wanders R, Schram A, Heymans H et al (1988) Genetic heterogeneity in the cerebrohepatorenal (Zellweger) syndrome and other inherited disorders with a generalized impairment of peroxisomal functions. A study using complementation analysis. J Clin Invest 81(6):1710–1715PubMedPubMedCentralCrossRefGoogle Scholar
  429. 429.
    Wiedemann HR (1991) Hans-Ulrich Zellweger (1909-1990). Eur J Pediatr 150(7):451PubMedCrossRefPubMedCentralGoogle Scholar
  430. 430.
    Rosewich H, Waterham H, Poll-The BT, Ohlenbusch A, Gärtner J (2015) Clinical utility gene card for: Zellweger syndrome spectrum. Eur J Hum Genet 23(8):1111CrossRefGoogle Scholar
  431. 431.
    Steinberg SJ, Raymond GV, Braverman NE, Moser AB (2003) Zellweger spectrum disorder. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mefford HC et al (eds) GeneReviews. SeattleGoogle Scholar
  432. 432.
    Luzio JP, Pryor PR, Bright NA (2007) Lysosomes: fusion and function. Nat Rev Mol Cell Biol 8:622–632PubMedCrossRefGoogle Scholar
  433. 433.
    Xu H, Ren D (2015) Lysosomal physiology. Annu Rev Physiol 77:57–80PubMedPubMedCentralCrossRefGoogle Scholar
  434. 434.
    Samie MA, Xu H (2014) Lysosomal exocytosis and lipid storage disorders. J Lipid Res 55(6):995–1009PubMedPubMedCentralCrossRefGoogle Scholar
  435. 435.
    de Duve C (2005) The lysosome turns fifty. Nat Cell Biol 7:847–849PubMedCrossRefGoogle Scholar
  436. 436.
    Sabatini DD, Adesnik M (2013) Christian de Duve: explorer of the cell who discovered new organelles by using a centrifuge. Proc Natl Acad Sci USA 110(33):13234–13235PubMedPubMedCentralCrossRefGoogle Scholar
  437. 437.
    Opperdoes F (2013) A feeling for the cell: Christian de Duve (1917–2013). PLoS Biol 11(10):e1001671PubMedCentralCrossRefPubMedGoogle Scholar
  438. 438.
    Burd CG (2011) Physiology and pathology of endosome-to-Golgi retrograde sorting. Traffic 12(8):948–955PubMedPubMedCentralCrossRefGoogle Scholar
  439. 439.
    Bharadwaj R, Cunningham KM, Zhang K, Lloyd TE (2016) FIG4 regulates lysosome membrane homeostasis independent of phosphatase function. Hum Mol Genet 25(4):681–692PubMedCrossRefGoogle Scholar
  440. 440.
    Kornfeld S (1986) Trafficking of lysosomal enzymes in normal and disease states. J Clin Invest 77(1):1–6PubMedPubMedCentralCrossRefGoogle Scholar
  441. 441.
    Kornfeld S (1987) Trafficking of lysosomal enzymes. FASEB J 1(6):462–468PubMedCrossRefGoogle Scholar
  442. 442.
    von Figura K, Hasilik A (1986) Lysosomal enzymes and their receptors. Annu Rev Biochem 55:167–193CrossRefGoogle Scholar
  443. 443.
    Jaishy B, Abel ED (2016) Lipids, lysosomes, and autophagy. J Lipid Res 57(9):1619–1635PubMedPubMedCentralCrossRefGoogle Scholar
  444. 444.
    Sinha D, Valapala M, Shang P, Hose S, Grebe R, Lutty GA et al (2016) Lysosomes: Regulators of autophagy in the retinal pigmented epithelium. Exp Eye Res 144:46–53PubMedCrossRefGoogle Scholar
  445. 445.
    Amar N, Lustig G, Ichimura Y, Ohsumi Y, Elazar Z (2006) Two newly identified sites in the ubiquitin-like protein Atg8 are essential for autophagy. EMBO Rep 7:635–642PubMedPubMedCentralGoogle Scholar
  446. 446.
    Platt FM, Boland B, van der Spoel AC (2012) Lysosomal storage disorders: the cellular impact of lysosomal dysfunction. J Cell Biol 199(5):723–734PubMedPubMedCentralCrossRefGoogle Scholar
  447. 447.
    Filocamo M, Morrone A (2011) Lysosomal storage disorders: molecular basis and laboratory testing. Hum Genomics 5:156PubMedPubMedCentralCrossRefGoogle Scholar
  448. 448.
    Schulze H, Sandhoff K (2011) Lysosomal lipid storage diseases. Cold Spring Harb Perspect Biol 3(6):a004804PubMedPubMedCentralCrossRefGoogle Scholar
  449. 449.
    Vellodi A (2005) Lysosomal storage disorders. Br J Haematol 128(4):413–431PubMedCrossRefPubMedCentralGoogle Scholar
  450. 450.
    Hers HG (1963) α-Glucosidase deficiency in generalized glycogenstorage disease (Pompe’s disease). Biochem Jl 86:11–16CrossRefGoogle Scholar
  451. 451.
    Myerowitz R (1997) Tay-Sachs disease-causing mutations and neutral polymorphisms in the Hex A gene. Hum Mutat 9(3):195–208PubMedCrossRefPubMedCentralGoogle Scholar
  452. 452.
    Myerowitz R, Lawson D, Mizukami H, Mi Y, Tifft CJ, Proia RL (2002) Molecular pathophysiology in Tay-Sachs and Sandhoff diseases as revealed by gene expression profiling. Hum Mol Genet 11(11):1343–1350PubMedCrossRefGoogle Scholar
  453. 453.
    Dersh D, Iwamoto Y, Argon Y (2016) Tay-Sachs disease mutations in HEXA target the α chain of hexosaminidase A to endoplasmic reticulum-associated degradation. Mol Biol Cell 27(24):3813–3827PubMedPubMedCentralCrossRefGoogle Scholar
  454. 454.
    Mocchetti I (2005) Exogenous gangliosides, neuronal plasticity and repair, and the neurotrophins. Cell Mol Life Sci 62(19–20):2283–2294PubMedCrossRefGoogle Scholar
  455. 455.
    Kaye EM (2001) Lysosomal storage diseases. Curr Treat Options Neurol 3(3):249–256PubMedCrossRefGoogle Scholar
  456. 456.
