Excretory Functions of the Gastrointestinal Tract. Defecation

  • Menizibeya Osain Welcome


The gastrointestinal (GI) represents a critical hub where certain by-products of metabolism are channeled for removal from the body. Disorders that affect the excretion of metabolic waste products from the gut can have serious consequences to health. Furthermore, the undigested products of metabolism are also removed from the distal gut. This ensures continuous and adequate functioning of the GI tract, which are all required to maintain ongoing life processes. This chapter deals with the metabolic products produced in the gut that are channeled for removal as well as the evacuation of the residual wastes of digestion and the associated health implications.


Ammonia Ammonium transporters Anorectal afferents Anorectal afferents Anorectal disorders Anorectal innervation Anorectal physiology Bilirubin diglucuronide Bilirubin Bilirubinemia Hyperbilirubinemia Conjugated bilirubin Unconjugated bilirubin Constipation Defecation Defecation reflex Dual incontinence External anal sphincter Fecal incontinence Gut microbiota Hyperuraemia Hyperammonemia Internal anal sphincter Internal anal sphincter achalasia Lactulose Linaclotide Liver function tests Nutrietics Urea cycle Plecanatide Prebiotics Probiotics Reticuloendothelial system Stercobilin Synbiotics Ultrashort-segment Hirschsprung’s disease Urea Urobilin Urobilinogen Valves of Houston 





Alanine transaminase


Aspartate aminotransferases




Alkaline phosphatase


Guanylate cyclase C


  1. 1.
    Bergen WG, Wu G (2009) Intestinal nitrogen recycling and utilization in health and disease. J Nutr 139(5):821–825CrossRefPubMedGoogle Scholar
  2. 2.
    Ross AC, Taylor CL, Yaktine AL, Del Valle HB (eds) (2011) Dietary reference intakes for calcium and vitamin D. National Academies Press, Washington, DC, USAGoogle Scholar
  3. 3.
    Fried DE, Watson RE, Robson SC, Gulbransen BD (2017) Ammonia modifies enteric neuromuscular transmission through glial γ-aminobutyric acid signaling. Am J Physiol Gastrointest Liver Physiol 313(6):G570–G580CrossRefPubMedGoogle Scholar
  4. 4.
    Pereverzev VA, Lobanok LM (2014) Physiology of digestion. In: Kubarko AI (ed) Normal physiology. Visheishaya Shkola, Minsk, BelarusGoogle Scholar
  5. 5.
    Nikitina OS, Welcome MO, Pereverzev VA (2016) Human anatomy and physiology. Belarusian State Medical University Press, MinskGoogle Scholar
  6. 6.
    Bassotti G, Antonelli E, Villanacci V, Baldoni M, Dore MP (2014) Colonic motility in ulcerative colitis. United Eur Gastroenterol J 2(6):457–462CrossRefGoogle Scholar
  7. 7.
    Weiner ID, Verlander JW (2003) Renal and hepatic expression of the ammonium transporter proteins, Rh B Glycoprotein and Rh C Glycoprotein. Acta Physiol Scand 179(4):331–338CrossRefPubMedGoogle Scholar
  8. 8.
    Handlogten ME, Hong S-P, Zhang L, Vander AW, Steinbaum ML, Campbell-Thompson M, Weiner ID (2005) Expression of the ammonia transporter proteins Rh B glycoprotein and Rh C glycoprotein in the intestinal tract. Am J Physiol Gastrointest Liver Physiol 288(5):G1036–G1047CrossRefPubMedGoogle Scholar
  9. 9.
    Randall DJ (2011) Nitrogenous-waste balance: excretion of ammonia. In: Farrell A (ed) Encyclopedia of fish physiology: from genome to environment. Academic Press, MA, USAGoogle Scholar
  10. 10.
    Vince AJ, Burridge SM (1980) Ammonia production by intestinal bacteria: the effects of lactose, lactulose and glucose. J Med Microbiol 13(2):177–191CrossRefPubMedGoogle Scholar
  11. 11.
    van de Poll MCG, Ligthart-Melis GC, Olde Damink SWM, van Leeuwen PAM, Beets-Tan RGH, Deutz NEP et al (2008) The gut does not contribute to systemic ammonia release in humans without portosystemic shunting. Am J Physiol Gastrointest Liver Physiol 295(4):G760–G765CrossRefPubMedGoogle Scholar
  12. 12.