    Jerome GW (2010) Lysosomes, cholesterol and atherosclerosis. Clin Lipidol 5(6):853–865PubMedPubMedCentralCrossRefGoogle Scholar
  457. 457.
    Sherratt HS (1991) Mitochondria: structure and function. Rev Neurol (Paris) 147(6–7):417–430Google Scholar
  458. 458.
    Picard M, Taivassalo T, Gouspillou G, Hepple RT (2011) Mitochondria: isolation, structure and function. J Physiol 589(Pt 18):4413–4421PubMedPubMedCentralCrossRefGoogle Scholar
  459. 459.
    Sylvester JE, Fischel-Ghodsian N, Mougey EB, O’brien TW (2004) Mitochondrial ribosomal proteins: candidate genes for mitochondrial disease. Genet Med 6:73–80PubMedCrossRefGoogle Scholar
  460. 460.
    Mourier A, Devin A, Rigoulet M (2010) Active proton leak in mitochondria: a new way to regulate substrate oxidation. Biochim Biophys Acta 1797(2):255–261PubMedCrossRefGoogle Scholar
  461. 461.
    Rigoulet M, Mourier A, Galinier A, Casteilla L, Devin A (2010) Electron competition process in respiratory chain: regulatory mechanisms and physiological functions. Biochim Biophys Acta 1797(6–7):671–677PubMedCrossRefGoogle Scholar
  462. 462.
    Lee YM (2012) Mitochondrial diseases. J Epilepsy Res 2(1):1–4PubMedPubMedCentralCrossRefGoogle Scholar
  463. 463.
    Parikh S, Goldstein A, Koenig MK, Scaglia F, Enns GM, Saneto R et al (2015) Diagnosis and management of mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society. Genet Med 17(9):689–701PubMedCrossRefGoogle Scholar
  464. 464.
    Schapira AHV (2012) Mitochondrial diseases. Lancet 379(9828):1825–1834PubMedCrossRefGoogle Scholar
  465. 465.
    Lamond AI, Earnshaw WC (1998) Structure and function in the nucleus. Science 280(5363):547–553PubMedCrossRefGoogle Scholar
  466. 466.
    Cardoso MC, Sporbert A, Leonhardt H (1999) Structure and function in the nucleus: subnuclear trafficking of DNA replication factors. J Cell Biochem 32–33:15–23CrossRefGoogle Scholar
  467. 467.
    Newport JW, Forbes DJ (1987) The nucleus: structure, function, and dynamics. Annu Rev Biochem 56:535–565PubMedCrossRefGoogle Scholar
  468. 468.
    Crick F (1970) Central dogma of molecular biology. Nature 227(5258):561–563PubMedCrossRefGoogle Scholar
  469. 469.
    Wilkins MHF, Randall JT (1953) Crystallinity in sperm heads: molecular structure of nucleoprotein in vivo. Biochem Biophys Acta 10:192–193PubMedCrossRefGoogle Scholar
  470. 470.
    Wilkins MH, Stokes AR, Wilson HR (1953) Molecular structure of deoxypentose nucleic acids. Nature 171(4356):738–740PubMedCrossRefGoogle Scholar
  471. 471.
    Watson JD, Crick FH (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171(4356):737–738PubMedCrossRefGoogle Scholar
  472. 472.
    Shapiro JA (2009) Revisiting the central dogma in the 21st century. Ann N Y Acad Sci 1178:6–28PubMedCrossRefGoogle Scholar
  473. 473.
    Nierhaus KH (1982) Structure, assembly, and function of ribosomes. Curr Topics Microbiol Immunol 97:81–155Google Scholar
  474. 474.
    Koonin EV (2012) Does the central dogma still stand? Biol Direct 7:27PubMedPubMedCentralCrossRefGoogle Scholar
  475. 475.
    Travers A, Muskhelishvili G (2015) DNA structure and function. FEBS J 282(12):2279–2295PubMedCrossRefGoogle Scholar
  476. 476.
    Chouard T (2011) Structural biology: breaking the protein rules. Nature 471:151–153PubMedCrossRefGoogle Scholar
  477. 477.
    Rigden DJ, Fernández-Suárez XM, Galperin MY (2016) The 2016 database issue of nucleic acids research and an updated molecular biology database collection. Nucleic Acids Res 44(Database issue):D1–D6PubMedCrossRefGoogle Scholar
  478. 478.
    Varshney GK, Burgess SM (2016) DNA-guided genome editing using structure-guided endonucleases. Genome Biol 17:187PubMedPubMedCentralCrossRefGoogle Scholar
  479. 479.
    Palazzo AF, Gregory TR (2014) The Case for Junk DNA. PLoS Genet 10(5):e1004351PubMedPubMedCentralCrossRefGoogle Scholar
  480. 480.
    Bacolla A, Wang G, Vasquez KM (2015) New perspectives on DNA and RNA triplexes as effectors of biological activity. PLoS Genet 11(12):e1005696PubMedPubMedCentralCrossRefGoogle Scholar
  481. 481.
    Leonhardt H, Rahn HP, Cardoso MC (1999) Functional links between nuclear structure, gene expression, DNA replication, and methylation. Crit Rev Eukaryot Gene Expr 9(3–4):345–351PubMedCrossRefGoogle Scholar
  482. 482.
    Wang B, Yanez A, Novina CD (2008) MicroRNA-repressed mRNAs contain 40S but not 60S components. Proc Natl Acad Sci USA 105(14):5343–5348PubMedPubMedCentralCrossRefGoogle Scholar
  483. 483.
    Krokowski D, Gaccioli F, Majumder M, Mullins MR, Yuan CL, Barbara P et al (2011) Characterization of hibernating ribosomes in mammalian cells. Cell Cycle 10(16):2691–2702PubMedPubMedCentralCrossRefGoogle Scholar
  484. 484.
    Auxilien S, Rasmussen A, Rose S, Brochier-Armanet C, Husson C, Fourmy D et al (2011) Specificity shifts in the rRNA and tRNA nucleotide targets of archaeal and bacterial m5U methyltransferases. RNA 17(1):45–53PubMedPubMedCentralCrossRefGoogle Scholar
  485. 485.
    Neumann S, Petfalski E, Brügger B, Großhans H, Wieland F, Tollervey D, Hurt E (2003) Formation and nuclear export of tRNA, rRNA and mRNA is regulated by the ubiquitin ligase Rsp5p. EMBO Rep 4(12):1156–1162PubMedPubMedCentralCrossRefGoogle Scholar
  486. 486.
    Abraham M, Dror O, Nussinov R, Wolfson HJ (2008) Analysis and classification of RNA tertiary structures. RNA 14(11):2274–2289PubMedPubMedCentralCrossRefGoogle Scholar
  487. 487.
    Pritchard CC, Cheng HH, Tewari M (2012) MicroRNA profiling: approaches and considerations. Nat Rev Genet 13:358–369PubMedPubMedCentralCrossRefGoogle Scholar
  488. 488.
    Panwar B, Arora A, Raghava GPS (2014) Prediction and classification of ncRNAs using structural information. BMC Genom 15:127CrossRefGoogle Scholar
  489. 489.
    Moreno-Moya JM, Vilella F, Simón C (2014) MicroRNA: key gene expression regulators. Fertil Steril 101(6):1516–1523PubMedCrossRefGoogle Scholar
  490. 490.
    Peskoe SB, Barber JR, Zheng Q, Meeker AK, De Marzo AM, Platz EA, Lupold SE (2017) Differential long-term stability of microRNAs and RNU6B snRNA in 12–20 year old archived formalin-fixed paraffin-embedded specimens. BMC Cancer 17:32PubMedPubMedCentralCrossRefGoogle Scholar
  491. 491.
    Hung T, Chang HY (2010) Long noncoding RNA in genome regulation: prospects and mechanisms. RNA Biol 7(5):582–585PubMedPubMedCentralCrossRefGoogle Scholar
  492. 492.
    McFadden EJ, Hargrove AE (2016) Biochemical methods to investigate lncRNA and the influence of lncRNA: protein complexes on chromatin. Biochem 55(11):1615–1630CrossRefGoogle Scholar
  493. 493.
    Hernandez-Verdun D, Roussel P, Thiry M, Sirri V, Lafontaine DL (2010) The nucleolus: structure/function relationship in RNA metabolism. Wiley Interdiscip Rev RNA 1(3):415–431PubMedCrossRefGoogle Scholar
  494. 494.
    Enyedi B, Jelcic M, Niethammer P (2016) The cell nucleus serves as a mechanotransducer of tissue damage-induced inflammation. Cell 165(5):1160–1170PubMedPubMedCentralCrossRefGoogle Scholar
  495. 495.
    Scaffidi P, Gordon L, Misteli T (2005) The cell nucleus and aging: tantalizing clues and hopeful promises. PLoS Biol 3(11):e395PubMedPubMedCentralCrossRefGoogle Scholar
  496. 496.
    Wiener J, Spiro D, Loewenstein WR (1965) Ultrastructure and permeability of nuclear membranes. J Cell Biol 27(1):107–117PubMedPubMedCentralCrossRefGoogle Scholar
  497. 497.
    Gay H (1956) Chromosome-nuclear membrane-cytoplasmic interrelations in drosophila. J Biophys Biochem Cytol 2(4):407–414PubMedPubMedCentralCrossRefGoogle Scholar
  498. 498.
    Dechat T, Pfleghaar K, Sengupta K, Shimi T, Shumaker DK, Solimando L, Goldman RD (2008) Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev 22(7):832–853PubMedPubMedCentralCrossRefGoogle Scholar
  499. 499.
    Hoelz A, Glavy JS, Beck M (2016) Toward the atomic structure of the nuclear pore complex: when top down meets bottom up. Nat Struct Mol Biol 23:624–630PubMedPubMedCentralCrossRefGoogle Scholar
  500. 500.
    Beck M, Hurt E (2017) The nuclear pore complex: understanding its function through structural insight. Nat Rev Mol Cell Biol 18:73–89PubMedCrossRefPubMedCentralGoogle Scholar
  501. 501.
    Worman HJ (2012) Nuclear lamins and laminopathies. J Pathol 226:316–325PubMedCrossRefPubMedCentralGoogle Scholar
  502. 502.
    Lund E, Collas P (2013) Nuclear lamins—making contacts with promoters. Nucleus 4(6):424–430PubMedPubMedCentralCrossRefGoogle Scholar
  503. 503.
    Burke B, Stewart CL (2013) The nuclear lamins: flexibility in function. Nat Rev Mol Cell Biol 14:13–24PubMedCrossRefPubMedCentralGoogle Scholar
  504. 504.
    Shumaker DK, Kuczmarski ER, Goldman RD (2003) The nucleoskeleton: lamins and actin are major players in essential nuclear functions. Curr Opin Cell Biol 15(3):358–366PubMedCrossRefPubMedCentralGoogle Scholar
  505. 505.
    Dittmer TA, Misteli T (2011) The lamin protein family. Genome Biol 12(5):222PubMedPubMedCentralCrossRefGoogle Scholar
  506. 506.
    Yang W, Musser SM (2006) Nuclear import time and transport efficiency depend on importin β concentration. J Cell Biol 174(7):951–961PubMedPubMedCentralCrossRefGoogle Scholar
  507. 507.
    Wozniak RW, Lusk CP (2003) Nuclear pore complexes. Curr Biol 13(5):R169PubMedCrossRefPubMedCentralGoogle Scholar
  508. 508.
    Ribbeck K, Görlich D (2001) Kinetic analysis of translocation through nuclear pore complexes. EMBO J 20(6):1320–1330PubMedPubMedCentralCrossRefGoogle Scholar
  509. 509.
    Woulfe JM (2007) Abnormalities of the nucleus and nuclear inclusions in neurodegenerative disease: a work in progress. Neuropathol Appl Neurobiol 33(1):2–42PubMedPubMedCentralGoogle Scholar
  510. 510.
    Worman HJ, Courvalin JC (2004) How do mutations in lamins A and C cause disease? J Clin Invest 113(3):349–351PubMedPubMedCentralCrossRefGoogle Scholar
  511. 511.
    Gruenbaum Y, Medalia O (2015) Lamins: the structure and protein complexes. Curr Opin Cell Biol 32:7–12PubMedCrossRefPubMedCentralGoogle Scholar
  512. 512.
    Butin-Israeli V, Adam SA, Goldman AE, Goldman RD (2012) Nuclear lamin functions and disease. Trends Genet 28(9):464–471PubMedPubMedCentralCrossRefGoogle Scholar
  513. 513.