    Sugarbaker SP, Revhaug A, Wilmore DW (1987) The role of the small intestine in ammonia production after gastric blood administration. Ann Surg 206(1):5–17CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    De Preter V, Vanhoutte T, Huys G, Swings J, Rutgeerts P, Verbeke K (2006) Effect of lactulose and Saccharomyces boulardii administration on the colonic urea-nitrogen metabolism and the bifidobacteria concentration in healthy human subjects. Aliment Pharmacol Ther 23(7):963–974CrossRefPubMedGoogle Scholar
  14. 14.
    Weiner ID, Verlander JW (2011) Role of NH3 and NH4+ transporters in renal acid-base transport. Am J Physiol Renal Physiol 300(1):F11–23CrossRefPubMedGoogle Scholar
  15. 15.
    Phromphetcharat V, Jackson A, Dass PD, Welbourne TC (1981) Ammonia partitioning between glutamine and urea: Interorgan participation in metabolic acidosis. Kidney Int 20:598–605CrossRefPubMedGoogle Scholar
  16. 16.
    Romero-Gómez M, Jover M, Galán JJ, Ruiz A (2009) Gut ammonia production and its modulation. Metab Brain Dis 24(1):147–157CrossRefPubMedGoogle Scholar
  17. 17.
    Rohr F (2015) Nutrition management of urea cycle disorders. In: Bernstein L, Rohr F, Helm J (eds) Nutrition management of inherited metabolic diseases. Springer, Cham, SwitzerlandGoogle Scholar
  18. 18.
    Gropman AL, Summar M, Leonard JV (2007) Neurological implications of urea cycle disorders. J Inherit Metab Dis 30(6):865–879CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kinne-Saffran E, Kinne RK (1999) Vitalism and synthesis of urea. From Friedrich Wöhler to Hans A. Krebs. Am J Nephrol 19(2):290–294CrossRefPubMedGoogle Scholar
  20. 20.
    Krebs HA (1973) The discovery of the ornithine cycle of urea synthesis. Biochem Educ 1(2):19–23CrossRefGoogle Scholar
  21. 21.
    Nickelsen K, Graßhoff G (2009) Concepts from the bench: Hans Krebs, Kurt Henseleit and the urea cycle. In: Hon G, Schickore J, Steinle F (eds) Going amiss in experimental research. Springer, Dordrecht, NetherlandsGoogle Scholar
  22. 22.
    Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry, 5th edn. WH Freeman, New YorkGoogle Scholar
  23. 23.
    Long L-H, Zhang Y-T, Wang X-F, Cao Y-X (2009) Montmorillonite adsorbs urea and accelerates urea excretion from the intestine. Appl Clay Sci 46(1):57–62CrossRefGoogle Scholar
  24. 24.
    Thadhani R, Pascual M, Bonventre JV (1996) Acute renal failure. N Engl J Med 334:1448–1460CrossRefPubMedGoogle Scholar
  25. 25.
    Weiner ID, Mitch WE, Sands JM (2015) Urea and ammonia metabolism and the control of renal nitrogen excretion. Clin J Am Soc Nephrol 10(8):1444–1458CrossRefPubMedGoogle Scholar
  26. 26.
    Murea M (2012) Advanced kidney failure and hyperuricemia. ACKD 19(6):419–424Google Scholar
  27. 27.
    Goodman MW, Zieve L, Konstantinides FN, Cerra FB (1984) Mechanism of arginine protection against ammonia intoxication in the rat. Am J Physiol Gastrointest Liver Physiol 247(3):G290–G295CrossRefGoogle Scholar
  28. 28.
    Brosnan ME, Brosnan JT (2007) Orotic acid excretion and arginine metabolism. J Nutr 137(6):1656S–1661SCrossRefPubMedGoogle Scholar
  29. 29.