    Wilson DN, Cate JHD (2012) The structure and function of the eukaryotic ribosome. Cold Spring Harb Perspect Biol 4(5):a011536PubMedPubMedCentralCrossRefGoogle Scholar
  514. 514.
    Earnest TM, Cole JA, Peterson JR, Hallock MJ, Kuhlman TE, Luthey-Schulten Z (2016) Ribosome biogenesis in replicating cells: integration of experiment and theory. Biopolymers 105(10):735–751PubMedPubMedCentralCrossRefGoogle Scholar
  515. 515.
    Sanchez CG, Teixeira FK, Czech B, Preall JB, Zamparini AL, Seifert JR et al (2016) Regulation of ribosome biogenesis and protein synthesis controls germline stem cell differentiation. Cell Stem Cell 18(2):276–290PubMedCrossRefPubMedCentralGoogle Scholar
  516. 516.
    Zhang B, Cech TR (1998) Peptidyl-transferase ribozymes: trans reactions, structural characterization and ribosomal RNA-like features. Chem Biol 5(10):539–553PubMedCrossRefPubMedCentralGoogle Scholar
  517. 517.
    Oeffinger M (2016) Structural biology: moulding the ribosome. Nature 537:38–40PubMedCrossRefPubMedCentralGoogle Scholar
  518. 518.
    Brandman O, Hegde RS (2016) Ribosome-associated protein quality control. Nat Struct Mol Biol 23:7–15PubMedPubMedCentralCrossRefGoogle Scholar
  519. 519.
    Englmeier R, Pfeffer S, Förster F (2017) Structure of the human mitochondrial ribosome studied in situ by cryoelectron tomography. Structure 25(10):1574–1581PubMedCrossRefPubMedCentralGoogle Scholar
  520. 520.
    Richman TR, Rackham O, Filipovska A (2014) Mitochondria: unusual features of the mammalian mitoribosome. Int J Biochem Cell Biol 53:115–120PubMedCrossRefPubMedCentralGoogle Scholar
  521. 521.
    Shenoy N, Kessel R, Bhagat TD, Bhattacharyya S, Yu Y, Mcmahon C, Verma A (2012) Alterations in the ribosomal machinery in cancer and hematologic disorders. J Hematol Oncol 5:32PubMedPubMedCentralCrossRefGoogle Scholar
  522. 522.
    Korobeinikova AV, Garber MB, Gongadze GM (2012) Ribosomal proteins: structure, function, and evolution. Biochem (Mosc) 77(6):562–574CrossRefGoogle Scholar
  523. 523.
    Freed EF, Bleichert F, Dutca LM, Baserga SJ (2010) When ribosomes go bad: diseases of ribosome biogenesis. Mol BioSyst 6(3):481–493PubMedPubMedCentralCrossRefGoogle Scholar
  524. 524.
    Stein K, Chiang HL (2014) Exocytosis and endocytosis of small vesicles across the plasma membrane in Saccharomyces cerevisiae. Membranes (Basel) 4(3):608–629CrossRefGoogle Scholar
  525. 525.
    Wu LG, Hamid E, Shin l, Chiang HC (2014) Exocytosis and endocytosis: modes, functions, and coupling mechanisms. Annu Rev Physiol 76:301–331PubMedCrossRefPubMedCentralGoogle Scholar
  526. 526.
    Visentin M, Diop-Bove N, Zhao R, Goldman ID (2014) The intestinal absorption of folates. Annu Rev Physiol 76:251–274PubMedPubMedCentralCrossRefGoogle Scholar
  527. 527.
    Pelaseyed T, Bergström JH, Gustafsson JK, Ermund A, Birchenough GM, Schütte A et al (2014) The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol Rev 260(1):8–20PubMedPubMedCentralCrossRefGoogle Scholar
  528. 528.
    Yamauchi K, Tarachai P (2000) Changes in intestinal villi, cell area and intracellular autophagic vacuoles related to intestinal function in chickens. Br Poult Sci 41(4):416–423PubMedCrossRefPubMedCentralGoogle Scholar
  529. 529.
    Wj Luo, Chang A (2000) An endosome-to-plasma membrane pathway involved in trafficking of a mutant plasma membrane ATPase in yeast. Mol Biol Cell 11(2):579–592CrossRefGoogle Scholar
  530. 530.
    van IJzendoorn SCD (2006) Recycling endosomes. J Cell Sci 119:1679–1681Google Scholar
  531. 531.
    Mainou BA, Dermody TS (2012) Transport to late endosomes is required for efficient reovirus infection. J Virol 86(16):8346–8358PubMedPubMedCentralCrossRefGoogle Scholar
  532. 532.
    Bonifacino JS, Rojas R (2006) Retrograde transport from endosomes to the trans-Golgi network. Nat Rev Mol Cell Biol 7:568–579PubMedCrossRefPubMedCentralGoogle Scholar
  533. 533.
    Cai H, Reinisch K, Ferro-Novick S (2007) Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev Cell 12(5):671–682PubMedCrossRefPubMedCentralGoogle Scholar
  534. 534.
    Murray JW, Wolkoff AW (2003) Roles of the cytoskeleton and motor proteins in endocytic sorting. Adv Drug Deliv Rev 55(11):1385–1403PubMedCrossRefGoogle Scholar
  535. 535.
    Rogers SL, Gelfand VI (2000) Membrane trafficking, organelle transport, and the cytoskeleton. Curr Opin Cell Biol 12(1):57–62PubMedCrossRefGoogle Scholar
  536. 536.
    Damania D, Subramanian H, Tiwari AK, Stypula Y, Kunte D, Pradhan P et al (2010) Role of cytoskeleton in controlling the disorder strength of cellular nanoscale architecture. Biophys J 99(3):989–996PubMedPubMedCentralCrossRefGoogle Scholar
  537. 537.
    Fletcher DA, Mullins RD (2010) Cell mechanics and the cytoskeleton. Nature 463(7280):485–492PubMedPubMedCentralCrossRefGoogle Scholar
  538. 538.
    Moseley JB (2013) An expanded view of the eukaryotic cytoskeleton. Mol Biol Cell 24(11):1615–1618PubMedPubMedCentralCrossRefGoogle Scholar
  539. 539.
    Mostowy S, Shenoy AR (2015) The cytoskeleton in cell-autonomous immunity: structural determinants of host defence. Nat Rev Immunol 15(9):559–573PubMedPubMedCentralCrossRefGoogle Scholar
  540. 540.