    Cheng W, Lu J, Li B, Lin W, Zhang Z, Wei X et al (2017) Effect of functional oligosaccharides and ordinary dietary fiber on intestinal microbiota diversity. Front Microbiol 8:1750CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Markowiak P, Śliżewska K (2017) Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 9(9):E1021Google Scholar
  31. 31.
    Hawkins RA, Jessy J, Mans AM, Chedid A, De Joseph MR (1994) Neomycin reduces the intestinal production of ammonia from glutamine. Adv Exp Med Biol 368:125–134CrossRefGoogle Scholar
  32. 32.
    van Berlo CLH, van Leeuwen PAM, Soeters PB (1988) Porcine intestinal ammonia liberation: influence of food intake, lactulose and neomycin treatment. J Hepatol 7(2):250–257CrossRefPubMedGoogle Scholar
  33. 33.
    Ascenzi P, Bocedi A, Visca P, Altruda F, Tolosano E, Beringhelli T, Fasano M (2005) Hemoglobin and heme scavenging. IUBMB Life 57(11):749–759CrossRefPubMedGoogle Scholar
  34. 34.
    Quinn KD, Nguyen NQT, Wach MM, Wood TD (2012) Tandem mass spectrometry of bilin tetrapyrroles by electrospray ionization and collision induced dissociation. Rapid Commun Mass Spectrom 26(16):1767–1775CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kotal P, Van Der Veere CN, Sinaasappel M, Elferink RO, Vítek L, Brodanová M et al (1997) Intestinal excretion of unconjugated bilirubin in man and rats with inherited unconjugated hyperbilirubinemia. Pediatr Res 42:195–200CrossRefPubMedGoogle Scholar
  36. 36.
    Tiribelli C, Ostrow JD (2005) Intestinal flora and bilirubin. J Hepatol 42(2):170–172CrossRefPubMedGoogle Scholar
  37. 37.
    Fargo MV, Grogan SP, Saguil A (2017) Evaluation of jaundice in adults. Am Fam Physician 95(3):164–168PubMedGoogle Scholar
  38. 38.
    Daniel H, Gholami AM, Berry D, Desmarchelier C, Hahne H, Loh G et al (2014) High-fat diet alters gut microbiota physiology in mice. ISME J 8(2):295–308CrossRefPubMedGoogle Scholar
  39. 39.
    Jeschke MG (2009) The hepatic response to thermal injury: is the liver important for postburn outcomes? Mol Med 15(9–10):337–351PubMedPubMedCentralGoogle Scholar
  40. 40.
    Nakamura T, Sato K, Akiba M, Ohnishi M (2006) Urobilinogen, as a bile pigment metabolite, has an antioxidant function. J Oleo Sci 55(4):191–197CrossRefGoogle Scholar
  41. 41.
    Kasper D, Fauci A, Hauser S, Longo D, Jameson J, Loscalzo J (eds) (2015) Harrison’s principles of internal medicine, 19th edn. McGraw Hill, New York, USAGoogle Scholar
  42. 42.
    Warrell DA, Cox TM, Firth JD (2010) The Oxford textbook of medicine, 5th edn. Oxford University Press, London, UKCrossRefGoogle Scholar
  43. 43.
    Sabaté M, Ibáñez L, Pérez E, Vidal X, Buti M, Xiol X et al (2011) Paracetamol in therapeutic dosages and acute liver injury: causality assessment in a prospective case series. BMC Gastroenterol 11:80CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Mahadevan SBK, McKiernan PJ, Davies P, Kelly DA (2006) Paracetamol induced hepatotoxicity. Arch Dis Child 91(7):598–603CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Ryder SD, Beckingham IJ (2001) Other causes of parenchymal liver disease. BMJ 322(7281):290–292CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Beckingham IJ, Ryder SD (2001) Investigation of liver and biliary disease. BMJ 322(7277):33–36CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Assy N, Jacob G, Spira G, Edoute Y (1999) Diagnostic approach to patients with cholestatic jaundice. World J Gastroenterol 5(3):252–262CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Vitek L (2003) Intestinal metabolism of bilirubin in the pathogenesis of neonatal jaundice. J Paediatr 143(6):810CrossRefGoogle Scholar
  49. 49.
    Stokowski LA (2006) Fundamentals of phototherapy for neonatal jaundice. Adv Neonatal Care 6(6):303–312CrossRefPubMedGoogle Scholar
  50. 50.
    Sadeghnia A, Ganji M, Armanian AM (2014) A comparison between the effect of fluorescent lamps and quartz halogen incandescent filament lamps on the treatment of hyperbilirobinemia in newborns with the gestational age of 35 weeks or more. Int J Prev Med 5(9):1186–1191PubMedPubMedCentralGoogle Scholar
  51. 51.
    Berthelot P, Dhumeaux D (1978) New insights into the classification and mechanisms of hereditary, chronic, non-haemolytic hyperbilirubinaemias. Gut 19(6):474–480CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Nambu M, Namihisa T (1996) Hepatic transport of serum bilirubin, bromsulfophthalein, and indocyanine green in patients with congenital non-hemolytic hyperbilirubinemia and patients with constitutional indocyanine green excretory defect. J Gastroenterol 31(2):228–236CrossRefPubMedGoogle Scholar
  53. 53.
    Rollins DE, Klaassen CD (1979) Biliary excretion of drugs in man. Clin Pharmacokinet 4(5):368–379CrossRefPubMedGoogle Scholar
  54. 54.
    Rozman K (1985) Intestinal excretion of toxic substances. Arch Toxicol Suppl 8:87–93CrossRefPubMedGoogle Scholar
  55. 55.
    Jandacek RJ, Genuis SJ (2013) An assessment of the intestinal lumen as a site for intervention in reducing body burdens of organochlorine compounds. Sci World J 2013:205621CrossRefGoogle Scholar
  56. 56.
    Sharifi M, Ghafourian T (2014) Estimation of biliary excretion of foreign compounds using properties of molecular structure. AAPS J 16(1):65–78CrossRefPubMedGoogle Scholar
  57. 57.
    Mikov M (1994) The metabolism of drugs by the gut flora. Eur J Drug Metab Pharmacokinet 19(3):201–207CrossRefPubMedGoogle Scholar
  58. 58.
    Roberts MS, Magnusson BM, Burczynski FJ, Weiss M (2002) Enterohepatic circulation: physiological, pharmacokinetic and clinical implications. Clin Pharmacokinet 41(10):751–790CrossRefPubMedGoogle Scholar
  59. 59.
    Barleben A, Mills S (2010) Anorectal anatomy and physiology. Surg Clin North Am 90(1):1–15CrossRefPubMedGoogle Scholar
  60. 60.
    Yu SW, Rao SS (2014) Anorectal physiology and pathophysiology in the elderly. Clin Geriatr Med 30(1):95–106CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Ikard RW (2015) Spiral rectal valves: anatomy, eponyms, and clinical significance. Clin Anat 28(4):436–441CrossRefPubMedGoogle Scholar
  62. 62.
    Jorge JM, Wexner SD (1997) Anatomy and physiology of the rectum and anus. Eur J Surg 163(10):723–731PubMedGoogle Scholar
  63. 63.
    Irving MH, Catchpole B (1992) ABC of colorectal diseases. Anatomy and physiology of the colon, rectum, and anus. BMJ 304(6834):1106–1108CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Raizada V, Mittal RK (2008) Pelvic floor anatomy and applied physiology. Gastroenterol Clin North Am 37(3):493–viiCrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Kim AY (2011) How to interpret a functional or motility test—defecography. J Neurogastroenterol Motil 17(4):416–420CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Penninckx F, Debruyne C, Lestar B, Kerremans R (1991) Intraobserver variation in the radiological measurement of the anorectal angle. Gastrointest Radiol 16(1):73–76CrossRefPubMedGoogle Scholar
  67. 67.
    Piloni V, Fioravanti P, Spazzafumo L, Rossi B (1999) Measurement of the anorectal angle by defecography for the diagnosis of fecal incontinence. Int J Colorectal Dis 14(2):131–135CrossRefPubMedGoogle Scholar
  68. 68.