    Szymanski WG, Zauber H, Erban A, Gorka M, Wu XN, Schulze WX (2015) Cytoskeletal components define protein location to membrane microdomains. Mol Cell Proteomics 14(9):2493–2509PubMedPubMedCentralCrossRefGoogle Scholar
  541. 541.
    Ramaekers FCS, Bosman FT (2004) The cytoskeleton and disease. J Pathol 204:351–354PubMedCrossRefPubMedCentralGoogle Scholar
  542. 542.
    Herrmann H, Strelkov SV, Burkhard P, Aebi U (2009) Intermediate filaments: primary determinants of cell architecture and plasticity. J Clin Invest 119(7):1772–1783PubMedPubMedCentralCrossRefGoogle Scholar
  543. 543.
    Steinert PM, Jones JC, Goldman RD (1984) Intermediate filaments. J Cell Biol 99(1 Pt 2):22s–27sPubMedPubMedCentralCrossRefGoogle Scholar
  544. 544.
    Fuchs E, Weber K (1994) Intermediate filaments: structure, dynamics, function and disease. Annu Rev Biochem 63:345–382PubMedCrossRefPubMedCentralGoogle Scholar
  545. 545.
    Köster S, Weitz D, Goldman RD, Aebi U, Herrmann H (2015) Intermediate filament mechanics in vitro and in the cell: from coiled coils to filaments, fibers and networks. Curr Opin Cell Biol 32:82–91PubMedCrossRefGoogle Scholar
  546. 546.
    Xiao S, McLean J, Robertson J (2006) Neuronal intermediate filaments and ALS: a new look at an old question. Biochim Biophys Acta 1762(11–12):1001–1012PubMedCrossRefPubMedCentralGoogle Scholar
  547. 547.
    Majumdar D, Tiernan JP, Lobo AJ, Evans CA, Corfe BM (2012) Keratins in colorectal epithelial function and disease. Int J Exp Pathol 93(5):305–318PubMedPubMedCentralCrossRefGoogle Scholar
  548. 548.
    Fuchs E (1996) The cytoskeleton and disease: genetic disorders of intermediate filaments. Annu Rev Genet 30:1–702CrossRefGoogle Scholar
  549. 549.
    Kucharzik T, Lugering N, Schmid K, Schmidt M, Stoll R, Domschke W (1998) Human intestinal M cells exhibit enterocyte-like intermediate filaments. Gut 42(1):54–62PubMedPubMedCentralCrossRefGoogle Scholar
  550. 550.
    Coch RA, Leube RE (2016) Intermediate filaments and polarization in the intestinal epithelium. Cells 5(3):32PubMedCentralCrossRefPubMedGoogle Scholar
  551. 551.
    Lu XY, Chen XX, Huang LD, Zhu CQ, Gu YY, Ye S (2010) Anti-alpha-internexin autoantibody from neuropsychiatric lupus induce cognitive damage via inhibiting axonal elongation and promote neuron apoptosis. PLoS ONE 5(6):e11124PubMedPubMedCentralCrossRefGoogle Scholar
  552. 552.
    Herrmann H, Bär H, Kreplak L, Strelkov SV, Aebi U (2007) Intermediate filaments: from cell architecture to nanomechanics. Nat Rev Mol Cell Biol 8(7):562–573CrossRefPubMedGoogle Scholar
  553. 553.
    Wang Q, Tolstonog GV, Shoeman R, Traub P (2001) Sites of nucleic acid binding in type I-IV intermediate filament subunit proteins. Biochem 40(34):10342–10349CrossRefGoogle Scholar
  554. 554.
    Hill TL (1981) Microfilament or microtubule assembly or disassembly against a force. Proc Natl Acad Sci USA 78(9):5613–5617PubMedPubMedCentralCrossRefGoogle Scholar
  555. 555.
    Yang X, Salas PJI, Pham TV, Wasserlauf BJ, Smets MJD, Myerburg RJ et al (2002) Cytoskeletal actin microfilaments and the transient outward potassium current in hypertrophied rat ventriculocytes. J Physiol 541(Pt 2):411–421PubMedPubMedCentralCrossRefGoogle Scholar
  556. 556.
    Connolly JA, Kalnins VI, Barber BH (1981) Microtubules and microfilaments during cell spreading and colony formation in PK 15 epithelial cells. Proc Natl Acad Sci USA 78(11):6922–6926PubMedPubMedCentralCrossRefGoogle Scholar
  557. 557.
    Kim HR, Appel S, Vetterkind S, Gangopadhyay SS, Morgan KG (2008) Smooth muscle signalling pathways in health and disease. J Cell Mol Med 12(6a):2165–2180PubMedPubMedCentralCrossRefGoogle Scholar
  558. 558.
    dos Remedios CG, Chhabra D, Kekic M, Dedova IV, Tsubakihara M, Berry DA, Nosworthy NJ (2003) Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol Rev 83(2):433–473PubMedCrossRefGoogle Scholar
  559. 559.
    Huang SC, Soong HK, Kowal VO (1991) Microfilaments, microtubules, and intermediate filaments in cultured corneal fibroblasts. Cornea 10(2):110–120PubMedCrossRefGoogle Scholar
  560. 560.
    Oz S, Gozes I (2013) The cytoskeleton as a pharmacological target in neurodegenerative diseases. In: Dermietzel R (ed) The cytoskeleton Volume 79 of the series neuromethods. Springer, New YorkGoogle Scholar
  561. 561.
    Oriolo AS, Wald FA, Ramsauer VP, Salas PJI (2007) Intermediate filaments: a role in epithelial polarity. Exp Cell Res 313(10):2255–2264PubMedPubMedCentralCrossRefGoogle Scholar
  562. 562.
    Kleele T, Marinković P, Williams PR, Stern S, Weigand EE, Engerer P et al (2014) An assay to image neuronal microtubule dynamics in mice. Nat Commun 5:4827PubMedPubMedCentralCrossRefGoogle Scholar
  563. 563.
    Füchtbauer A, Lassen LB, Jensen AB, Howard J, Quiroga Ade S, Warming S et al (2011) Septin9 is involved in septin filament formation and cellular stability. Biol Chem 392(8–9):769–777PubMedGoogle Scholar
  564. 564.
    McMurray MA, Bertin A, Garcia G 3rd, Lam L, Nogales E, Thorner J (2011) Septin filament formation is essential in budding yeast. Dev Cell 20(4):540–549PubMedPubMedCentralCrossRefGoogle Scholar
  565. 565.