    Ridolfi TJ, Tong W-D, Takahashi T, Kosinski L, Ludwig KA (2009) Sympathetic and parasympathetic regulation of rectal motility in rats. J Gastrointest Surg 13(11):2027–2033CrossRefPubMedGoogle Scholar
  69. 69.
    Shafik A, El-Sibai O, Ahmed I (2002) Parasympathetic extrinsic reflex: role in defecation mechanism. World J Surg 26(6):737–741CrossRefPubMedGoogle Scholar
  70. 70.
    Mauroy B, Demondion X, Bizet B, Claret A, Mestdagh P, Hurt C (2007) The female inferior hypogastric (=pelvic) plexus: anatomical and radiological description of the plexus and its afferences—applications to pelvic surgery. Surg Radiol Anat 29(1):55–66CrossRefPubMedGoogle Scholar
  71. 71.
    Gallachera K, Santosa LC, Campoy L, Bezuidenhout AJ, Gilbert RO (2016) Development of a peripheral nerve stimulator-guided technique for equine pudendal nerve blockade. Vet J 217:72–77CrossRefGoogle Scholar
  72. 72.
    Origoni M, Maggiore ULR, Salvatore S, Candiani M (2014) Neurobiological mechanisms of pelvic pain. Biomed Res Int 2014:903848CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Vermeulen W, De Man JG, Pelckmans PA, De Winter BY (2014) Neuroanatomy of lower gastrointestinal pain disorders. World J Gastroenterol 20(4):1005–1020CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Palit S, Lunniss PJ, Scott SM (2012) The physiology of human defecation. Dig Dis Sci 57(6):1445–1464CrossRefPubMedGoogle Scholar
  75. 75.
    Katsui R, Kuniyasu H, Matsuyoshi H, Fujii H, Nakajima Y, Takaki M (2009) The plasticity of the defecation reflex pathway in the enteric nervous system of guinea pigs. J Smooth Muscle Res 45(1):1–13CrossRefPubMedGoogle Scholar
  76. 76.
    Bajwa A, Emmanuel A (2009) The physiology of continence and evacuation. Best Pract Res Clin Gastroenterol 23(4):477–485CrossRefGoogle Scholar
  77. 77.
    Winge K, Rasmussen D, Werdelin LM (2003) Constipation in neurological diseases. J Neurol Neurosurg Psychiatry 74:13–19CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Krier J (1989) Motor function of anorectum and pelvic floor musculature. In: Wood JD (ed) Handbook of physiology. The gastrointestinal system: motility and circulation. American Physiological Society, Bethesda, Maryland, United StatesGoogle Scholar
  79. 79.
    Bajwa A, Emmanuel A (2009) The physiology of continence and evacuation. Best Pract Res Clin Gastroenterol 23(4):477–485CrossRefGoogle Scholar
  80. 80.
    Petros P, Swash M, Bush M, Fernandez M, Gunnemann A, Zimmer M (2012) Defecation 1: testing a hypothesis for pelvic striated muscle action to open the anorectum. Tech Coloproctol 16(6):437–443CrossRefPubMedGoogle Scholar
  81. 81.
    Shafik A, Shafik IA, El Sibai O, Shafik AA (2006) The “opening time” and “pelvic floor electromyographic lag time”: two novel tools in the assessment of the anorectal evacuation time. J Invest Surg 19(5):307–311CrossRefPubMedGoogle Scholar
  82. 82.
    Remes-Troche JM, De-Ocampo S, Valestin J, Rao SS (2010) Rectoanal reflexes and sensorimotor response in rectal hyposensitivity. Dis Colon Rectum 53(7):1047–1054CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    De Ocampo S, Remes-Troche JM, Miller MJ, Rao SS (2007) Rectoanal sensorimotor response in humans during rectal distension. Dis Colon Rectum 50(10):1639–1646CrossRefPubMedGoogle Scholar
  84. 84.
    Bush M, Petros P, Swash M, Fernandez M, Gunnemann A (2012) Defecation 2: internal anorectal resistance is a critical factor in defecatory disorders. Tech Coloproctol 16(6):445–450CrossRefPubMedGoogle Scholar
  85. 85.