    Angelis D, Spiliotis ET (2016) Septin mutations in human cancers. Front Cell Dev Biol 4:122PubMedPubMedCentralCrossRefGoogle Scholar
  566. 566.
    Mostowy S, Cossart P (2012) Septins: the fourth component of the cytoskeleton. Nat Rev Mol Cell Biol 13:183–194PubMedCrossRefGoogle Scholar
  567. 567.
    Cairns NJ, Lee VMY, Trojanowski JQ (2004) The cytoskeleton in neurodegenerative diseases. J Pathol 204(4):438–449PubMedPubMedCentralCrossRefGoogle Scholar
  568. 568.
    Leube RE, Schwarz N (2016) Intermediate filaments. In: Bradshaw RA, Stahl PD (eds) Encyclopedia of cell biology, vol 2. Elsevier, AmsterdamGoogle Scholar
  569. 569.
    Omary MB (2009) IF-pathies: A broad spectrum of intermediate filament-associated diseases. J Clin Invest 119:1756–1762PubMedPubMedCentralCrossRefGoogle Scholar
  570. 570.
    Clemente M, Musu M, Frau F, Brusco G, Sole G, Corazza G, De Virgiliis S (2000) Immune reaction against the cytoskeleton in coeliac disease. Gut 47(4):520–526PubMedPubMedCentralCrossRefGoogle Scholar
  571. 571.
    Owens DW, Lane EB (2004) Keratin mutations and intestinal pathology. J Pathol 204(4):377–385PubMedCrossRefGoogle Scholar
  572. 572.
    Spooner BS, Yamada KM, Wessells NK (1971) Microfilaments and cell locomotion. J Cell Biol 49(3):595–613PubMedPubMedCentralCrossRefGoogle Scholar
  573. 573.
    Zhou J, Giannakakou P (2005) Targeting microtubules for cancer chemotherapy. Curr Med Chem Anticancer Agents 5(1):65–71PubMedCrossRefGoogle Scholar
  574. 574.
    Stanton RA, Gernert KM, Nettles JH, Aneja R (2011) Drugs that target dynamic microtubules: a new molecular perspective. Med Res Rev 31(3):443–481PubMedPubMedCentralCrossRefGoogle Scholar
  575. 575.
    Mukhtar E, Adhami VM, Mukhtar H (2014) Targeting microtubules by natural agents for cancer therapy. Mol Cancer Ther 13(2):275–284PubMedPubMedCentralCrossRefGoogle Scholar
  576. 576.
    Dumontet C, Jordan MA (2010) Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov 9(10):790–803PubMedPubMedCentralCrossRefGoogle Scholar
  577. 577.
    Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 4:253–265PubMedCrossRefGoogle Scholar
  578. 578.
    Nigg EA, Stearns T (2011) The centrosome cycle: centriole biogenesis, duplication and inherent asymmetries. Nat Cell Biol 13(10):1154–1160PubMedPubMedCentralCrossRefGoogle Scholar
  579. 579.
    Lukasiewicz KB, Lingle WL (2009) Aurora A, centrosome structure, and the centrosome cycle. Environ Mol Mutagen 50(8):602–619PubMedCrossRefGoogle Scholar
  580. 580.
    Marshall WF (2009) Centriole evolution. Curr Opin Cell Biol 21(1):14–19PubMedPubMedCentralCrossRefGoogle Scholar
  581. 581.
    Badano JL, Teslovich TM, Katsanis N (2005) The centrosome in human genetic disease. Nat Rev Genet 6:194–205PubMedCrossRefGoogle Scholar
  582. 582.
    Dammermann A, Merdes A (2002) Assembly of centrosomal proteins and microtubule organization depends on PCM-1. J Cell Biol 159(2):255–266PubMedPubMedCentralCrossRefGoogle Scholar
  583. 583.
    Didier C, Merdes A, Gairin JE, Jabrane-Ferrat N (2008) Inhibition of proteasome activity impairs centrosome-dependent microtubule nucleation and organization. Mol Biol Cell 19(3):1220–1229PubMedPubMedCentralCrossRefGoogle Scholar
  584. 584.
    Bettencourt-Dias M (2013) Q&A: who needs a centrosome? BMC Biol 11:28PubMedPubMedCentralCrossRefGoogle Scholar
  585. 585.
    Schatten H, Sun QY (2015) Centrosome–microtubule interactions in health, disease, and disorders. In: Schatten H (ed) The cytoskeleton in health and disease. Springer, New YorkCrossRefGoogle Scholar
  586. 586.
    Löffler H, Lukas J, Bartek J, Krämer A (2006) Structure meets function–centrosomes, genome maintenance and the DNA damage response. Exp Cell Res 312(14):2633–2640PubMedCrossRefGoogle Scholar
  587. 587.
    Rieder CL, Faruki S, Khodjakov A (2001) The centrosome in vertebrates: more than a microtubule-organizing center. Trends Cell Biol 11(10):413–419PubMedCrossRefGoogle Scholar
  588. 588.
    Komarova IA, Vorob’ev IA (1994) The ultrastructure of the cell center in the enterocytes of mouse embryos and newborn mice. Ontogenez 25(2):76–88PubMedGoogle Scholar
  589. 589.
    Sysoeva VY, Onishchenko GE (2006) Centrosome and Golgi complex during differentiation of hepatocytes in early postnatal development of mice. Russ J Dev Biol 37(3):163–172CrossRefGoogle Scholar
  590. 590.
    Nalapareddy K, Nattamai KJ, Kumar RS, Karns R, Wikenheiser-Brokamp KA, Sampson LL et al (2017) Canonical Wnt signaling ameliorates aging of intestinal stem cells. Cell Rep 18(11):2608–2621PubMedPubMedCentralCrossRefGoogle Scholar
  591. 591.
    McDonald SAC, Graham TA, Humphries A, Wright NA, Preston SL, Brittan M, Direkze NC (2009) Stem cells in the gastrointestinal tract. In: Lanza R, Gearhart J, Hogan B, Melton D, Pedersen R, Thomas ED et al (eds) essentials of stem cell biology, 2nd edn. Elsevier, San DiegoGoogle Scholar
  592. 592.
    Nigg EA, Raff JW (2009) Centrioles, centrosomes, and cilia in health and disease. Cell 139(4):663–678PubMedCrossRefGoogle Scholar
  593. 593.