    Fletcher JG, Busse RF, Riederer SJ, Hough D, Gluecker T, Harper CM, Bharucha AE (2003) Magnetic resonance imaging of anatomic and dynamic defects of the pelvic floor in defecatory disorders. Am J Gastroenterol 98(2):399–411CrossRefPubMedGoogle Scholar
  86. 86.
    Wald A (1994) Colonic and anorectal motility testing in clinical practice. Am J Gastroenterol 89(12):2109–2115PubMedGoogle Scholar
  87. 87.
    Yabunaka K, Nakagami G, Komagata K, Sanada H (2017) Ultrasonographic follow-up of functional chronic constipation in adults: a report of two cases. SAGE Open Med Case Rep 5:2050313X17694234CrossRefGoogle Scholar
  88. 88.
    Ko CY, Tong J, Lehman RE, Shelton AA, Schrock TR, Welton ML (1997) Biofeedback is effective therapy for fecal incontinence and constipation. Arch Surg 132:829–834CrossRefPubMedGoogle Scholar
  89. 89.
    Whitehead WE (1996) Functional anorectal disorders. Semin Gastrointest Dis 7(4):230–236PubMedGoogle Scholar
  90. 90.
    Bharucha AE, Wald A, Enck P, Rao S (2006) Functional anorectal disorders. Gastroenterology 130(5):1510–1518CrossRefPubMedGoogle Scholar
  91. 91.
    Shafik A (1982) A new concept of the anatomy of the anal sphincter mechanism and the physiology of defecation. XV. Chronic anal fissure: a new theory of pathogenesis. Am J Surg 144(2):262–268CrossRefPubMedGoogle Scholar
  92. 92.
    Chokhavatia S, John ES, Bridgeman MB, Dixit D (2016) Constipation in elderly patients with noncancer pain: focus on opioid-induced constipation. Drugs Aging 33(8):557–574CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Miner PB Jr (2018) Efficacy and safety of plecanatide in treating constipation predominant irritable bowel syndrome. Expert Opin Pharmacother 19(2):177–183CrossRefPubMedGoogle Scholar
  94. 94.
    Shah ED, Kim HM, Schoenfeld P (2018) Efficacy and tolerability of guanylate cyclase-C agonists for irritable bowel syndrome with constipation and chronic idiopathic constipation: a systematic review and meta-analysis. Am J Gastroenterol 113(3):329–338CrossRefPubMedGoogle Scholar
  95. 95.
    Kinugasa Y, Arakawa T, Murakami G, Fujimiya M, Sugihara K (2014) Nerve supply to the internal anal sphincter differs from that to the distal rectum: an immunohistochemical study of cadavers. Int J Colorectal Dis 29(4):429–436CrossRefPubMedGoogle Scholar
  96. 96.
    Holschneider AM, Kunst M (2008) Anal sphincter achalasia and ultrashort hirschsprung’s disease. In: Holschneider A, Puri P (eds) Hirschsprung’s disease and allied disorders. Springer, HeidelbergCrossRefGoogle Scholar
  97. 97.
    Chumpitazi BP, Fishman SJ, Nurko S (2009) Long-term clinical outcome after botulinum toxin injection in children with nonrelaxing internal anal sphincter children with nonrelaxing internal anal sphincter. Am J Gastroenterol 104:976–983CrossRefPubMedGoogle Scholar
  98. 98.
    De Caluwé D, Yoneda A, Akl U, Puri P (2001) Internal anal sphincter achalasia: outcome after internal sphincter myectomy. J Pediatr Surg 36:736–738CrossRefPubMedGoogle Scholar
  99. 99.
    Koivusalo AI, Pakarinen MP, Rintala RJ (2009) Botox injection treatment for anal outlet obstruction in patients with internal anal sphincter achalasia and Hirschsprung’s disease. Pediatr Surg Int 25(10):873–876CrossRefPubMedGoogle Scholar
  100. 100.
    Doodnath R, Puri P (2009) Internal anal sphincter achalasia. Semin Pediatr Surg 18(4):246–248CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physiology, Faculty of Basic Medical SciencesCollege of Health Sciences, Nile University of NigeriaFCT-AbujaNigeria

Personalised recommendations