    Rodriguez-Boulan E, Macara IG (2014) Organization and execution of the epithelial polarity programme. Nat Rev Mol Cell Biol 15(4):225–242PubMedPubMedCentralCrossRefGoogle Scholar
  594. 594.
    Oriolo AS, Wald FA, Canessa G, Salas PJI (2007) GCP6 binds to intermediate filaments: a novel function of keratins in the organization of microtubules in epithelial cells. Mol Biol Cell 18(3):781–794PubMedPubMedCentralCrossRefGoogle Scholar
  595. 595.
    Cereijido M, Contreras RG, García-Villegas MR, González-Mariscal L, Valdés J (1996) Epithelial polarity. In: Wills NK, Reuss L, Lewis SA (eds) Epithelial transport—a guide to methods and experimental analysis. Springer, The NetherlandsGoogle Scholar
  596. 596.
    Wilson PD (1997) Epithelial cell polarity and disease. Ame J Physiol—Renal Physiol 272(4):F434–F442CrossRefGoogle Scholar
  597. 597.
    Ozdamar B, Bose R, Barrios-Rodiles M, Wang HR, Zhang Y, Wrana JL (2005) Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science 307(5715):1603–1609PubMedCrossRefGoogle Scholar
  598. 598.
    Hase K, Nakatsu F, Ohmae M, Sugihara K, Shioda N, Takahashi D et al (2013) AP-1B-mediated protein sorting regulates polarity and proliferation of intestinal epithelial cells in mice. Gastroenterol 145(3):625–635CrossRefGoogle Scholar
  599. 599.
    van Adelsberg J, Edwards JC, Takito J, Kiss B, Al-Awqati Q (1994) An induced extracellular matrix protein reverses the polarity of band 3 in intercalated epithelial cells. Cell 76(6):1053–1061PubMedCrossRefGoogle Scholar
  600. 600.
    Toya M, Kobayashi S, Kawasaki M, Shioi G, Kaneko M, Ishiuchi T et al (2016) CAMSAP3 orients the apical-to-basal polarity of microtubule arrays in epithelial cells. Proc Natl Acad Sci USA 113(2):332–337PubMedCrossRefPubMedCentralGoogle Scholar
  601. 601.
    Massey-Harroche D (2000) Epithelial cell polarity as reflected in enterocytes. Microsc Res Tech 49(4):353–362PubMedCrossRefPubMedCentralGoogle Scholar
  602. 602.
    Morone N, Fujiwara T, Murase K, Kasai RS, Ike H, Yuasa S, Usukura J, Kusumi A (2006) Three-dimensional reconstruction of the membrane skeleton at the plasma membrane interface by electron tomography. J Cell Biol 174(6):851–862PubMedPubMedCentralCrossRefGoogle Scholar
  603. 603.
    Clarke M, Spudich JA (1977) Nonmuscle contractile proteins: the role of actin and myosin in cell motility and shape determination. Annu Rev Biochem 46:797–822PubMedCrossRefPubMedCentralGoogle Scholar
  604. 604.
    Sauvanet C, Wayt J, Pelaseyed T, Bretscher A (2015) Structure, regulation, and functional diversity of microvilli on the apical domain of epithelial cells. Annu Rev Cell Dev Biol 31:593–621PubMedCrossRefPubMedCentralGoogle Scholar
  605. 605.
    Gissen P, Arias IM (2015) Structural and functional hepatocyte polarity and liver disease. J Hepatol 63(4):1023–1037PubMedPubMedCentralCrossRefGoogle Scholar
  606. 606.
    Mayhew TM (1990) Striated brush border of intestinal absorptive epithelial cells: stereological studies on microvillous morphology in different adaptive states. J Electron Microsc Tech 16(1):45–55PubMedPubMedCentralCrossRefGoogle Scholar
  607. 607.
    Mutsaers SE (2004) The mesothelial cell. Int J Biochem Cell Biol 36(1):9–16PubMedPubMedCentralCrossRefGoogle Scholar
  608. 608.
    Mutsaers SE, Herrick SE (2006) Mesothelial cells. In: Laurent GJ, Shapiro SD (eds) Encyclopedia of respiratory medicine. Academic Press, San DiegoGoogle Scholar
  609. 609.
    Christensen EI, Wagner CA, Kaissling B (2012) Uriniferous tubule: structural and functional organization. Compr Physiol 2(2):805–861PubMedPubMedCentralGoogle Scholar
  610. 610.
    Roy A, Al-bataineh MM, Pastor-Soler NM (2015) Collecting duct intercalated cell function and regulation. Clin J Am Soc Nephrol 10(2):305–324PubMedPubMedCentralCrossRefGoogle Scholar
  611. 611.
    Mount DB (2014) Thick ascending limb of the loop of henle. Clin J Am Soc Nephrol 9(11):1974–1986PubMedPubMedCentralCrossRefGoogle Scholar
  612. 612.
    Fath KR, Burgess DR (1995) Microvillus assembly: not actin alone. Current Biol 5(6):591–593CrossRefGoogle Scholar
  613. 613.
    Glenney JR Jr, Kaulfus P, Matsudaira P, Weber K (1981) F-actin binding and bundling properties of fimbrin, a major cytoskeletal protein of microvillus core filaments. J Biol Chem 256(17):9283–9288PubMedPubMedCentralGoogle Scholar
  614. 614.
    Hampton CM, Liu J, Taylor DW, DeRosier DJ, Taylor KA (2008) The 3D structure of villin as a unique f-actin crosslinker. Structure 16(12):1882–1891PubMedPubMedCentralCrossRefGoogle Scholar
  615. 615.
    Revenu C, Ubelmann F, Hurbain I, El-Marjou F, Dingli F, Loew D et al (2012) A new role for the architecture of microvillar actin bundles in apical retention of membrane proteins. Mol Biol Cell 23(2):324–336PubMedPubMedCentralCrossRefGoogle Scholar
  616. 616.
    Ubelmann F, Chamaillard M, El-Marjou F, Simon A, Netter J, Vignjevic D et al (2013) Enterocyte loss of polarity and gut wound healing rely upon the F-actin–severing function of villin. Proc Natl Acad Sci USA 110(15):E1380–E1389PubMedPubMedCentralCrossRefGoogle Scholar
  617. 617.
    Danielsen EM (2015) Probing endocytosis from the enterocyte brush border using fluorescent lipophilic dyes: lipid sorting at the apical cell surface. Histochem Cell Biol 143(5):545–556PubMedCrossRefPubMedCentralGoogle Scholar
  618. 618.
    Rodríguez-Fraticelli AE, Bagwell J, Bosch-Fortea M, Boncompain G, Reglero-Real N, García-León MJ et al (2015) Developmental regulation of apical endocytosis controls epithelial patterning in vertebrate tubular organs. Nat Cell Biol 17(3):241–250PubMedPubMedCentralCrossRefGoogle Scholar
  619. 619.
    Sauvanet C, Wayt J, Pelaseyed T, Bretscher A (2015) Structure, regulation, and functional diversity of microvilli on the apical domain of epithelial cells. Annu Rev Cell Dev Biol 31:1–805CrossRefGoogle Scholar
  620. 620.
    Kravtsov DV, Ameen NA (2013) Molecular motors and apical CFTR traffic in epithelia. Int J Mol Sci 14(5):9628–9642PubMedPubMedCentralCrossRefGoogle Scholar
  621. 621.
    Weisz OA, Rodriguez-Boulan E (2009) Apical trafficking in epithelial cells: signals, clusters and motors. J Cell Sci 122:4253–4266PubMedPubMedCentralCrossRefGoogle Scholar
  622. 622.
    Miyake K, McNeil PL (1995) Vesicle accumulation and exocytosis at sites of plasma membrane disruption. J Cell Biol 131(6 Pt 2):1737–1745PubMedCrossRefPubMedCentralGoogle Scholar
  623. 623.
    Vogel GF, Klee KM, Janecke AR, Müller T, Hess MW, Huber LA (2015) Cargo-selective apical exocytosis in epithelial cells is conducted by Myo5B, Slp4a, Vamp7, and Syntaxin 3. J Cell Biol 211(3):587–604PubMedPubMedCentralCrossRefGoogle Scholar
  624. 624.
    Choi DS, Kim DK, Kim YK, Gho YS (2013) Proteomics, transcriptomics and lipidomics of exosomes and ectosomes. Proteomics 13(10–11):1554–1571PubMedCrossRefPubMedCentralGoogle Scholar
  625. 625.
    Jahn R, Lang T (2008) Exocytosis. In: Offermanns S, Rosenthal W (eds) Encyclopedia of molecular pharmacology. Springer, BerlinGoogle Scholar
  626. 626.
    Schmoranzer J, Goulian M, Axelrod D, Simon SM (2000) Imaging constitutive exocytosis with total internal reflection fluorescence microscopy. J Cell Biol 149(1):23–32PubMedPubMedCentralCrossRefGoogle Scholar
  627. 627.
    Morgan A (1995) Exocytosis. Essays Biochem 30:77–95PubMedPubMedCentralGoogle Scholar
  628. 628.
    Chieregatti E, Meldolesi J (2005) Regulated exocytosis: new organelles for non-secretory purposes. Nat Rev Mol Cell Biol 6:181–187PubMedCrossRefPubMedCentralGoogle Scholar
  629. 629.
    Wang W, Liu J, Zhou X (2014) Identification of single-stranded and double-stranded DNA binding proteins based on protein structure. BMC Bioinform 15(Suppl 12):S4CrossRefGoogle Scholar
  630. 630.
    Richard DJ, Bolderson E, Khanna KK (2009) Multiple human single-stranded DNA binding proteins function in genome maintenance: structural, biochemical and functional analysis. Crit Rev Biochem Mol Biol 44(2–3):98–116PubMedCrossRefPubMedCentralGoogle Scholar
  631. 631.
    Arnott S (2006) DNA polymorphism and the early history of the double helix. Trends in Biochem Sci 31(6):349–354CrossRefGoogle Scholar
  632. 632.
    David AP, Margarit E, Domizi P, Banchio C, Armas P, Calcaterra NB (2016) G-quadruplexes as novel cis-elements controlling transcription during embryonic development. Nucleic Acids Res 44(9):4163–4173PubMedPubMedCentralCrossRefGoogle Scholar
  633. 633.
    Jain A, Wang G, Vasquez KM (2008) DNA triple helices: biological consequences and therapeutic potential. Biochimie 90(8):1117–1130PubMedPubMedCentralCrossRefGoogle Scholar
  634. 634.
    Griffiths AJF, Gelbart WM, Miller JH, Lewontin RC (1999) Modern genetic analysis. WH Freeman, New YorkGoogle Scholar
  635. 635.
    Buske FA, Bauer DC, Mattick JS, Bailey TL (2012) Triplexator: detecting nucleic acid triple helices in genomic and transcriptomic data. Genome Res 22(7):1372–1381PubMedPubMedCentralCrossRefGoogle Scholar
  636. 636.
    Duca M, Vekhoff P, Oussedik K, Halby L, Arimondo PB (2008) The triple helix: 50 years later, the outcome. Nucleic Acids Res 36(16):5123–5138PubMedPubMedCentralCrossRefGoogle Scholar
  637. 637.
    Escudé C, François JC, Sun JS, Ott G, Sprinzl M, Garestier T, Hélène C (1993) Stability of triple helices containing RNA and DNA strands: experimental and molecular modeling studies. Nucleic Acids Res 21(24):5547–5553PubMedPubMedCentralCrossRefGoogle Scholar
  638. 638.
    Buske FA, Mattick JS, Bailey TL (2011) Potential in vivo roles of nucleic acid triple-helices. RNA Biol 8(3):427–439PubMedPubMedCentralCrossRefGoogle Scholar
  639. 639.
    Gerstein MB, Bruce C, Rozowsky JS, Zheng D, Du J, Korbel JO et al (2007) What is a gene, post-ENCODE? History and updated definition. Genome Res 17(6):669–681PubMedCrossRefPubMedCentralGoogle Scholar
  640. 640.
    Gupta P, Muse O, Rozners E (2012) Recognition of double stranded RNA by guanidine-modified peptide nucleic acids (GPNA). Biochem 51(1):63–73CrossRefGoogle Scholar
  641. 641.
    Martys JL, Ho CL, Liem RKH, Gundersen GG (1999) Intermediate filaments in motion: observations of intermediate filaments in cells using green fluorescent protein-vimentin. Mol Biol Cell 10(5):1289–1295PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physiology, Faculty of Basic Medical SciencesCollege of Health Sciences, Nile University of NigeriaFCT-AbujaNigeria

Personalised recommendations